SHELLBOXE

NFHeroes

Smart Contract Security Audit

Prepared by ShellBoxes
March 16", 2022 - March 22", 2022
Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client NFHeroes
Version 1.0
Classification Public
Scope

The NFHeroes Contractinthe NFHeroes Repository

Repo

Commit Hash

https://github.com/boring-bananas-co/
non-fungible-heroes-token

d10170be296d65b710726fb53b1281098ef01974

Files

MD5 Hash

CreditVault.sol

2dafd684c898664488b6d833e9d6fadf

LoreToken.sol

54e8175d8934d77efledff47bdd2f5da

NftLocker.sol 86d69c79dce4129106690027e1941659
Re-Audit
Repo Commit Hash

https://github.com/boring-bananas-co/

non-fungible-heroes-token

ac4el45956e45537631c6421fcchbbeebs1b7049

https://github.com/boring-bananas-co/non-fungible-heroes-token
https://github.com/boring-bananas-co/non-fungible-heroes-token
https://github.com/boring-bananas-co/non-fungible-heroes-token
https://github.com/boring-bananas-co/non-fungible-heroes-token

Contacts

COMPANY

EMAIL

ShellBoxes

contact@shellboxes.com

mailto:contact@shellboxes.com

Contents

1 Introduction 5
11 AboutNFHeroes 5
1.2 Approach &Methodology 5
121 RiskMethodology 6
2 Findings Overview
21 SUMMArY . . . e e e e
22 KeyFindings
3 Finding Details 8
A CreditVaultsolo 8
Al Missing Address Verification- 8
A2 Renounce 0wnership- 9
A3 Public Function Can Be Called External- 10
B LoreToken.sol 1
BJ Missing Address Verification [JBOW] 1
B.2 Renounce 0wnership- [V
C NftLockersol 13
C1 Missing Length Verification [[iEDIONN - - - - - - - - - - - - - - - . 13
C.2 For Loop Over Dynamic Array- 14
C.3 15
4 Best Practices 17
BP.1 Remove The Hardhat Console In Production 17
5 Static Analysis (Slither) 18
6 Conclusion 41

1 Introduction

NFHeroes engaged ShellBoxes to conduct a security assessment on the NFHeroes begin-
ning on March 16™", 2022 and ending March 22"¢, 2022. In this report, we detail our method-
ical approach to evaluate potential security issues associated with the implementation of
smart contracts, by exposing possible semantic discrepancies between the smart contract
code and design document, and by recommending additional ideas to optimize the existing
code. Ourfindings indicate that the current version of smart contracts can still be enhanced
further due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About NFHeroes

$LORE is an in-game token used for the NFH Interactive Quest experience. It will be
accrued by users and utilized to access digital goods in the NFH ecosystem. The team will
not be providing any liquidity for the token and does not endorse exchange of $LORE for
any other currency. It isintended for use as an in-game reward system only.

Issuer NFHeroes

Website https://www.nfheroes.io
Type Solidity Smart Contract
Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

https://www.nfheroes.io

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-

pact and is categorized into four levels, namely Critical, High, Medium, and Low.

Impact

High
Medium

Critical

Low

High Medium Low

Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the NFHeroes imple-
mentation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but theirimplemen-
tation might be improved by addressing the discovered flaws, which include , 1 medium-

severity, 7 low-severity vulnerabilities.

Vulnerabilities Severity | Status
Missing Length Verification Fixed

Missing Address Verification Fixed
Renounce Ownership Fixed

Public Function Can Be Called External Fixed

Missing Address Verification Fixed
Renounce Ownership Fixed

For Loop Over Dynamic Array Acknowledged
Renounce Ownership Fixed

3 Finding Details

A CreditVault.sol

A1 Missing Address Verification -

Certain functions lack a safety checkin the address, the address-type argument should in-
clude a zero-address test, otherwise, some of the contract’s functionality may become in-
accessible.

Listing 1: CreditVault.sol

3 function initialize(

35 1ERC20Upgradeable _loreToken,
3¢ address _authProvider,

s address _treasuryAddress

8) public initializer {

39 __Ownable_init();
40 __ReentrancyGuard_init();
4 __Pausable_init();
43 loreToken = _loreToken;
44 treasuryAddress = _treasuryAddress;
45 updateAuthProvider (_authProvider) ;
46 }
Likelihood -1
Impact -3

It is recommended to undertake further validation to prevent injecting zero address. The
concerns can be resolved by utilizing a whitelist technique or a modifier.

- Fixed

The NFHeroes team has fixed the issue by adding require statements to make sure that the
addresses provided in the arguments are different from the address(0).

A.2 Renounce Ownership -

Typically, the contract’s owner is the account that deploys the contract. As a result, the
owner can perform certain privileged activities. The renounceOwnership function is used
in smart contracts to renounce ownership. However, if the contract’s ownership has never
been transferred before renouncing it, it will never have an Owner, which may result in a
denial of service.

Listing 2: CreditVault.sol

% contract CreditVault is Initializable, UUPSUpgradeable,
< OwnableUpgradeable, ReentrancyGuardUpgradeable,
— PausableUpgradeable {

Likelihood -1
Impact - 2

Itis advised thatthe Owner cannot call renounceOwnership without first transferring own-
ership to a different address. Additionally, if a multi-signature wallet is utilized, executing

9

the renounceOwnership method will require two or more users to sign the transaction. Al-
ternatively, the Renounce Ownership functionality can be disabled by overriding it.

- Fixed

The NFHeroes team has fixed the issue by overriding the renounceOwnership() functionin
order to disable the renounce ownership functionality.

