SHELLBOXE

HEDGEPIE V2

Smart Contract Security Audit

Prepared by ShellBoxes
July 4", 2022 - August 13", 2022
Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client HedgePie
Version 1.0
Classification Public
Scope

The HEDGEPIE V2 Contractinthe HEDGEPIE V2 Repository

Repo

Commit Hash

https://github.com/innovation-upstream/
hedgepie-dev

73027fb4d1c98db6cc86bf47529ccf68easf32033

https://github.com/innovation-upstream/

hedgepie-dev

bOel0dada92fa4a9elbad6al4b17609c9f089e67

Files

MD5 Hash

HedgepieAdapterManager.sol

78ab3954d42eb0cebe51e80ce7elealc

Hedgepielnvestor.sol

c85cb74b75745f24579¢c862472c95%4a

contracts/adapters/autofarm/autofarm-vault-a
dapter.sol

b5487ed8517c29e6f08d70c5c6186362

contracts/adapters/apeswap/apeswap-farm-a
dapter.sol

42d895214d25ac452666d65c78f49566

https://github.com/innovation-upstream/hedgepie-dev
https://github.com/innovation-upstream/hedgepie-dev
https://github.com/innovation-upstream/hedgepie-dev
https://github.com/innovation-upstream/hedgepie-dev

Re-Audit Files

Files

MD5 Hash

contracts/HedgepieAdapterManager.sol

8115071012f1c068e5fd809cfe814084

contracts/Hedgepielnvestor.sol

a138552561acffalbb60b32eb4ceblbebd

contracts/adapters/bnb/autofarm/auto-vault-a
dapter.sol

881384add400f965d79c4f37cc17048¢

contracts/adapters/bnb/apeswap/apeswap-far
m-lp-adapter.sol

44bbad7daes3ffdc594a81c09534712d

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

mailto:contact@shellboxes.com

Contents

1 Introduction

11 AboutHedgePie
1.2 Approach &Methodology
121 RiskMethodology

2 Findings Overview
21 SUMMArY . . . e e e e
22 KeyFindings

3 Finding Details

A Hedgepielnvestorsol
Al Tax can be bypassed -
A2 Missing Value Verification-
A3 Unnecessary arguments-
A4 Avoid using .transfer() to transfer Ether-
A5 Owner Can Renounce Ownership-
A6 Floating Pragma-
B HedgepieAdapterManagerssol
B.1 Owner Can Renounce Ownership-
B.2 Floating Pragma-
C autofarm-vault-adapterssol
C.1 Owner Can Renounce Ownership-
C.2 Floating Pragma-
D apeswap-farm-adaptersol
D.1 Owner Can Renounce Ownership-

D.2 Floating Pragma-

4 Tests
5 Static Analysis (Slither)

6 Conclusion

o~ O o1 o1

10
1

13
14
15
15
16
17
17
18
19
19
20

21

33

50

1 Introduction

HedgePie engaged ShellBoxes to conduct a security assessment on the HEDGEPIE V2 be-
ginning on July 4", 2022 and ending August 13'", 2022. In this report, we detail our method-
ical approach to evaluate potential security issues associated with the implementation of
smart contracts, by exposing possible semantic discrepancies between the smart contract
code and design document, and by recommending additional ideas to optimize the existing
code. Ourfindings indicate that the current version of smart contracts can still be enhanced
further due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About HedgePie

HedgePie is a hedge-funds based layer on top of decentralized finance that allows skilled
investors and traders to designinvestment strategies that others can theninvestinto. Like
the stock market, people can diversify their investment by buying into an index-style fund
composed ofvarious assets. Inaddition, subject matter experts candesigninvestment strate-
gies and publish them so others can buy into them, allowing non-experts to access well-
derived strategies.

