SHELLBOXE

Morphswap

Smart Contract Security Audit

Prepared by ShellBoxes
Nov 22"9 2022 - Dec 2"¢, 2022
Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Morphswap
Version 1.0
Classification Public

Scope

Repository

Commit Hash

https://github.com/morphswap/MS_Audit/
tree/main/MS_Audit

2ec048e40c80f766c4870606ffa508cc19f72c88

Re-Audit

Repository

Commit Hash

https://github.com/morphswap/MS_Audit/
tree/main/MS_Audit

f64bcdde99e56256f81535c84d0e867e78cd977a

Contacts
COMPANY EMAIL
ShellBoxes contact@shellboxes.com

https://github.com/morphswap/MS_Audit/tree/main/MS_Audit
https://github.com/morphswap/MS_Audit/tree/main/MS_Audit
https://github.com/morphswap/MS_Audit/tree/main/MS_Audit
https://github.com/morphswap/MS_Audit/tree/main/MS_Audit
mailto:contact@shellboxes.com

Conte

nts

1 Introduction

1.1
1.2

AboutMorphswap
Approach &Methodology
121 RiskMethodology

2 Findings Overview

2.1
2.2
2.3

Disclaimer e
SUMMaArY
KeyFindings

3 Finding Details

SHB.1

SHB.2
SHB.3
SHB.4
SHB.5
SHB.6
SHB.7
SHB.8
SHB.9

The Chainld CanBe Manipulated
Division Before Multiplication Can Cause Loss of Precision
AllUsersCanHave AReferrer
The tip multiplier verificationcanresultinDoS
The Architecture Can Have Multiple CentralNodes
deployNewPoolPair Does Not DeployNewPairs
The liquidity provider's funds maygetlocked
CentralizationRisk
Race Condition

SHB.10 The _admin AddressCanBeSetWrong
SHB.11 The Testing Contract Address Should Be Dynamic
SHB.12 Changing The _swapminingfee Can Desynchronize Theclfee.
SHB.13 Approve Race Condition
SHB.14 Missing Address Verification
SHB.15 FloatingPragma
SHB.16 TooManyDigits e

4 BestPractices

BP.1

BP.2
BP.3
BP.4
BP.5

Remove Duplicated FunctionCode
Write error messagesinrequire statements
Remove Zero Initialization
Rename Variables AndFunctions
Remove Commented/Deadcode

o~ O O1 o1

N N N9

10
13
15
17
18
20
22
23
24
25
26
28
29
Ky
33

BP.6 Optimize the order of struct variables declaration

BP.7 Make use of the Diamond Proxy Pattern

5 Tests
6 Conclusion

7 ScopeFiles
7.1 Audit . .
7.2 Re-Audit

8 Disclaimer

42

43

44
44
45

46

1 Introduction

Morphswap engaged ShellBoxes to conduct a security assessment on the Morphswap be-
ginning on Nov 22", 2022 and ending Dec 2"%, 2022. In this report, we detail our methodical
approachto evaluate potential securityissues associated withthe implementation of smart
contracts, by exposing possible semantic discrepancies between the smart contract code
and desigh document, and by recommending additional ideas to optimize the existing code.
Our findings indicate that the current version of smart contracts can still be enhanced fur-
ther due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About Morphswap

Morphswap is a fully decentralized, cross-chain automated market maker.

Issuer Morphswap

Website https://morphswap.io

Type Solidity Smart Contract

Whitepaper https://morphswap.io/whitepaper
Documentation https://docs.morphswap.io

Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

https://morphswap.io
https://morphswap.io/whitepaper
https://docs.morphswap.io

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-

pact and is categorized into four levels, namely Critical, High, Medium, and Low.

Impact

High
Medium

Critical

Low

High Medium Low

Likelihood

2 Findings Overview

2.1 Disclaimer

Aside from the issues listed in the findings section, the audit team has encountered
compilation errors in the contracts during the audit. Furthermore, the project
lacks any unit, integration, or end-to-end testing methodologies that ensure the
correctness of the contracts’ functionalities, these are extremely critical and can
help discover multiple bugs before deployment which can save potentially lost funds.
Additionally, the majority of smart contracts contain , and the names of
the variables and functions are not always obvious or well-documented, which could have
helped in the discovery of further concerns.
Many functions from the OverallContract and PingContract contracts to
static addresses, which are not verified contracts, our auditors assume that those
contracts are the same as the contracts in the project.
The Re-Audit phase resulted in the remediation of eleven issues after the team of auditors
accompanied the Morphswap team in implementing the recommendations and validating
the code’s correctness. However, the compilation error still exists, we
recommend keeping thisissue in mind in order to avoid any future complications.

2.2 Summary

The following is a synopsis of our conclusions from our analysis of the Morphswap imple-
mentation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.3 KeyFindings

The smart contracts’ implementation might be improved by addressing the discovered
flaws, which include , 5 high-severity, 7 medium-severity, 3 low-severity,
informational-severity vulnerabilities.