A.3 Public Function Can Be Called External [[EGWI

Functions with a public scope that are not called inside the contract should be declared ex-
ternalto reduce the gas fees.

Listing 3: CreditVault.sol

s function deposit(uint256 amount) public {

165 loreToken.safeTransferFrom(_msgSender (), treasuryAddress, amount);
166 emit Deposited(_msgSender(), amount);
167 }

Likelihood -1

Impact -1

Declare the deposit() function as external.

- Fixed

The NFHeroes team has fixed the issue by declaring the deposit function as external.

10

B LorelToken.sol

B.1 Missing Address Verification -

Certain functions lack a safety checkin the address, the address-type argument should in-
clude a zero-address test, otherwise, some of the contract’s functionality may become in-

accessible.

Listing 4: LoreToken.sol

1w constructor(address _treasuryAddress) ERC20('Lore Token', 'LORE') {

14 treasuryAddress = _treasuryAddress;
15 _mint (treasuryAddress, 100 * MILLION) ;
16 }

Listing 5: LoreToken.sol

v function setTreasuryAddress(address _treasuryAddress) external onlyOwner
— {
20 treasuryAddress = _treasuryAddress;

pAl }

Likelihood -1
Impact -3

It is recommended to undertake further validation to prevent injecting zero address. The
concerns can be resolved by utilizing a whitelist technique or a modifier.

1

- Fixed

The NFHeroes team has fixed the issue by adding require statements to make sure that the
addresses provided in the arguments are different from the address(0).

B.2 Renounce Ownership-

Typically, the contract’s owner is the account that deploys the contract. As a result, the
owner can perform certain privileged activities. The renounceOwnership function is used
in smart contracts to renounce ownership. However, if the contract’s ownership has never
been transferred before renouncing it, it will never have an Owner, which may result in a

denial of service.

Listing 6: LoreToken.sol

s contract LoreToken is Ownable, ERC20, ERC20Burnable {

Likelihood -1
Impact - 2

Itis advised thatthe Owner cannot call renounceOwnership without first transferring own-
ership to a different address. Additionally, if a multi-signature wallet is utilized, executing
the renounceOwnership method will require two or more users to sign the transaction. Al-
ternatively, the Renounce Ownership functionality can be disabled by overriding it.

- Fixed

The NFHeroes team has fixed the issue by overriding the renounceOwnership() functionin
order to disable the renounce ownership functionality.

12

C NftLocker.sol

C.1

Missing Length Verification _

The lock() function takes two arrays as arguments. Every tokenld is associated to a nftCol-

lection, therefore if the function is given two arrays with different lengths, it can generate

unexpected behaviors.

Listing 7: NftLocker.sol

29 function lock(address[] memory nftCollections, uint256[] memory tokenIds

31

33

34

35

36

38

40

41

42

43

44

45

46

<) external {
for (uint256 i = 0; i < nftCollections.length; i++) {

StakedNFT[] storage _stakedNfts = stakedNfts[_msgSender()] [
— nftCollections[i]];

_stakedNfts.push(StakedNFT ({
lockedTs: block.timestamp,
tokenId: tokenIds[i]

)

userNfts[nftCollections[i]] [tokenIds[i]] = _stakedNfts.length - 1;

IERC721(nftCollections[i]) .safeTransferFrom(
_msgSender (),
address(this),
tokenIds[i]

E

13

Likelihood - 3
Impact - 3

Use arequire statement to make sure the length of the two arrays are equals.

- Fixed

The NFHeroes team has fixed the issue by adding a require statement to make sure the ar-
ray provided in the arguments have the same length.

C.2 ForLoop Over Dynamic Array-

When smart contracts aredeployed ortheirassociated functions areinvoked, the execution
of these operations always consumes a certain quantity of gas, according to the amount of
computation required to accomplish them. Modifying an unknown-size array that grows
in size over time can result in a Denial-of-Service. Simply by having an excessively huge
array, users can exceed the gas limit, therefore preventing the transaction from ever suc-
ceeding.

Listing 8: NftLocker.sol

2 function lock(address[] memory nftCollections, uint256[] memory tokenIds
—) external {
30 for (uint256 i = 0; i < nftCollections.length; i++) {
3 StakedNFT[] storage _stakedNfts = stakedNfts[_msgSender()][
s nftCollections[i]];

33 _stakedNfts.push(StakedNFT ({

14

3 lockedTs: block.timestamp,

35 tokenlId: tokenIds([i]
36 }));
38 userNfts[nftCollections[i]] [tokenIds[i]] = _stakedNfts.length - 1;
40 IERC721 (nftCollections[i]) .safeTransferFrom(
a _msgSender (),
2 address(this),
43 tokenIds[i]
4h)
45 }
46 }
Likelihood -2
Impact - 2

Avoid actions that involve looping across the entire data structure. If you really must loop
over an array of unknown size, arrange for it to consume many blocs and thus multiple
transactions.

- Acknowledged

The NFHeroes team has acknowledged the risk.

C.3 Renounce Ownership -

Typically, the contract’s owner is the account that deploys the contract. As a result, the
owner can perform certain privileged activities. The renounceOwnership function is used

15

in smart contracts to renounce ownership. However, if the contract’s ownership has never
been transferred before renouncing it, it will never have an Owner, which may result in a

denial of service.

Listing 9: NftLocker.sol

v contract NftLocker is Initializable, UUPSUpgradeable, OwnableUpgradeable
< , IERC721Receiver {

Likelihood -1
Impact - 2

Itis advised thatthe Owner cannot call renounceOwnership without first transferring own-
ership to a different address. Additionally, if a multi-signature wallet is utilized, executing
the renounceOwnership method will require two or more users to sign the transaction. Al-

ternatively, the Renounce Ownership functionality can be disabled by overriding it.