Issuer HedgePie

Website https://hedgepie.finance/
Type Solidity Smart Contract
Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a bal-
ance between efficiency, timeliness, practicability, and correctness withinthe audit's scope.
While manualtestingis advised foridentifying problemsinlogic, procedure, andimplemen-
tation, automated testing techniques help to expand the coverage of smart contracts and
can quickly detect code that does not comply with security best practices.

https://hedgepie.finance/

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-

pact and is categorized into four levels, namely Critical, High, Medium, and Low.

Impact

High
Medium

Critical

Low

High Medium Low

Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the HEDGEPIE V2 im-
plementation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but theirimplemen-
tation might be improved by addressing the discovered flaws, which include , 1 medium-

severity, 11 low-severity vulnerabilities.

Vulnerabilities Severity | Status

Tax can be bypassed Acknowledged
Missing Value Verification Fixed
Unnecessary arguments Acknowledged
Avoid using .transfer() to transfer Ether Fixed

Owner Can Renounce Ownership Acknowledged
Floating Pragma Acknowledged
Owner Can Renounce Ownership Acknowledged
Floating Pragma Acknowledged
Owner Can Renounce Ownership Acknowledged
Floating Pragma Acknowledged
Owner Can Renounce Ownership Acknowledged
Floating Pragma Acknowledged

3 Finding Details

A Hedgepielnvestor.sol

A.1 Taxcanbe bypassed _

At every call to withdrawBNB in the contract, a percentage is taken from the rewards and
the withdrawal amount as a tax, then the contract sends these taxes to the treasury. In the
case where the withdrawal amount and the rewards variable are lower than 10000/taxPer-
cent, thetaxAmountvariable willbe equalto 0 duetothetype conversion, therefore bypass-
ing the tax.

Listing 1: Hedgepielnvestor.sol

s 1if (

359 _vAmount >

360 IAdapter(adapter.addr) .getWithdrawalAmount (
361 msg.sender,

362 _tokenlId

363)

364) {

365 taxAmount =

366 ((_vAmount -

367 IAdapter (adapter.addr) .getWithdrawalAmount (
368 _user,

369 _tokenld

370)) * taxPercent) /

371 1e4;

3m if (taxAmount != 0) {

34 IBEP20 (adapter.token) . transfer(

375 treasuryAddr,
376 taxAmount

377 DE
378 }
379 }

Listing 2: Hedgepielnvestor.sol

s uint256 rewards = _getRewards(
395 _tokenld,

3% msg.sender,

397 adapter.addr

98)

s0 taxAmount = (rewards * taxPercent) / 1le4;

w2 if (taxAmount != 0) {

403 IBEP20 (IAdapter (adapter.addr) .rewardToken()) .transfer(
404 treasuryAddr,

405 taxAmount

406)

wr }

Likelihood -3

Impact - 4

Consider adding a require statement that verifies the withdrawal amount and the rewards
variable cannot be lower than 10000/ taxPercent.

- Acknowledged

The Hedgepie team has acknowledged the risk, stating that the tax amount is minor and can
be ignored.

A.2 Missing Value Verification -

Certain functions lack a value safety check, the values of the arguments should be verified
to allow only the ones that comply with the contract’s logic. In the setTreasury function, the
contract must ensure that percentis lessthan10000.

Listing 3: Hedgepielnvestor.sol

m function setTreasury(address _treasury, uint256 _percent)

15 external
16 onlyOwner
n7 {
118 require(_treasury != address(0), "Invalid address");
120 treasuryAddr = _treasury;
121 taxPercent = _percent;
122 }
Likelihood -1
Impact - 3

We recommend that you verify the values provided in the arguments. The issue can be ad-
dressed by utilizing a require statement.

10

- Fixed

The Hedgepie team has fixed the issue by verifying the percentto be less than 1000.

A.3 Unnecessaryarguments -

The deposit, depositBNB, withdraw and withdrawBNB functions have an argument called
_user which is then verified by the modifier shouldMatchCaller to match msg.sender. This
argumentisunnecessaryas msg.sendercanbeuserdirectlytogettheaddressofthe caller.
Thesameissueispresentinthe depositBNB function containsanargument called amount
that is verified to be equal to msg.value.