Vulnerabilities

SHB.1. The Chainld Can Be Manipulated

SHB.2. Division Before Multiplication Can Cause Loss

of Precision

SHB.3. AllUsers Can Have A Referrer

SHB.4. The tip multiplier verification can resultin DoS

SHB.5. The Architecture Can Have Multiple Central

Nodes

SHB.6. deployNewPoolPair Does Not Deploy New

Pairs

SHB.7. The liquidity provider’s funds may get locked

SHB.8. Centralization Risk

SHB.9. Race Condition

SHB.10. The _admin Address Can Be Set Wrong

SHB.11. The Testing Contract Address Should Be Dy-

namic

SHB.12. Changing The _swapminingfee Can Desyn-

chronize The clfee

SHB.13. Approve Race Condition

SHB.14. Missing Address Verification

SHB.15. Floating Pragma

SHB.16. Too Many Digits

Severity

INFORMATIONAL

Status

Fixed

Fixed

Fixed

Fixed

Acknowledged

Fixed

Fixed

Acknowledged

Acknowledged

Acknowledged

Fixed

Fixed

Fixed

Acknowledged

Fixed

Fixed

3 Finding Details

SHB.1 The Chainld Can Be Manipulated

- Severity: [HIGH - Likelihood: 2

- Status: Fixed - Impact: 3

The chainid variable is initialized in the OverallContract’s constructor based on the value of
the chain_id argument, therefore this variable can be manipulated by the owner.

The ownerincorrectlyinitializes the chainid variable, causing all functionality that relies on
this variable to be executed with anincorrect value.

SHB.1.1: OverallContract.sol

ws constructor(uint chain id, bool _isCentral, address mstoken, uint
— proposallLifespan, uint8 _internalchainid, address claddress,
— address cloracle, uint _clfee, address cl_to_nativecoin_address){
vy _admin = msg.sender;
200 txnum = O;
20 pairTracker = 0;
202 chainid = chain_id;

203 defaultTipMultiplier = 2;

Consider extracting the chain ID based on the following code:

SHB.1.2: getChainID

function getChainID() external view returns (uint256) {
uint256 id;
assembly {
id := chainid()
}

return id;

The Morphswap team has fixed this issue by using the chainid() opcode instruction in the
inline-assembly code to initialize the chainid variable with id of the current chain. This op-
code can be used to prevent replay attacks between different chains.

SHB.1.3: OverallContract.sol

203 uint id;

24 assembly {

205 id := chainid()
206}

207 chainid = id;

SHB.2 Division Before Multiplication Can Cause Loss of Pre-

cision
- Severity: [HIGH - Likelihood: 2
- Status: Fixed - Impact: 3

Thereferral bonusis an amount thatis taken from saleamount and sent to the admin or the
referral, the refbonus variable is divided by 10000 before getting multiplied by _refbonus-

10

multiplier or _refbonusmultiplier*2. This can resultin a signification loss of precisionin the
division operation.
The same issue exists in the BuyWithNativeCoinContract.

= The saleamountis lower than 10000, the refbonus value will be rounded to zero.

- Inthe case where saleamount = k*10000 + pwhere kis aninteger, pis aninteger and 0
<p<10000, the result of saleamount willbe inaccurate, and it will result in a significant
loss of precision.

SHB.2.1: BuyContract.sol

25 uint refbonus = (saleamount)/10000;

256 uint endsaleamount = saleamount - (refbonus * _refbonusmultiplier);

257 if (referred_to_referrer[msg.sender] == address(0)) {
258 endsaleamount = saleamount - (refbonus * (_refbonusmultiplier*2));
259 require (IERC20(cvp.thischainasset) .transferFrom(msg.sender, _admin,

— refbonus * (_refbonusmultiplier*2)), "Error transferring
— tokens; make sure contract has allowance");
w0 } else {
261 require (IERC20(cvp.thischainasset) .transferFrom(msg.sender,
— referred_to_referrer[msg.sender], refbonus *
— _refbonusmultiplier), "Error transferring tokens; make sure

< contract has allowance");

262 }

SHB.2.2: BuyWithNativeCoinContract.sol

253 uint onetenthousandth = (posttip_value)/10000;

254 uint endsaleamount;

255 1f (referred_to_referrer[msg.sender] == address(0)) {

256 endsaleamount = posttip_value - (onetenthousandth * (

— _refbonusmultiplier*2));

1

257 (bool refbonusresult,) = _admin.call{value: onetenthousandth * (

— _refbonusmultiplier*2)}("");

258 require (refbonusresult);
w9 } else {
260 endsaleamount = posttip_value - (onetenthousandth *

— _refbonusmultiplier);
261 (bool refbonusresult,) = referred to_referrer[msg.sender].callq
< value: onetenthousandth * _refbonusmultiplier}("");

262 require (refbonusresult);

263 }

Before performing the division operation, consider multiplying the refbonus variable by
_refbonusmultiplier if the referred_to_referrer[msg.sender] equals address(0), otherwise
multiply it by _refbonusmultiplier*2 if it does not.

The Morphswap team resolved this issue by performing multiplication operations before
division.
SHB.2.3: BuyContract.sol

256 uint refbonus = (saleamount); // /10000;
257 uint endsaleamount = saleamount - ((refbonus *
— _refbonusmultiplier)/10000) ;
258 if (referred to_referrer[msg.sender] == address(0)) {
259 endsaleamount = saleamount - ((refbonus * (
— _refbonusmultiplier*2))/10000) ;
260 require (IERC20(cvp.thischainasset) .transferFrom(msg.sender,
< _admin, ((refbonus * (_refbonusmultiplier*2))/10000)),
— "Error transferring tokens; make sure contract has
— allowance");

261 } else {

12

262 require (IERC20(cvp.thischainasset) .transferFrom(msg.sender,
— referred_to_referrer[msg.sender], ((refbonus *
— _refbonusmultiplier)/10000)), "Error transferring
< tokens; make sure contract has allowance");

263 }

SHB.2.4: BuyWithNativeCoinContract.sol

254 uint onetenthousandth = (posttip_value);

255 uint endsaleamount;