- Fixed

The NFHeroes team has fixed the issue by overriding the renounceOwnership() functionin

order to disable the renounce ownership functionality.

[

4 Best Practices

BP.1 Remove The Hardhat Console In Production

Remove the hardhat console import before deploying the contract in production.

Listing 10: CreditVault.sol

1 import "hardhat/console.sol";

17

5 Static Analysis (Slither)

ShellBoxes expanded the coverage of the specific contract areas using automated test-
ing methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
usedtotest mathematical relationships between Solidityinstances statically and variables
thatallow forthe detection of errorsorinconsistentusage of the contracts’ APls throughout
the entire codebase.

//+CreditVault.sol
ERC1967UpgradeUpgradeable. functionDelegateCall (address,bytes) (
— node_modules/@openzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#198-204) uses delegatecall to a
< input-controlled function id
- (success,returndata) = target.delegatecall(data) (node_modules/
— Qopenzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#202)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #controlled-delegatecall

CreditVault.tokenRescue(IERC20,address,uint256) (contracts/CreditVault.
— sol#176-182) ignores return value by token.transfer(recipient,
— amount) (contracts/CreditVault.sol#181)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #unchecked-transfer

CreditVault (contracts/CreditVault.sol#16-196) is an upgradeable
— contract that does not protect its initiliaze functions:
— CreditVault.initialize (IERC20Upgradeable,address,address) (
— contracts/CreditVault.sol#34-46). Anyone can delete the contract

18

with: UUPSUpgradeable.upgradeTo(address) (node _modules/
Qopenzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.
sol#72-75)UUPSUpgradeable.upgradeToAndCall (address,bytes) (
node_modules/@openzeppelin/contracts-upgradeable/proxy/utils/
UUPSUpgradeable.sol#85-88)Reference: https://github.com/crytic/

slither/wiki/Detector-Documentation#unprotected-upgradeable-

R

contract

ERC1967UpgradeUpgradeable. upgradeToAndCallUUPS(address,bytes,bool) .slot
< (node_modules/Q@openzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#98) is a local variable never
<~ initialized

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

< #uninitialized-local-variables

ERC1967UpgradeUpgradeable. upgradeToAndCallUUPS (address,bytes,bool) (
— node_modules/@openzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#87-105) ignores return value by
— IERC1822ProxiableUpgradeable (newImplementation) .proxiableUUID() (
— node_modules/@openzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#98-102)
ERC721. checkOnERC721Received(address,address,uint256,bytes) (
— node_modules/Qopenzeppelin/contracts/token/ERC721/ERC721.s01
— #388-409) ignores return value by IERC721Receiver(to).
— onERC721Received(_msgSender () ,from,tokenId, data) (node_modules/
— Qopenzeppelin/contracts/token/ERC721/ERC721.s01#395-405)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #unused-return

CreditVault.initialize (IERC20Upgradeable,address,address) .
— _treasuryAddress (contracts/CreditVault.sol#37) lacks a zero-
< check on :
- treasuryAddress = _treasuryAddress (contracts/

< CreditVault.sol#44)

19

CreditVault.updateAuthProvider (address)._authProvider (contracts/
— CreditVault.sol#56) lacks a zero-check on :
- authProvider = _authProvider (contracts/CreditVault.sol
— #57)
CreditVault.setTreasuryAddress(address) . _treasuryAddress (contracts/
— CreditVault.sol#99) lacks a zero-check on :
- treasuryAddress = _treasuryAddress (contracts/
— CreditVault.sol#100)
CreditVault.etherRescue(address,uint256) .recipient (contracts/
— CreditVault.sol#190) lacks a zero-check on :
- (success) = address(recipient).call{value: amount}() (
— contracts/CreditVault.sol#193)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #missing-zero-address-validation

CreditVault.claim(uint256[],uint256,uint256,address[],bytes32,bytes32,
— uint8) (contracts/CreditVault.sol#107-133) has external calls
— inside a loop: require(bool,string) (IERC721(nftCollections[i]).
— ownerOf (tokenIds[i]) == _msgSender(),nft not owned by user) (
— contracts/CreditVault.sol#125)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— /#calls-inside-a-loop

Variable 'ERC1967UpgradeUpgradeable._upgradeToAndCallUUPS(address,bytes,
bool) .slot (node_modules/Qopenzeppelin/contracts-upgradeable/
proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#98) ' in
ERC1967UpgradeUpgradeable. upgradeToAndCallUUPS(address,bytes,

{

bool) (node_modules/@openzeppelin/contracts-upgradeable/proxy/
ERC1967/ERC1967UpgradeUpgradeable.sol#87-105) potentially used
before declaration: require(bool,string) (slot ==
_IMPLEMENTATION_SLOT,ERC1967Upgrade: unsupported proxiableUUID) (
node_modules/@openzeppelin/contracts—upgradeable/proxy/ERC1967/
ERC1967UpgradeUpgradeable.sol#99)

R

20

Variable 'ERC721. checkOnERC721Received(address,address,uint256,bytes) .
— retval (node_modules/@openzeppelin/contracts/token/ERC721/ERC721.
sol#395)' in ERC721._checkOnERC721Received(address,address,
uint256,bytes) (node_modules/@openzeppelin/contracts/token/ERC721
/ERC721.501#388-409) potentially used before declaration: retval
== IERC721Receiver.onERC721Received.selector (node modules/
Q@openzeppelin/contracts/token/ERC721/ERC721.s01#396)
Variable 'ERC721. checkOnERC721Received(address,address,uint256,bytes) .
reason (node_modules/Q@openzeppelin/contracts/token/ERC721/ERC721.
sol#397)' in ERC721. checkOnERC721Received(address,address,