Listing 4: Hedgepielnvestor.sol

9 function depositBNB(

190 address _user,
91 uint256 _tokenlId,
192 uint256 _amount

w3) external payable shouldMatchCaller(_user) nonReentrant {

19 require(_amount != 0, "Error: Amount can not be 0");

195 require(msg.value == _amount, "Error: Insufficient BNB");

196 require(

197 IYBNFT (ybnft) .exists(_tokenId),

198 "Error: nft tokenld is invalid"

199 ¥

201 IYBNFT.Adapter[] memory adapterInfo = IYBNFT(ybnft).getAdapterInfo(
202 _tokenlId

203 E:

1

Likelihood -1
Impact - 2

Consider using directly msg.sender and msg.value to get the address of the caller and the
amount of native tokens passed to the function.

- Acknowledged

The Hedgepie team has acknowledged the issue, stating that they are planning to expand
the investor contract to support cross-chain where the _user argument might differ from
the msg.sender.

A.4 Avoid using.transfer() to transfer Ether-

Although transfer() and send() are recommended as a security best-practice to prevent
reentrancy attacks because they only forward 2300 gas, the gas repricing of opcodes may
break deployed contracts.

Listing 5: Hedgepielnvestor.sol

20 uint256 afterBalance = address(this) .balance;
w if (afterBalance > beforeBalance)

262 payable(_user) .transfer(afterBalance - beforeBalance);

Listing 6: Hedgepielnvestor.sol

w28 1f (amountQut != 0) payable(_user).transfer(amountQut);

12

Likelihood -1
Impact - 2

Consider using.call{value: ... }(”") instead, without hardcoded gas limits along with checks-
effects-interactions pattern or reentrancy guards for reentrancy protection.

- Fixed

The Hedgepie team has fixed the issue by implementing the use of .call{value: ... }(”") instead
of .transfer().

A5 Owner CanRenounce Ownership -

Typically, the account that deploys the contract is also its owner. Consequently, the owner
is able to engage in certain privileged activities in his own name. In smart contracts, the re-
nounceOwnership function is used to renounce the ownership, therefore, the contract will

never have an Owner, rendering some owner-exclusive functionality unavailable.

Listing 7: Hedgepielnvestor.sol

ms contract HedgepieIlnvestor is Ownable, ReentrancyGuard {

Likelihood -1
Impact - 2

13

We recommend that you prevent the owner from calling renounceOwnership. Additionally,
if you decide to use a multi-signature wallet, then the execution of the renounceOwnership
will require for at least two or more users to be confirmed. Alternatively, you can disable
Renounce Ownership functionality by overriding it.

- Acknowledged

The Hedgepie team has acknowledged the risk, stating that they will transfer the ownership
to a multi-sig wallet after deployment.

A.6 Floating Pragma -

The contract makes use of the floating-point pragma 0.8.4. Contracts should be deployed
using the same compiler version.

Locking the pragma helps ensure that contracts are not unintentionally deployed using an-
other pragma, such as an obsolete version, that may introduce issues in the contract sys-
tem.

Listing 8: Hedgepielnvestor.sol

1 // SPDX-License-Identifier: AGPL-3.0-or-later
2 pragma solidity ~0.8.4;

Likelihood -1
Impact - 2

14

Consider locking the pragma version. It is advised that the floating pragma should not be

used in production. Both truffle-config.js and hardhat.config.js support locking the pragma
version.

- Acknowledged

The Hedgepie team has acknowledged the risk, stating that the pragma version is defined
in the hardhat configuration.

B HedgepieAdapterManager.sol

B.1 Owner Can Renounce Ownership -

Typically, the account that deploys the contract is also its owner. Consequently, the owner
is able to engage in certain privileged activities in his own name. In smart contracts, the re-
nounceOwnership function is used to renounce the ownership, therefore, the contract will

never have an Owner, rendering some owner-exclusive functionality unavailable.