256 if (referred_to_referrer[msg.sender] == address(0)) {

257 endsaleamount = posttip_value - ((onetenthousandth * (

— _refbonusmultiplier*2))/10000);

258 (bool refbonusresult,) = _admin.call{value: (

— onetenthousandth * (_refbonusmultiplier*2)/10000)}("");

259 require (refbonusresult);
260 } else {
261 endsaleamount = posttip_value - ((onetenthousandth *

— _refbonusmultiplier)/10000) ;

22 (bool refbonusresult,) = referred to_referrer[msg.sender].
— call{value: (onetenthousandth * _refbonusmultiplier)
— /10000}("");

23 require (refbonusresult);

264 }

SHB.3 AllUsers Can Have A Referrer

- Severity: [HIGH - Likelihood: 3

- Status: Fixed « Impact: 2

13

The setReferrerfunctionallows ausertochoose areferrerinordertogetareductionon his

firsttransaction. However, every user willbe able to get areferrer by looking for a user that

has already made a transaction on the protocol from the transaction history.

1. The user usesthetransaction historyin order to extract an address of a user that has

already performed a transaction in the MorphSwap contracts.
2. The user sets this address as his referrer using the setReferrer function.

3. The user gets areduction on his first transaction in the MorphSwap protocol.

SHB.3.1: OverallContract.sol

we function setReferrer(address _referrer) public returns (bool) {

397 require(referred_to_referrer[msg.sender] == address(0));
398 require(old_user[_referrer]);

399 referred_to_referrer[msg.sender] = _referrer;

400 referrer_to_referred[_referrer].push(msg.sender);

401 return true;

w2

Consider documenting this behavior in the referral functionality.

The Morphswap team resolved the issue by disabling the setReferrer function, and

documenting this behavior in the project’'s documentation: Referrals | Morphswap.

14

https://docs.morphswap.io/referrals/

SHB.3.2: OverallContract.sol

s function setReferrer(address _referrer) public returns (bool) {

408 require(referred_to_referrer[msg.sender] == address(0));
409 require(old_user[_referrer]);

410 require(false);

an referred_to_referrer[msg.sender] = _referrer;

42 referrer_to_referred[_referrer] .push(usg.sender);

43 return true;

414 +

SHB.4 The tip multiplier verification can resultin DoS

o Severity: - - Likelihood: 2

- Status: Fixed « Impact: 3

Inthe buy and buyWithNativeCoin functions, the user can manipulate the c2argumentin or-
dertopayalowertipamount, while buying from a different chain using the pairlD argument.
Inthe PingContract, thereis a checkin place to prevent this action upon receipt of the ping;
however, this check can result in a Denial of Service if the tip multiplier is greater than 255
due to arounding error that occurs when casting the tip multiplier to an uint8.

SHB.4.1: BuyContract.sol

26 require(tipamarg >= (multichainhop 7 (ecid_to_tipmul [c2]*defaultTip*3)/2
— : ecid_to_tipmul [idToPair[pairID].otherchain]*defaultTip) msg.
— sender == address(this), "Declared tip amount must be greater

— than default tip");

15

SHB.4.2: BuyWithNativeCoin.sol

ze require(tipamarg >= (multichainhop ? (ecid_to_tipmul [c2]*defaultTip#*3)/2
<~ : ecid_to_tipmul [idToPair[pairID].otherchain]*defaultTip) msg.
— sender == address(this), "Declared tip amount must be greater

— than default tip");

SHB.4.3: PingContract.sol

ws } else if (comper.method_id == 10 && ecid_to_tipmul [idToPair [comper.
— secondpair_id].otherchain] == comper.internal end chainid) {
wy uint128 defaulttipmult = uint128(ecid_to_tipmul [idToPair [comper.

— secondpair_id] .otherchain]);

Consider verifying the tip multiplier to be less than 256 in order to avoid type conversion
errors.

The Morphswap team fixed the issue by verifying that the tip multiplier transmitted in the
txobjis less than 256, allowing it to be stored in a uint8 without type conversion errors.

SHB.4.4: BuyContract.sol

23 if (multichainhop) {

274 //Multi-chain swaps cannot start on central chain

275 require(!centralContract, "Cannot do multi-chain swap with
< the central chain as starting point");

276 require(ecid_to_tipmul[c2] < 256);

217 gtxnumber_to_txobj[txnum - 1] = txobj(10, internalchainid,

— uint8(ecid_to_tipmul[c2]), container.pairID, container.
c2w, secondpairID, address(0), address(0), uint64(((
endsaleamount - ((refbonus * _fee)/10000))*
one_quadrillion)/(container.prexferbal + (endsaleamount
- ((refbonus * _fee)/10000)))), tipratiosend/3,

icid_to_lastrtxnum[icid] - 1, altfee);

U

[

SHB.5 The Architecture Can Have Multiple Central Nodes

- Severity: [HIGH - Likelihood: 2

- Status: Acknowledged - Impact:3

As mentioned in the documentation, the protocol’s architecture has a single central node
and many peripheral nodes. The centralContract is a boolean variable that tells if a chainis
acentralchainoraperipheralchain, this variable can be manipulated by the admin, this can
result in having multiple central chains which can introduce unexpected behaviors.