AN

{

N
— uint256,bytes) (node_modules/@openzeppelin/contracts/token/ERC721
— /ERC721.s01#388-409) potentially used before declaration: reason.
— length == 0 (node_modules/@openzeppelin/contracts/token/ERC721/
— ERC721.s01#398)

Variable 'ERC721._checkOnERC721Received(address,address,uint256,bytes) .
reason (node_modules/Q@openzeppelin/contracts/token/ERC721/ERC721.
sol#397)' in ERC721. checkOnERC721Received(address,address,

(ﬁ
— uint256,bytes) (node_modules/Qopenzeppelin/contracts/token/ERC721
C%
C%

i

/ERC721.s501#388-409) potentially used before declaration: revert(
uint256,uint256) (32 + reason,mload(uint256) (reason)) (

— node_modules/@openzeppelin/contracts/token/ERC721/ERC721.s01#402)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #pre-declaration-usage-of-local-variables

Reentrancy in CreditVault.claim(uint256[],uint256,uint256,address[],
— bytes32,bytes32,uint8) (contracts/CreditVault.sol#107-133):
External calls:
- loreToken.safeTransferFrom(treasuryAddress, msgSender() ,amount)
— (contracts/CreditVault.sol#131)
Event emitted after the call(s):
- Claimed(_msgSender () ,nftCollections,tokenlds,amount) (contracts
— /CreditVault.sol#132)
Reentrancy in CreditVault.deposit(uint256) (contracts/CreditVault.sol
— #164-167):

21

External calls:
- loreToken.safeTransferFrom(_msgSender () ,treasuryAddress,amount)
— (contracts/CreditVault.sol#165)
Event emitted after the call(s):
- Deposited(_msgSender() ,amount) (contracts/CreditVault.sol#166)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-3

AddressUpgradeable.verifyCallResult (bool,bytes,string) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #174-194) uses assembly
- INLINE ASM (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/AddressUpgradeable.sol#186-189)
StorageSlotUpgradeable.getAddressSlot (bytes32) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.
— s0l#52-56) uses assembly
- INLINE ASM (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/StorageSlotUpgradeable.sol#53-55)
StorageSlotUpgradeable.getBooleanSlot (bytes32) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.
— so0l#61-65) uses assembly
- INLINE ASM (node_modules/Qopenzeppelin/contracts-upgradeable/
— utils/StorageSlotUpgradeable.sol#62-64)
StorageSlotUpgradeable.getBytes32Slot (bytes32) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.
< sol#70-74) uses assembly
- INLINE ASM (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/StorageSlotUpgradeable.sol#71-73)
StorageSlotUpgradeable.getUint256Slot (bytes32) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.
— sol#79-83) uses assembly
- INLINE ASM (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/StorageSlotUpgradeable.sol#80-82)

22

ERC721._checkOnERC721Received(address,address,uint256,bytes) (
— node_modules/@openzeppelin/contracts/token/ERC721/ERC721.s0l
— #388-409) uses assembly
- INLINE ASM (node_modules/@openzeppelin/contracts/token/ERC721/
— ERC721.s01#401-403)
Address.verifyCallResult(bool,bytes,string) (node_modules/Qopenzeppelin/
— contracts/utils/Address.sol#201-221) uses assembly
- INLINE ASM (node_modules/@openzeppelin/contracts/utils/Address.
— s0l#213-216)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #assembly-usage

Different versions of Solidity are used:

- Version used: ['0.8.11', '70.8.0', '~0.8.1', '70.8.2']

- 0.8.11 (contracts/CreditVault.sol#2)

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/access
— /OwnableUpgradeable.sol#4)

- 70.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— interfaces/draft-IERC1822Upgradeable.sol#4)

- 70.8.2 (node_modules/Qopenzeppelin/contracts-upgradeable/proxy/
— ERC1967/ERC1967UpgradeUpgradeable.sol#4)

- 70.8.0 (node_modules/@openzeppelin/contracts-upgradeable/proxy/
— beacon/IBeaconUpgradeable.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/proxy/
— utils/Initializable.sol#4)

- 70.8.0 (node_modules/@openzeppelin/contracts-upgradeable/proxy/
— utils/UUPSUpgradeable.sol#4)

- 70.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— security/PausableUpgradeable.sol#4)

- 70.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— security/ReentrancyGuardUpgradeable.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/token/
— ERC20/IERC20Upgradeable.sol#4)

23

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/token/
— ERC20/utils/SafeERC20Upgradeable.sol#4)

- 70.8.1 (node_modules/Qopenzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/utils/
— ContextUpgradeable.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/utils/
— StorageSlotUpgradeable.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC20/ERC20.
— sol#4)

- 70.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/IERC20
— .sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC20/
— extensions/IERC20Metadata.sol#4)

- 70.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
— ERC721.s0l#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC721/
— IERC721.so0l#4)

- 70.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
— IERC721Receiver.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC721/
— extensions/IERC721Metadata.sol#4)

- 70.8.1 (node_modules/Qopenzeppelin/contracts/utils/Address.sol
— #4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/utils/Context.sol
— #4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/utils/Strings.sol
— #4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/utils/
— introspection/ERC165.s01#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/utils/
— introspection/IERC165.s0l#4)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