Listing 9: HedgepieAdapterManager.sol

7 contract HedgepieAdapterManager is Ownable {

Likelihood -1
Impact - 2

15

We recommend that you prevent the owner from calling renounceOwnership. Additionally,
if you decide to use a multi-signature wallet, then the execution of the renounceOwnership
will require for at least two or more users to be confirmed. Alternatively, you can disable
Renounce Ownership functionality by overriding it.

- Acknowledged

The Hedgepie team has acknowledged therisk, stating that they willtransfer the ownership
to a multi-sig wallet after deployment.

B.2 Floating Pragma |[EOWI

The contract makes use of the floating-point pragma 0.8.4. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts are not
unintentionally deployed using another pragma, such as an obsolete version, that may in-
troduce issuesin the contract system.

Listing 10: HedgepieAdapterManager.sol

1 // SPDX-License-Identifier: AGPL-3.0-or-later
2 pragma solidity ~0.8.4;

Likelihood -1
Impact - 2

Consider locking the pragma version. It is advised that the floating pragma should not be
usedin production. Both truffle-config.js and hardhat.config.js support locking the pragma

[

version.

- Acknowledged

The Hedgepie team has acknowledged the risk, stating that the pragma version is defined
in the hardhat configuration.

C autofarm-vault-adapter.sol

C.1 Owner Can Renounce Ownership -

Typically, the account that deploys the contract is also its owner. Consequently, the owner
is able to engage in certain privileged activities in his own name. In smart contracts, the re-
nounceOwnership function is used to renounce the ownership, therefore, the contract will

never have an Owner, rendering some owner-exclusive functionality unavailable.

Listing 11: autofarm-vault-adapter.sol

s contract AutoVaultAdapter is Ownable {

Likelihood -1
Impact - 2

We recommend that you prevent the owner from calling renounceOwnership. Additionally,
if you decide to use a multi-signature wallet, then the execution of the renounceOwnership

will require for at least two or more users to be confirmed. Alternatively, you can disable
Renounce Ownership functionality by overriding it.

17

- Acknowledged

The Hedgepie team has acknowledged the risk, stating that they will transfer the ownership
to a multi-sig wallet after deployment.

C.2 FloatingPragma -

The contract makes use of the floating-point pragma 0.8.4. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts are not
unintentionally deployed using another pragma, such as an obsolete version, that may in-
troduce issuesinthe contract system.

Listing 12: autofarm-vault-adapter.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.4;

Likelihood -1
Impact - 2

Consider locking the pragma version. It is advised that the floating pragma should not be
used in production. Both truffle-config.js and hardhat.config.js support locking the pragma
version.

- Acknowledged

The Hedgepie team has acknowledged the risk, stating that the pragma version is defined
in the hardhat configuration.

18

D apeswap-farm-adapter.sol

D.1 Owner Can Renounce Ownership -

Typically, the account that deploys the contract is also its owner. Consequently, the owner
is able to engage in certain privileged activities in his own name. In smart contracts, the re-
nounceOwnership function is used to renounce the ownership, therefore, the contract will

never have an Owner, rendering some owner-exclusive functionality unavailable.

Listing 13: apeswap-farm-adapter.sol

3 contract ApeswapFarmLPAdapter is Ownable {

Likelihood -1
Impact - 2

We recommend that you prevent the owner from calling renounceOwnership. Additionally,
if you decide to use a multi-signature wallet, then the execution of the renounceOwnership
will require for at least two or more users to be confirmed. Alternatively, you can disable
Renounce Ownership functionality by overriding it.

- Acknowledged

The Hedgepie team has acknowledged therisk, stating that they will transfer the ownership
to a multi-sig wallet after deployment.

19

D.2 Floating Pragma [[EOWI

The contract makes use of the floating-point pragma 0.8.4. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts are not
unintentionally deployed using another pragma, such as an obsolete version, that may in-
troduce issuesin the contract system.