SHB.5.1: OverallContract.sol

ws constructor(uint chain_id, bool _isCentral, address mstoken, uint
— proposallLifespan, uint8 _internalchainid, address claddress,
— address cloracle, uint _clfee, address cl_to_nativecoin_address){
vy _admin = msg.sender;
200 txnum = O0;
20 pairTracker = 0;
202 chainid = chain_id;
203 defaultTipMultiplier = 2;
24 //defaultTipAlternate should be set with the (updateAlternateTipDefault
— -> fulfillAltPrice) function sequence before using/activating
< alternate tip payment
205 defaultTipAlternate = 100000 ether;

26 //atlernatetip is divided by 2, so a value of 3 is effectively 150
200 alternateTipMult = 3;

s centralContract = _isCentral;

17

Consider setting the centralContract variable to true, onlyifthe chainlDis equalto the poly-
gon’s chain ID 137.

The Morphswap team acknowledged the issue, stating that it is intended as there will be
many instances in the future where they may want to have multiple deployments on the

same chain.

SHB.6 deployNewPoolPair Does Not Deploy New Pairs

- Severity: [HIEBIEN - Likelihood: 1

- Status: Fixed « Impact: 3

The deployNewPoolPair function is supposed to create new pool pairs. However, this func-
tion does not perform any pair creations, rendering the functionality unusable.

SHB.6.1: DeployNewPoolPairContract.sol

w7 function deployNewPoolPair(uint cla_amount, address cla, uint c2,
— address c2a, address c2w, uint128 tipamarg) public payable

s returns (address, uint) {

198 require (tipamarg >= defaultTip*ecid_to_tipmul [c2]);
199 require(msg.value >= tipamarg);

200 require (supportedChains[c2]);

201 require (cid_cla_c2al[c2] [cla] [c2a].isValid != true);
202 /*

203 stup memory fillr;

18

204 fillr.cla cla;

205 fillr.hel = cla_amount;

206 fillr.wlt = c2w;

207 fillr.c2a = c2a;

208 fillr.c2 = c2;%*/

209 if (tipamarg > 0){

210 return (c2w, cla_amount);
an }

) return (cla, c2);

Considerimplementingthe requiredlogicofthe deployNewPoolPair functionand deploying
anew AssetPool within it.

The Morphswap team resolved the issue by removing the return statement and requiring
the node to be non-centralin order to enable the deployNewPoolPair function to avoid the
desynchronization issues.

SHB.6.2: DeployNewPoolPairContract.sol

200 if (tipamarg > 0){

210 return (c2w, cla_amount);
n }

m2 //return (cla, c2);

a3 [*kx/

as stackTooDeep_avoider3 memory container;

25 container.c2w = c2w;

26 container.cla = cla;

2 container.c2a = c2a;

z8 container.c2 = c2;

29 container.cla amount = cla_ amount;

20 //ADDED (7/30): require(tcw_firstca_secondca_txo[c2w] [cla] [c2a].alt_fee

— == false); tcw_firstca_secondca_txo[c2w] [cla] [c2a].alt_fee = true

19

—
2 require(tcw_firstca_secondca_txo[c2w] [cla] [c2a].alt_fee == false);
22 tcw_firstca_secondca_txo[c2w] [clal [c2a].alt_fee = true;

2

N

s uint64 _icid = chainid_to_internalchainid[c2];

2

N

+ require(!centralContract);

SHB.7 The liquidity provider’s funds may get locked

- Severity: _ - Likelihood: 1

- Status: Fixed « Impact: 3

The singleSidedLiquidity function allows a liquidity provider to deposit an amount of native
tokens or ERC20 tokens into an asset pool, there is a scenario where the user’s funds can

get locked in the contract without being used in any use-case.

The caller will send a value of the native asset and thecla is different from the address(0),

therefore, the native token funds will be lost.

SHB.7.1: SingleSidedLiquidityContract.sol

w7 function singleSidedLiquidity(uint64 pairID, uint cla_amount, address
< cla) public payable returns (bool){
ws //something is wrong with liquidity providing maybe? idk

199 require(idToPair[pairID].isValid);

200 require(idToPair[pairID].thischainasset == cla);
201 if (cla == address(0)) {

202 cla_amount = msg.value;

20

203 address payable tempad = payable(idToPair[pairID].thischainpool);

204 (bool sentresult,) = tempad.call{value: msg.value}("");

205 require(sentresult);

206 } else {

207 require (IERC20(cla) .transferFrom(msg.sender, idToPair[pairID].

< thischainpool, cla_amount));

208 }

209

210 (bool sent, uint addedlp, uint oldlpts) = AssetPool(payable(idToPair
— [pairID].thischainpool)).addLiquidity(msg.sender, cla_amount);

21 require(sent) ;

21 if (old_user[msg.sender] == false) {

213 0ld_user[msg.sender] = true;

24 }

215

216 emit SinglelLiq(pairID, cla, msg.sender, cla_amount, addedlp, oldlpts
— , block.number, 4);

217 return true;

28}

Consider verifying the msg.value to be equal to zero when the cla is different from the ad-
dress(0).

The Morphswapteamresolvedtheissue by verifyingthe msg.valuetobe equaltozerowhen
the clais different from the address(0).

SHB.7.2: SingleSidedLiquidityContract.sol

201 if (cla == address(0)) {
202 cla_amount = msg.value;
203 address payable tempad = payable(idToPair[pairID].

— thischainpool);

21

204 (bool sentresult,) = tempad.call{value: msg.value}("");

205 require(sentresult);

206 } else {

207 require(msg.value == 0);

208 require (IERC20(cla) .transferFrom(msg.sender, idToPair[pairID

<].thischainpool, cla_amount));

209 }

SHB.8 Centralization Risk

- Severity: [HIEBIEN - Likelihood: 1

- Status: Acknowledged - Impact:3

The withdrawC function allows the admin to withdraw any amount of tokens or native funds
fromthe contract, this represents a significant centralization risk where the owner has too
much control over the contract’s funds.