24

Address.functionCall (address,bytes) (node_modules/Qopenzeppelin/
— contracts/utils/Address.sol#85-87) is never used and should be
— removed

Address.functionCall (address,bytes,string) (node_modules/@openzeppelin/
— contracts/utils/Address.sol#95-101) is never used and should be
— removed

Address.functionCallWithValue(address,bytes,uint256) (node_modules/
< Qopenzeppelin/contracts/utils/Address.sol#114-120) is never used
— and should be removed

Address.functionCallWithValue(address,bytes,uint256,string) (
— node_modules/@openzeppelin/contracts/utils/Address.sol#128-139)
— is never used and should be removed

Address.functionDelegateCall (address,bytes) (node_modules/Qopenzeppelin/
— contracts/utils/Address.sol#174-176) is never used and should be
— removed

Address.functionDelegateCall (address,bytes,string) (node_modules/
— Qopenzeppelin/contracts/utils/Address.sol#184-193) is never used
< and should be removed

Address.functionStaticCall(address,bytes) (node_modules/@openzeppelin/
— contracts/utils/Address.sol#147-149) is never used and should be
— removed

Address.functionStaticCall(address,bytes,string) (node_modules/
< Qopenzeppelin/contracts/utils/Address.sol#157-166) is never used
— and should be removed

Address.sendValue(address,uint256) (node_modules/@openzeppelin/contracts
< /utils/Address.sol#60-65) is never used and should be removed

Address.verifyCallResult (bool,bytes,string) (node_modules/Qopenzeppelin/
— contracts/utils/Address.sol#201-221) is never used and should be
— removed

AddressUpgradeable.functionCall (address,bytes) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol

< #8b5-87) is never used and should be removed

25

AddressUpgradeable.functionCallWithValue (address,bytes,uint256) (
— node_modules/@openzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#114-120) is never used and should be
— removed
AddressUpgradeable.functionStaticCall (address,bytes) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #147-149) is never used and should be removed
AddressUpgradeable.functionStaticCall (address,bytes,string) (
— node_modules/@openzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#157-166) is never used and should be
— removed
AddressUpgradeable.sendValue (address,uint256) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #60-65) is never used and should be removed
Context._msgData() (node_modules/@openzeppelin/contracts/utils/Context.
< sol#21-23) is never used and should be removed
ContextUpgradeable. _Context_init() (node_modules/Qopenzeppelin/
— contracts-upgradeable/utils/ContextUpgradeable.sol#18-19) is
— never used and should be removed
ContextUpgradeable._ _Context_init unchained() (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol
— #21-22) is never used and should be removed
ContextUpgradeable. _msgData() (node_modules/Qopenzeppelin/contracts—
— upgradeable/utils/ContextUpgradeable.sol#27-29) is never used and
— should be removed
ERC1967UpgradeUpgradeable. ERC1967Upgrade_init() (node_modules/
— Qopenzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#21-22) is never used and should be
— removed
ERC1967UpgradeUpgradeable. __ERC1967Upgrade_init_unchained() (
— node_modules/Qopenzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#24-25) is never used and should be

— removed

26

ERC1967UpgradeUpgradeable. changeAdmin(address) (node_modules/
< Qopenzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#139-142) is never used and should
— be removed
ERC1967UpgradeUpgradeable. getAdmin() (node_modules/@openzeppelin/
— contracts-upgradeable/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol
< #122-124) is never used and should be removed
ERC1967UpgradeUpgradeable. getBeacon() (node_modules/@openzeppelin/
— contracts-upgradeable/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol
— #158-160) is never used and should be removed
ERC1967UpgradeUpgradeable. setAdmin(address) (node_modules/@openzeppelin
— /contracts-upgradeable/proxy/ERC1967/ERC1967UpgradeUpgradeable.
— s0l#129-132) is never used and should be removed
ERC1967UpgradeUpgradeable._setBeacon(address) (node_modules/
— Qopenzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#165-172) is never used and should
— be removed
ERC1967UpgradeUpgradeable._upgradeBeaconToAndCall (address,bytes,bool) (
— node_modules/@openzeppelin/contracts—upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#180-190) is never used and should
— be removed
ERC20._burn(address,uint256) (node_modules/Qopenzeppelin/contracts/token
— /ERC20/ERC20.s01#280-295) is never used and should be removed
ERC20. mint(address,uint256) (node_modules/@openzeppelin/contracts/token
— /ERC20/ERC20.s01#257-267) is never used and should be removed
ERC721._burn(uint256) (node_modules/@openzeppelin/contracts/token/ERC721
— /ERC721.s01#304-318) is never used and should be removed
ERC721. mint(address,uint256) (node_modules/Qopenzeppelin/contracts/
— token/ERC721/ERC721.s01#280-292) is never used and should be
— removed
ERC721._safeMint(address,uint256) (node_modules/Qopenzeppelin/contracts/
— token/ERC721/ERC721.s01#248-250) is never used and should be