Listing 14: apeswap-farm-adapter.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.4;

Likelihood -1
Impact - 2

Consider locking the pragma version. It is advised that the floating pragma should not be
used in production. Both truffle-config.js and hardhat.config.js support locking the pragma
version.

- Acknowledged

The Hedgepie team has acknowledged the risk, stating that the pragma version is defined
in the hardhat configuration.

20

4 Tests

AlpacaAUSDPoolAdapter Integration Test
Owner: O0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Investor: 0xBO2B7F872ff9C316F4b734de0D5£2476b2C62682
Strategy: 0x158Da805682BdC8ee32d52833aD41E74bb951E59
AlpacaAUSDPoolAdapter: 0xc538D528a9eE0A8137C99a15d1DE873e902C1115
depositBNB function test
(1)should be reverted when nft tokenId is invalid (97ms)
(2)should be reverted when amount is O
(3) deposit should success for Alice (4188ms)
(4) deposit should success for Bob (416ms)
(5) deposit should success for tom (412ms)
withdrawBNB() function test
(1)should be reverted when nft tokenId is invalid
(2)should receive the BNB successfully after withdraw function for
— Alice (543ms)
(3)should receive the BNB successfully after withdraw function for
— Bob (340ms)
(4)should receive the BNB successfully after withdraw function for

<~ tom (312ms)

AlpacalendAdapter Integration Test
Owner: O0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Investor: 0x1Da65b8874ed1290899A9Aa626A351296d4B274A
Strategy: 0xd7D069493685A581d27824Fc46EdA46B7ELC0063
AlpacalendAdapter: 0xFb88e91a878fE2733561b0d81358D08b20Ac4328
depositBNB function test
(1)should be reverted when nft tokenld is invalid
(2)should be reverted when amount is O
(3) deposit should success for Alice (2249ms)
(4) deposit should success for Bob (277ms)

21

(6) deposit should success for tom (278ms)
withdrawBNB() function test

(1)should be reverted when nft tokenld is invalid

(2)should receive the BNB successfully after withdraw function for
— Alice (976ms)

(3)should receive the BNB successfully after withdraw function for
— Bob (238ms)

(4)should receive the BNB successfully after withdraw function for

— tom (221ms)

AlpacaStakeAdapter Integration Test
Owner: O0xf39Fd6eblaad88F6F4ce6aB8827279cffFb92266
Investor: 0xFD02c2291fb4F832831666Df5960A590d5e231cF
Strategy: 0xA625AB01B08ce023B2a342Dbb12a16£2C8489A8F
AlpacaStakeAdapter: 0x290d5b2F55866d2357cbf0a31724850091dF5dd5
depositBNB function test
(1)should be reverted when nft tokenId is invalid
(2)should be reverted when amount is O
(3) deposit should success for Alice (6284ms)
(4) deposit should success for Bob (1162ms)
(6) deposit should success for tom (445ms)
withdrawBNB() function test
(1)should be reverted when nft tokenId is invalid
(2)should receive the BNB successfully after withdraw function for
— Alice (639ms)
(3)should receive the BNB successfully after withdraw function for
— Bob (408ms)
(4)should receive the BNB successfully after withdraw function for

— tom (380ms)

ApeswapBananaAdapter Integration Test
Owner: O0xf39Fd6eblaad88F6F4ce6aB8827279cffFb92266
Investor: 0x670e44Ccd6a351b0403b3E889B263£874f4e1026
Strategy: 0x5c8D727b265DBAfaba67E050f2f739cAeEB4AGF9

22

ApeswapBananaAdapter: 0x66de75651060d9EC7218abCc7a2e4400525a1B6E
deposit function test
(1)should be reverted when nft tokenld is invalid
(2)should be reverted when amount is O
(3) deposit should success for alice (4017ms)
(4) deposit should success for bob (444ms)
(5) deposit should success for tom (292ms)
withdrawBNB() function test
(1)should be reverted when nft tokenId is invalid
(2)should receive the BNB successfully after withdraw function for
— alice (463ms)
(3)should receive the BNB successfully after withdraw function for
— bob (284ms)
(4)should receive the BNB successfully after withdraw function for