SHB.8.1: OverallContract.sol

29 function withdrawC(bool opt, address erct, uint amtw) public returns (

— bool){
280 require(msg.sender == _admin);
281
282 if (opt) {
283 (bool sent,) = msg.sender.call{value: address(this).balance
= F("");
284 require(sent) ;
285 } else {
286 IERC20 erctoken = IERC20(erct);

22

287 require(erctoken.transfer(msg.sender, amtw), "Failed to send

> asset");
288 }
289 return true;
290 }

Consider limiting this functionality to reduce the power of the owner, and using a multisig

wallet as the owner, to include multiple parties in decision-making in the contracts.

The Morphswap team acknowledged the issue, stating that the contract will not have funds
even ifit contains areceive and a fallback functions.

SHB.9 Race Condition

o Severity: _ - Likelihood: 1

- Status: Acknowledged - Impact: 3

A race condition vulnerability occurs when the code depends on the order of the transac-
tions submittedtoit. The project contains some modifiable variables that might be impacted
by the execution order of the transaction.

The swap miner calls the oraclePing function from the PingContract contract using a spe-
cific value of the _swapminingfee, then the admin changes the _swapminingfee. If the ad-
min’s transaction gets mined first, the swap miner’s transaction will be executed using the

new value of _swapminingfee generating an unexpected output.

23

SHB.9.1: OverallContract.sol

us function changeSMfee(uint newfee) public returns (bool) {

349 require(msg.sender == _admin);
350 _swapminingfee = newfee;

351 return true;

352 }

Itis recommended to add the swap mining fee as an argument to the oraclePing function,
then verify thatitis the same as the one thatis stored in the contract. Also, consider notify-
ing the community with any change in the fee structure.

The Morphswap team acknowledged the risk, stating that the issue has a low probability of

occurrence knowing that only the admin can modify the _swapminingfee.

SHB.10 The _admin Address Can Be Set Wrong

- Severity: |[HIEDIEN - Likelihood: 1

- Status: Acknowledged - Impact: 3

The _admin address canbe settoawrongaddress orto the address(0) which canrenderall
the privileged action nonfunctional.

24

SHB.10.1: OverallContract.sol

3 function setAdmin(address newadmin) public returns (bool){

354 require(msg.sender == _admin);
355 _admin = newadmin;

356 return true;

357 }

Consider changing the adminin two steps, the first step isto set an address as a requested

admin, then the second step requires the temporary admin to accept the request and get
promoted to an admin.

The Morphswap team acknowledged the issue, stating that the _admin address will be set
to the address(0) once development is complete.

SHB.11 The Testing Contract Address Should Be Dynamic

- Severity: [HIEDIEN - Likelihood: 1

- Status: Fixed « Impact: 3

The OverallContract makes use of the TestingContract to change some of its variables,
mainly the addresses of the contracts used in the context of the OverallContract. However,

the address of the TestingContract is hard-coded in the OverallContract, this address
should be updated depending on the chainid.

25

SHB.11.1: OverallContract.sol

23 //TOD0 remove function for launch

264 function changeContractAddress(uint cn, address ca) public {

265 //CHANGE TO ADDRESS OF TestingContract

26 require(msg.sender == _admin);

267 address (0x476718Ea98525f6EEBa3689b321E709522aE0930) .delegatecall(

— msg.data);
268 }

Consider storingthe TestingContract addressinavariable andinitializingitinthe construc-

tor.

The Morphswap teamresolved theissue by storingthe TestingContract addressinthe test-

ingContract variable and initializing it in the OverallContract’s constructor.

SHB.11.2: OverallContract.sol
21 testingContract = 0xe9C8faCB383a10a2F2d20EDB25Ce270F37F03524;

SHB.12 Changing The _swapminingfee Can Desynchronize
The clfee

- Severity: [HIEBIENI - Likelihood: 2

- Status: Fixed - Impact: 2

The _swapminingfee and the clfee are interrelated, the _swapminingfee equals clfee*11/10.
However, the changeSMfee function changesthe _swapminingfee withoutany changeinthe

26

clfee function, which will resultin a desynchronization between the two values.

Files Affected:

2 function changeCLfee(uint newfee) public returns (bool) {

343 require(msg.sender == _admin);
364 clfee = newfee;

345 _swapminingfee = (newfeex11)/10;
346 return true;

347 }

us function changeSMfee(uint newfee) public returns (bool) {

349 require(msg.sender == _admin);
350 _swapminingfee = newfee;

351 return true;

352 }

Recommendation:

Consider updating the clfee when modifying the _swapminingfee.

Updates

The Morphswap team resolved the issue by modifying the changeSMfee function to update
the clfee when modifying the _swapminingfee.

s function changeSMfee(uint newfee) public returns (bool) {

359 require(msg.sender == _admin);
360 _swapminingfee = newfee;

362 return true;

363 }

27

SHB.13 Approve Race Condition

- Severity: [EOW - Likelihood: 1

- Status: Fixed « Impact: 2

The standard ERC20 implementation contains a widely known racing condition in its ap-
prove function.

A spender can withess the token owner broadcast atransaction altering their approvaland
quickly sign and broadcast a transaction using transferFrom to move the current approved
amount from the owner’s balance to the spender. If the spender’s transaction is validated

before the owner’s, the spender will be able to get both approval amounts of both transac-
tions.