— removed

27

ERC721. safeMint(address,uint256,bytes) (node_modules/Qopenzeppelin/
— contracts/token/ERC721/ERC721.s01#256-266) is never used and
< should be removed
SafeERC20Upgradeable.safeApprove (IERC20Upgradeable,address,uint256) (
— node_modules/@openzeppelin/contracts-upgradeable/token/ERC20/
— utils/SafeERC20Upgradeable.sol#45-58) is never used and should be
—> removed
SafeERC20Upgradeable.safeDecreaseAllowance (IERC20Upgradeable,address,
— uint256) (node_modules/@openzeppelin/contracts-upgradeable/token/
— ERC20/utils/SafeERC20Upgradeable.sol#69-80) is never used and
< should be removed
SafeERC20Upgradeable.safeIncreaseAllowance (IERC20Upgradeable,address,
— uint256) (node_modules/@openzeppelin/contracts-upgradeable/token/
— ERC20/utils/SafeERC20Upgradeable.sol#60-67) is never used and
< should be removed
SafeERC20Upgradeable.safeTransfer (IERC20Upgradeable,address,uint256) (
— node_modules/@openzeppelin/contracts-upgradeable/token/ERC20/
— utils/SafeERC20Upgradeable.sol#21-27) is never used and should be
—» removed
StorageSlotUpgradeable.getBytes32Slot (bytes32) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.
< sol#70-74) is never used and should be removed
StorageSlotUpgradeable.getUint256S1lot (bytes32) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.
< sol#79-83) is never used and should be removed
Strings.toHexString(uint256) (node_modules/@openzeppelin/contracts/utils
— /Strings.sol#40-51) is never used and should be removed
Strings.toHexString(uint256,uint256) (node_modules/@openzeppelin/
— contracts/utils/Strings.sol#56-66) is never used and should be
— removed
UUPSUpgradeable.__UUPSUpgradeable_init() (node_modules/Q@openzeppelin/
— contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol#23-24) is

— never used and should be removed

28

UUPSUpgradeable.__UUPSUpgradeable_init unchained() (node_modules/
— Qopenzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.
< Sol#26-27) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #dead-code

Pragma version0.8.11 (contracts/CreditVault.sol#2) necessitates a
<> version too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6/0.8.7

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/
— access/0OwnableUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— interfaces/draft-IERC1822Upgradeable.sol#4) allows old versions

Pragma version~0.8.2 (node_modules/Qopenzeppelin/contracts-upgradeable/
— proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#4) allows old
—> versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— proxy/beacon/IBeaconUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— proxy/utils/Initializable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— proxy/utils/UUPSUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— security/PausableUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— security/ReentrancyGuardUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— token/ERC20/IERC20Upgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— token/ERC20/utils/SafeERC20Upgradeable.sol#4) allows old versions

Pragma version~0.8.1 (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/AddressUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/

— utils/ContextUpgradeable.sol#4) allows old versions

29

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/StorageSlotUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— ERC20.so0l#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— IERC20.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts/token/ERC20/
— extensions/IERC20Metadata.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
— ERC721.s0l#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
— IERC721.s0l#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
— IERC721Receiver.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
— extensions/IERC721Metadata.sol#4) allows old versions

Pragma version~0.8.1 (node_modules/@openzeppelin/contracts/utils/Address
— .sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/utils/Context
< .sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/utils/Strings
— .sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/utils/
< introspection/ERC165.s0l#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/utils/
— introspection/IERC165.s0l#4) allows old versions

801c-0.8.11 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity
PausableUpgradeable. _gap (node_modules/Qopenzeppelin/contracts-

— upgradeable/security/PausableUpgradeable.sol#102) is never used
< in CreditVault (contracts/CreditVault.sol#16-196)

30

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #unused-state-variable
contracts/CreditVault.sol analyzed (26 contracts with 75 detectors), 96

— result(s) found

// +NftLocker.sol
ERC1967UpgradeUpgradeable. functionDelegateCall (address,bytes) (
— node_modules/@openzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#198-204) uses delegatecall to a
— input-controlled function id
- (success,returndata) = target.delegatecall(data) (node_modules/
— Qopenzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#202)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #controlled-delegatecall

Reentrancy in NftLocker.unlock(address[],uint256[]) (contracts/NftLocker
— .sol#60-74):
External calls:
- IERC721(nftCollections[i]) .safeTransferFrom(address(this),
— _msgSender () ,tokenIds[i]) (contracts/NftLocker.sol#65-69)
State variables written after the call(s):
- deleteStakedNfts(nftCollections[i] ,userNfts[nftCollections([i]] [
— tokenIds[i]], stakedNfts) (contracts/NftLocker.sol#71)
- userNfts[nftCollection] [lastStakedNFT.tokenId] = index (
— contracts/NftLocker.sol#55)
- delete userNfts[nftCollections[i]] [tokenIds[i]] (contracts/
— NftLocker.sol#72)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-1
ERC1967UpgradeUpgradeable. upgradeToAndCallUUPS (address,bytes,bool) .slot

— (node_modules/@openzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#98) is a local variable never

31

— initialized
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

< #uninitialized-local-variables

ERC1967UpgradeUpgradeable. upgradeToAndCallUUPS(address,bytes,bool) (
— node_modules/@openzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#87-105) ignores return value by
— IERC1822ProxiableUpgradeable (newImplementation) .proxiableUUID() (
— node_modules/@openzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#98-102)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #unused-return

NftLocker.lock(address[],uint256[]) (contracts/NftLocker.sol#29-46) has
— external calls inside a loop: IERC721(nftCollections[i]).
— safeTransferFrom(_msgSender() ,address(this) ,tokenIds[i]) (
— contracts/NftLocker.sol#40-44)
NftLocker.unlock(address[],uint256[]) (contracts/NftLocker.sol#60-74)
— has external calls inside a loop: IERC721(nftCollections[i]).
— safeTransferFrom(address(this), msgSender () ,tokenIds[i]) (
— contracts/NftLocker.sol#65-69)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— /#calls-inside-a-loop

Variable 'ERC1967UpgradeUpgradeable._upgradeToAndCallUUPS(address,bytes,
— bool) .slot (node_modules/@openzeppelin/contracts-upgradeable/
proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#98) ' in
ERC1967UpgradeUpgradeable. upgradeToAndCallUUPS(address,bytes,
bool) (node_modules/@openzeppelin/contracts-upgradeable/proxy/
ERC1967/ERC1967UpgradeUpgradeable.sol#87-105) potentially used
before declaration: require(bool,string) (slot ==
_IMPLEMENTATION_SLOT,ERC1967Upgrade: unsupported proxiableUUID) (
node_modules/@openzeppelin/contracts-upgradeable/proxy/ERC1967/
ERC1967UpgradeUpgradeable.sol#99)

R

kY.