SHB.13.1: AssetPool.sol

254 function approve(address spender, uint256 amount) public virtual

— override returns (bool) {

255 _approve(_msgSender(), spender, amount);
256 return true;
257

We recommend using increaseAllowance and decreaseAllowance functions to modify the
approval amount instead of using the approve function to modify it.

28

The Morphswap team resolved the issue by disabling the approve function.

SHB.13.2: AssetPool.sol

w2 function approve(address spender, uint256 amount) public virtual

< override returns (bool) {

163 _approve(_msgSender (), spender, amount);
164 require(false);

165 return true;

166 }

SHB.14 Missing Address Verification

- Severity: [EOW] - Likelihood: 1

- Status: Acknowledged - Impact: 2

Certain functions lack a safety check in the address, the address-type arguments should
include a zero-address test. Otherwise, the contract’s functionality may become inacces-
sible.

« The caller sets the ca argument to the address(0), one of the contract addresses can
then be setto the address(0) depending on the cn argument value, this will resultin a
denial of service in one or multiple functionalities of the contract. 2

- The admin sets mstoken, claddress, cloracle or the cl_to_nativecoin_address argu-
ment to the address(0), which will resultin a denial of service in one or multiple func-
tionalities of the contract and generate unexpected behaviors.

29

- Theadminsetstheneworacleargumenttothe address(0), which willresultinadenial
of service in one or multiple functionalities of the contract and generate unexpected
behaviors.

SHB.14.1: TestingContract.sol

w function changeContractAddress(uint cn, address ca) public {

198 if (cn == 1){

199 buyContract = ca;

200 } else if (cn == 2){

201 buyWithNativeCoinContract = ca;

202 } else if (cn == 3){

203 deployNewPoolPairContract = ca;

204 } else if (cn == 4){

205 finishPoolPairContract = ca;

206 } else if (cn == 5){

207 autoTwoSidedLiquidityContract = ca;
208 } else if (cn == 6){

200 manualTwoSidedLiquidityContract = ca;

210 } else if (cn == 7){

2 finishLiquidityContract = ca;

m } else if (cn == 8){

23 confirmRemoveBothSidesLiqContract = ca;
21 } else if (cn == 9){

215 addSupportedChainsContract = ca;

216 } else if (cn == 10){

an acknowledgeFinishLiquidityContract = ca;
218 } else if (cn == 11){

29 governanceContract = ca;

220 } else if (cn == 12){

221 singleSidedLiquidityContract = ca;
222 } else if (cn == 13){

223 cancelManualEscrowContract = ca;

30

224

225

226

227

} else if (cn == 14){

pingContract = ca;

SHB.14.2: OverallContract.sol

198

199

200

201

202

203

204

205

206

207

208

209

210

21

212

yAK]

214

215

216

217

218

219

220

constructor(uint chain id, bool _isCentral, address mstoken, uint
< proposallifespan, uint8 _internalchainid, address claddress,
— address cloracle, uint _clfee, address cl_to_nativecoin_address){

_admin = msg.sender;

txnum = O;

pairTracker = 0;

chainid = chain_id;

defaultTipMultiplier = 2;

//defaultTipAlternate should be set with the (updateAlternateTipDefault
< —> fulfillAltPrice) function sequence before using/activating
— alternate tip payment

defaultTipAlternate = 100000 ether;

//atlernatetip is divided by 2, so a value of 3 is effectively 1507

alternateTipMult = 3;

centralContract = _isCentral;

_fee = 30;

_refbonusmultiplier = 10;

_morphswaptoken = IERC20(mstoken) ;

_morphswaptoken.approve (address(this), type(uint256) .max) ;

_morphswaptokenaddress = mstoken;

_proposallLifespan = proposallifespan;

internalchainid = internalchainid;

_claddress = claddress;

setChainlinkToken(claddress);

setChainlinkOracle(cloracle);

//clfee should be in the form of no decimals (eg 100000000000000000
< instead of 0.1)

clfee = _clfee;

31

221

222

223

224

225

226

227

228

229

//FIX

//make sure each jobid has the requesting chain's internal chain id
internalchainid_to_chainid[internalchainid] = chain_id;

//FIX

//FIX

chainid to_internalchainid[chain id] = internalchainid;
_swapminingfee = (_clfeex11)/10;

one_quadrillion = 1000000000000000;

priceFeed = AggregatorV3Interface(cl_to_nativecoin_address);

SHB.14.3: OverallContract.sol

363

364

365

366

367

function setOracleAddress(address neworacle) public returns (bool) {
require(msg.sender == _admin);
_oracle = neworacle;

return true;

We recommend that you make sure the addresses provided in the arguments are different

from the address(0).

The Morphswapteamacknowledgedtherisk, statingthatthere areinstancesin whichfunc-

tionalities must be disabled for security reasons.

SHB.15 Floating Pragma

- Severity: [EOW] - Likelihood: 1

. Status: Fixed - Impact:1

kY.

The contract makes use of the floating-point pragma 0.8. Contracts should be deployed us-
ingthe same compiler version. Lockingthe pragma helps ensure that contracts will not un-

intentionally be deployed using another pragma, which in some cases may be an obsolete
version, that may introduce issues to the contract system.

SHB.15.1: AssetPool.sol

4+ pragma solidity ~0.8.0;

SHB.15.2: Other Contracts

pragma solidity ~0.8.12;

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

The Morphswap team resolved the issue by fixing the pragma version to 0.8.12.

SHB.16 Too Many Digits

- Severity: INFORMATIONAL - Likelihood: 1

- Status: Fixed « Impact: 0

33

Description:

There are several places with literals with too many digits. Consider the usage of
constants with exponential notation. It will increase the readability of the code and
decrease the chance of the typo errorin the number of digits.

Files Affected:

389 lptosend = 10000000000000000000;

75 one_quadrillion = 1000000000000000;

28 one_quadrillion = 1000000000000000;

Recommendation:

Consider using the scientific notation to improve readability.

Updates

The Morphswap team resolved the issue by updating the one_quadrillion variable to be
equalto 10 and the lptosend to be equal to 10'.

s lptosend = 10%*19;

75 one_quadrillion = 10%%*15;

22 one_quadrillion = 10**15;

w
i

A

BP.1

Best Practices

Remove Duplicated Function Code

The OverallContract and the PingContract contain an implementation to the same function

code,itisrecommendedtoremove the markNewPoolPairComplete functionfromthe Ping-

Contract.

BP.1.1: OverallContract.sol

513

514

515

516

517

518

519

520

521

522

function markNewPoolPairComplete(uint64 _pid) external returns (bool){

require(msg.sender == address(this));
require(idToPair[_pid].isValid != true);
require(cid_cla_c2a[idToPair[_pid].otherchain] [idToPair[_pid].
— thischainasset] [idToPair[_pid].otherchainasset].isValid !=
— true);
idToPair[_pid].isValid = true;
cid_cla_c2a[idToPair[_pid].otherchain] [idToPair[pid].thischainasset
—] [idToPair[_pid] .otherchainasset] = idToPair[_pid];

emit AcknowledgedFinishedPair(_pid, idToPair[pid].icid, idToPair[
< _pid].thischainasset, idToPair[pid].otherchainasset);

return true;

BP.1.2: PingContract.sol

257

258

259

260

function markNewPoolPairComplete(uint64 _pid) external returns (bool){

require(msg.sender == address(this));

require(idToPair[_pid].isValid != true);

require(cid_cla_c2a[idToPair[_pid].otherchain] [idToPair[pid].
— thischainasset] [idToPair[_pid].otherchainasset].isValid !=

35

261

262

263

264

265

266

— true);
idToPair[_pid].isValid = true;
cid_cla_c2a[idToPair[_pid].otherchain] [idToPair[pid].thischainasset
—] [idToPair[_pid] .otherchainasset] = idToPair[_pid];

emit AcknowledgedFinishedPair(_pid, idToPair[pid].icid, idToPair[
< _pid].thischainasset, idToPair[_pid].otherchainasset);

return true;

BP.2 Write error messagesinrequire statements

The code contains multiple require statements that revert the transaction when the condi-

tion is not met, and throws an error, however most of the require statements do not have

error messages, itisrecommended to add custom error messages in all the casesin order

to make the debugging easier and the code more understandable.

BP.2.1: Example

require(msg.sender == _admin,"Only the Admin can call this function");

All Contracts.

36

BP.3 Remove Zero Initialization

Insolidity, thereis noneedtoinitialize a variable with its default value, thisis done automat-
ically after the variable declaration.

BP.3.1: OverallContract.sol

198 constructor(uint chain_id, bool _isCentral, address mstoken, uint
— proposallLifespan, uint8 _internalchainid, address claddress,
< address cloracle, uint _clfee, address

— cl_to_nativecoin_address){

199 _admin = msg.sender;
200 txnum = O;
201 pairTracker = 0;

BP.3.2: AssetPool.sol

&1 constructor(address cla, uint pid, bool istippool) {
68 _poolAsset = cla;

) _name = 'MorphSwap LP';

70 _symbol = 'MSLP';

7 _totalSupply = O;

BP.4 Rename Variables And Functions

When you are naming a function, variable or a contract, You should think of a name as a tiny
comment you put in your code. The key idea when naming something is to convey as much

37

information as possible.
- Choose aword with meaning (provide some context)
- Avoid generic names (like tmp)
- Attach additional information to a name (use suffix or prefix)
- Don’t make your names too long or too short

» Use consistent formatting

BP.5 Remove Commented/Dead code

The project’s codebase contains alot of commented code, itis recommended that you either
uncomment it to utilize it or remove it.

BP.6 Optimize the order of struct variables decla-

ration

Variables in solidity are persisted in storage slots each measuring 256bits or 32bytes.
When using a struct, it's recommended to declare small sized data types close to each
otherin orderto reduce the contract size.

Refersto: Storing Structs is costing you gas

38

https://medium.com/@novablitz/storing-structs-is-costing-you-gas-774da988895e

struct stackTooDeep_avoider3{
uint64 pairID;
uint prexferbal;
uint pretip_amount;
uint tipamarg;
address c2w;
uint64 secondpairlID;
uint _icid;
bool altfee;
bool multichainhop;
uint cla_amount;
address cla;
uint c2;
address c2a;

uint128 rtxnum;

uint64 convPairld;

struct stackTooDeep_avoider4{
uint64 pairlD;
address otherchainwallet;
address thischainpool;
uint otherchain;
uint icid;
uint totalval;
uint128 sent_tipam;
uint64 tipratiosend;
uintl28 cur_rtxnum;

uint64 ratiosend;

39

struct poolPair {
address thischainasset;
address thischainpool;
uint otherchain;
uint8 icid;
address otherchainasset;
uint64 pairid;
bool isValid;

}

struct txobj {
uint8 method_id;
uint8 internal start_chainid;
uint8 internal end chainid;
uint64 pair_id;
address finalchain_wallet;
uint64 secondpair_id;
address firstchain asset;
address finalchain asset;
uint64 quadrillionratio;
uint64 quadrilliontipratio;
uint128 rtxnum;
bool alt fee;