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #pre-declaration-usage-of-local-variables

AddressUpgradeable.verifyCallResult (bool,bytes,string) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #174-194) uses assembly
- INLINE ASM (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/AddressUpgradeable.sol#186-189)
StorageSlotUpgradeable.getAddressSlot (bytes32) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.
— sol#52-56) uses assembly
- INLINE ASM (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/StorageSlotUpgradeable.sol#53-55)
StorageSlotUpgradeable.getBooleanSlot (bytes32) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.
— so0l#61-65) uses assembly
- INLINE ASM (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/StorageSlotUpgradeable.sol#62-64)
StorageSlotUpgradeable.getBytes32Slot (bytes32) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.
— s0l#70-74) uses assembly
- INLINE ASM (node_modules/Qopenzeppelin/contracts-upgradeable/
— utils/StorageSlotUpgradeable.sol#71-73)
StorageSlotUpgradeable.getUint256S1lot (bytes32) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.
— sol#79-83) uses assembly
- INLINE ASM (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/StorageSlotUpgradeable.sol#80-82)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #assembly-usage
Different versions of Solidity are used:

- Version used: ['0.8.11', '"0.8.0', '~0.8.1', '"0.8.2']
- 0.8.11 (contracts/NftLocker.sol#2)

33

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/access
— /OwnableUpgradeable.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/
— interfaces/draft-IERC1822Upgradeable.sol#4)

- 70.8.2 (node_modules/Qopenzeppelin/contracts-upgradeable/proxy/
— ERC1967/ERC1967UpgradeUpgradeable.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/proxy/
— beacon/IBeaconUpgradeable.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/proxy/
— utils/Initializable.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/proxy/
— utils/UUPSUpgradeable.sol#4)

- 70.8.1 (node_modules/Qopenzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/utils/
— ContextUpgradeable.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/utils/
— StorageSlotUpgradeable.sol#4)

- 70.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
— IERC721.s0l#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC721/
— IERC721Receiver.sol#4)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/utils/
— introspection/IERC165.s0l#4)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

AddressUpgradeable.functionCall (address,bytes) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #85-87) is never used and should be removed
AddressUpgradeable.functionCall (address,bytes,string) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol

< #95-101) is never used and should be removed

34

AddressUpgradeable.functionCallWithValue (address,bytes,uint256) (
— node_modules/@openzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#114-120) is never used and should be
— removed
AddressUpgradeable.functionCallWithValue(address,bytes,uint2566,string) (
— node_modules/@openzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#128-139) is never used and should be
— removed
AddressUpgradeable.functionStaticCall (address,bytes) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #147-149) is never used and should be removed
AddressUpgradeable.functionStaticCall (address,bytes,string) (
— node_modules/@openzeppelin/contracts-upgradeable/utils/
< AddressUpgradeable.sol#157-166) is never used and should be
— removed
AddressUpgradeable.sendValue (address,uint256) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #60-65) is never used and should be removed
ContextUpgradeable.__Context_init() (node_modules/Qopenzeppelin/
— contracts-upgradeable/utils/ContextUpgradeable.sol#18-19) is
— never used and should be removed
ContextUpgradeable. _Context_init unchained() (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol
— #21-22) is never used and should be removed
ContextUpgradeable. msgData() (node_modules/Qopenzeppelin/contracts-
— upgradeable/utils/ContextUpgradeable.sol#27-29) is never used and
<> should be removed
ERC1967UpgradeUpgradeable. _ERC1967Upgrade_init() (node_modules/
— Qopenzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#21-22) is never used and should be
— removed
ERC1967UpgradeUpgradeable. _ERC1967Upgrade_init_unchained() (
— node_modules/@openzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#24-25) is never used and should be

35

— removed
ERC1967UpgradeUpgradeable._changeAdmin(address) (node_modules/
— Qopenzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#139-142) is never used and should
— be removed
ERC1967UpgradeUpgradeable._getAdmin() (node_modules/Qopenzeppelin/
— contracts-upgradeable/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol
— #122-124) is never used and should be removed
ERC1967UpgradeUpgradeable. getBeacon() (node_modules/@openzeppelin/
— contracts-upgradeable/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol
— #158-160) is never used and should be removed
ERC1967UpgradeUpgradeable. setAdmin(address) (node_modules/@openzeppelin
— /contracts-upgradeable/proxy/ERC1967/ERC1967UpgradeUpgradeable.
— s01#129-132) is never used and should be removed
ERC1967UpgradeUpgradeable. _setBeacon(address) (node_modules/
< Qopenzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#165-172) is never used and should
— be removed
ERC1967UpgradeUpgradeable. upgradeBeaconToAndCall (address,bytes,bool) (
— node_modules/@openzeppelin/contracts-upgradeable/proxy/ERC1967/
— ERC1967UpgradeUpgradeable.sol#180-190) is never used and should
— be removed
Initializable._isConstructor() (node_modules/Qopenzeppelin/contracts-—
— upgradeable/proxy/utils/Initializable.sol#77-79) is never used
— and should be removed
OwnableUpgradeable.__Ownable_init() (node_modules/Qopenzeppelin/
— contracts-upgradeable/access/OwnableUpgradeable.sol#29-31) is
<~ never used and should be removed
OwnableUpgradeable. Ownable_init unchained() (node_modules/
— Qopenzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol
— #33-35) is never used and should be removed
StorageSlotUpgradeable.getBytes32Slot (bytes32) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.