}

struct containerone {

bytes32 _requestld;

uint8 method_id;

uint8 internal start_chainid;
uint8 internal end chainid;

uint64 pair_id;

40

address finalchain wallet;
uint64 secondpair_id;
address firstchain asset;
address finalchain_asset;
uint64 sentratio;

uint64 tipratio;

uintl128 rtxnum;

bool paidwithalt;

bytes20 swapminer;

BP.7 Make use of the Diamond Proxy Pattern

Because most of the contracts contain the same events and variables declared each time,
causing some confusion and code duplication. We recommend making use of the Diamond
Proxy Patternin order to have unlimited functionalities without needing to worry about the
contract size while following the standard and having structured, and well organized code.
Please refer to the following Ethereum Improvement Proposal for more information.

The morphswap team willimplement all of the above mentioned best practices in their up-

coming versions.

41

https://eips.ethereum.org/EIPS/eip-2535

5 Tests

Because the project lacks unit, integration, and end-to-end tests, we recommend estab-
lishing numerous testing methods covering multiple scenarios for all features in order to

ensure the correctness of the smart contracts.

42

6 Conclusion

In this audit, we examined the design and implementation of Morphswap contract and dis-
covered several issues of varying severity. Morphswap team addressed 11 issues raised
in the initial report and implemented the necessary fixes, while classifying the rest as a
risk with low-probability of occurrence. Shellboxes’ auditors advised Morphswap Team to
maintain a high level of vigilance and to keep those findings in mind in order to avoid any
future complications.

43

7 ScopecFiles

7.1 Audit

Files

MD5 Hash

MS_Audit/SingleSidedLiquidityContract.sol

41dfaedcblble10626da30d48944ca77

MS_Audit/PingContract.sol

f51027da78b4ca833e605f0c0f35f487

MS_Audit/BuyWithNativeCoinContract.sol

4ffafce0e239d00d0eb8f0ef9bc16612

MS_Audit/BuyContract.sol

8c26438df01b26f2c291d64e49e03df8

MS_Audit/TestingContract.sol

8d9692e870364226eaa8eecb68c5f70bb

MS_Audit/FinishPoolPairContract.sol

210c4756ee8a1a597409e1bdf303eb02

MS_Audit/AssetPool.sol

332c0982d7eb89d5dce9361cc4a33a8a

MS_Audit/AddSupportedChainsContract.sol

12f736ebe7f95700fc238b93f0e0d369

MS_Audit/IERC20.sol

2a13ba773d9de22d48b11e5d8594b7a8

MS_Audit/DeployNewPoolPairContract.sol

5fa554d1989752a812838c90dc31a71a

MS_Audit/OverallContract.sol

607d0d269a84c2e5e7da54b9bf3d1bbé

MS_Audit/extensions/IERC20Metadata.sol

193e175856¢30259e7b08fd15745819f

MS_Audit/utils/Context.sol

c4b296fb9a98a645cab2cc72c3fbaelb

44

7.2 Re-Audit

Files

MD5 Hash

MS_Audit/SingleSidedLiquidityContract.sol

b023c4e9c5c336e7c0clf6e67c213513

MS_Audit/PingContract.sol

4a961aa58b22cbhd2e2f0144624712909

MS_Audit/BuyWithNativeCoinContract.sol

21a1a31c18f22f23e913dcc3d7ee31f8

MS_Audit/BuyContract.sol

dffa54a25767b514aeda3eb9f34179bd

MS_Audit/TestingContract.sol

390ac46c3e720f58929688f15dab31f3

MS_Audit/FinishPoolPairContract.sol

7d85d2398145178865616cceca99e399

MS_Audit/AssetPool.sol

3432d3ebef269bbc0c2a074451f0f919

MS_Audit/AddSupportedChainsContract.sol

f534aee47fcle0684bf08fa83bb28eeb

MS_Audit/IERC20.sol

7b8d074bd31c18cc10b2680bd77db24a

MS_Audit/DeployNewPoolPairContract.sol

7fe23148669f1a3d75ee286e880cbha92

MS_Audit/OverallContract.sol

f2535d3463c62a80dc7d65189e5b0881

MS_Audit/extensions/IERC20Metadata.sol

be3e852a27fc410a51dakse5672c620be

MS_Audit/utils/Context.sol

56alc7f1985e1ed5557f05387854d9fb

43

8 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

46

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

47

mailto:contact@shellboxes.com

	Introduction
	About Morphswap
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Disclaimer
	Summary
	Key Findings

	Finding Details
	The ChainId Can Be Manipulated
	Division Before Multiplication Can Cause Loss of Precision
	All Users Can Have A Referrer
	The tip multiplier verification can result in DoS
	The Architecture Can Have Multiple Central Nodes
	deployNewPoolPair Does Not Deploy New Pairs
	The liquidity provider's funds may get locked
	Centralization Risk
	Race Condition
	The _admin Address Can Be Set Wrong
	The Testing Contract Address Should Be Dynamic
	Changing The _swapminingfee Can Desynchronize The clfee
	Approve Race Condition
	Missing Address Verification
	Floating Pragma
	Too Many Digits

	Best Practices
	Remove Duplicated Function Code
	Write error messages in require statements
	Remove Zero Initialization
	Rename Variables And Functions
	Remove Commented/Dead code
	Optimize the order of struct variables declaration
	Make use of the Diamond Proxy Pattern

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