< s0l#70-74) is never used and should be removed

36

StorageSlotUpgradeable.getUint256Slot (bytes32) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.
< sol#79-83) is never used and should be removed

UUPSUpgradeable.__UUPSUpgradeable_init() (node_modules/Qopenzeppelin/
— contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol#23-24) is
— never used and should be removed

UUPSUpgradeable. __UUPSUpgradeable_init_unchained() (node_modules/
< Qopenzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.
< Sol#26-27) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #dead-code

Pragma version0.8.11 (contracts/NftLocker.sol#2) necessitates a version
— too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6/0.8.7

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/
— access/0OwnableUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/
— interfaces/draft-IERC1822Upgradeable.sol#4) allows old versions

Pragma version~0.8.2 (node_modules/Q@openzeppelin/contracts-upgradeable/
— proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#4) allows old
<~ versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— proxy/beacon/IBeaconUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— proxy/utils/Initializable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— proxy/utils/UUPSUpgradeable.sol#4) allows old versions

Pragma version~0.8.1 (node_modules/@openzeppelin/contracts-upgradeable/
— utils/AddressUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/ContextUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/

— utils/StorageSlotUpgradeable.sol#4) allows old versions

37

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
— IERC721.so0l#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
— IERC721Receiver.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/utils/
< introspection/IERC165.s0l#4) allows old versions

801c-0.8.11 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity

OwnableUpgradeable._ _gap (node_modules/Qopenzeppelin/contracts-
— upgradeable/access/OwnableUpgradeable.sol#87) is never used in
— NftLocker (contracts/NftLocker.sol#10-84)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #unused-state-variable
contracts/NftLocker.sol analyzed (13 contracts with 75 detectors), 53
— result(s) found
//LoreToken.sol

LoreToken.tokenRescue (IERC20,address,uint256) (contracts/LoreToken.sol
— #30-36) ignores return value by token.transfer(recipient,amount)
— (contracts/LoreToken.sol#35)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #unchecked-transfer

LoreToken.constructor (address) . _treasuryAddress (contracts/LoreToken.sol
< #13) lacks a zero-check on :
- treasuryAddress = _treasuryAddress (contracts/LoreToken.
— sol#14)
LoreToken.setTreasuryAddress(address) . _treasuryAddress (contracts/
< LoreToken.sol#19) lacks a zero-check on :
- treasuryAddress = _treasuryAddress (contracts/LoreToken.

— s01#20)

38

LoreToken.etherRescue(address,uint256) .recipient (contracts/LoreToken.
< sol#44) lacks a zero-check on :
- (success) = address(recipient).call{value: amount}() (
— contracts/LoreToken.sol#47)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #missing-zero-address-validation

Different versions of Solidity are used:
- Version used: ['0.8.11', '~0.8.0']
- 0.8.11 (contracts/LoreToken.sol#2)
- 70.8.0 (node_modules/@openzeppelin/contracts/access/Ownable.sol
— #4)
- 70.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC20/ERC20.
— sol#4)
- 70.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/IERC20
— .sol#4)
- 70.8.0 (node_modules/Q@openzeppelin/contracts/token/ERC20/
— extensions/ERC20Burnable.sol#4)
- 70.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— extensions/IERC20Metadata.sol#4)
- 70.8.0 (node_modules/Qopenzeppelin/contracts/utils/Context.sol
— #4)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #different-pragma-directives-are-used

Context._msgData() (node_modules/@openzeppelin/contracts/utils/Context.
< sol#21-23) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
—> #dead-code

Pragma version0.8.11 (contracts/LoreToken.sol#2) necessitates a version
<> too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6/0.8.7

39

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/access/
— Ownable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— ERC20.so0l#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— IERC20.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts/token/ERC20/
— extensions/ERC20Burnable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts/token/ERC20/
— extensions/IERC20Metadata.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/utils/Context
< .sol#4) allows old versions

501c-0.8.11 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #incorrect-versions—-of-solidity

contracts/LoreToken.sol analyzed (7 contracts with 75 detectors), 14

— result(s) found

Most of the vulnerabilities found by the analysis have already been addressed by the smart
contract code review.

40

6 Conclusion

Inthis audit, we examined the design andimplementation of NFHeroes contractand discov-
ered severalissues of varying severity. NFHeroes team addressed all the issues raised in
the initial report and implemented the necessary fixes.

The present code base is well-structured and ready for the mainnet.

41

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

42

mailto:contact@shellboxes.com

	Introduction
	About NFHeroes
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	CreditVault.sol
	Missing Address Verification [LOW]
	Renounce Ownership [LOW]
	Public Function Can Be Called External [LOW]

	LoreToken.sol
	Missing Address Verification [LOW]
	Renounce Ownership [LOW]

	NftLocker.sol
	 Missing Length Verification [MEDIUM]
	For Loop Over Dynamic Array [LOW]
	Renounce Ownership [LOW]

	Best Practices
	Remove The Hardhat Console In Production

	Static Analysis (Slither)
	Conclusion