<~ tom (278ms)

ApeswapFarmLPAdapter Integration Test
Owner: O0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Investor: 0x02184Db0Ca92Ff24b9dF33AEb22bC1d978E3B032
Strategy: 0xb5c8D727b265DBAfaba67E050£2f739cAeEB4AGFO
ApeswapFarmLPAdapter: 0xf96C190E181b38c840B7832BbA9ESD527250a5FB
depositBNB function test
(1)should be reverted when nft tokenld is invalid
(2)should be reverted when amount is O
(3) deposit should success for Alice (3558ms)
(4) deposit should success for Bob (413ms)
withdrawBNB() function test
(1) revert when nft tokenlId is invalid
(2) should receive the BNB successfully after withdraw function
— for Alice (1074ms)
(3) should receive the BNB successfully after withdraw function

— for Bob (525ms)

ApeswapJungleAdapter Integration Test

23

Owner: Oxf39Fd6eblaad88F6F4ce6aB8827279cffFb92266
Investor: 0x9f3F78951bBf68fc3cBA976£1370a87B0Fc13cd4
Strategy: Oxc8laf2222ac6ec0f3ec08b875df25326b40e7a76
ApeswapJungleAdapter: 0x4c07ce6454D5340591£62fD7d3978B6£42E£953e
deposit function test
(1)should be reverted when nft tokenlId is invalid
(2)should be reverted when amount is O
(3) deposit should success for alice (4036ms)
(4) deposit should success for bob (902ms)
(6) deposit should success for tom (552ms)
withdrawBNB() function test
(1)should be reverted when nft tokenld is invalid
(2)should receive the BNB successfully after withdraw function for
— alice (2857ms)
(3)should receive the BNB successfully after withdraw function for
— bob (689ms)
(4)should receive the BNB successfully after withdraw function for

<~ tom (730ms)

ApeswapPoolAdapter Integration Test
Owner: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Investor: 0x50f9CA3275E26cC1a89DaF0ce7£4942F3dDA9f61
Strategy: 0xd0378c1b37D530a00E91764A7a41EfEB3d6A5EDC
ApeswapPoolAdapter: 0x6CC14037395F7B84bad4eDaF239a6D97f0DcE3CEL
depositBNB function test
(1)should be reverted when nft tokenlId is invalid
(2)should be reverted when amount is O
(3) deposit should success for alice (2167ms)
(4) deposit should success for bob (272ms)
(6) deposit should success for tom (258ms)
withdrawBNB() function test
(1)should be reverted when nft tokenId is invalid
(2)should receive BNB successfully after withdrawBNB function (373
— ms)

24

(3)should receive BNB successfully after withdrawBNB function for
— bob (247ms)
(4)should receive BNB successfully after withdrawBNB function for

— tom (232ms)

ApeswapVaultAdapter Integration Test
Owner: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Investor: 0x62153519C210d21£1B67dE11C£60d6F467190707
Strategy: 0x5711a833C943AD1e8312A9c7E5403d48c717elaa
ApeswapVaultAdapter: 0x9Bda88dA960e08Cc166D3e824109b5af3E376278
deposit function test
(1)should be reverted when nft tokenId is invalid
(2)should be reverted when amount is O
(3) deposit should success for alice (5853ms)
(4) deposit should success for bob (601ms)
(6) deposit should success for tom (584ms)
withdrawBNB() function test
(1)should be reverted when nft tokenId is invalid
(2)should receive the BNB successfully after withdraw function for
— alice (940ms)
(3)should receive the BNB successfully after withdraw function for
— bob (574ms)
(4)should receive the BNB successfully after withdraw function for

— tom (542ms)

AutoVaultAdapter Integration Test
Owner: O0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
AutoFarm Adapter: 0xe2A04F5d91D1AD137£854C5820C76e5b711158ch
YBNFT: 0xD9d684546ED4c727B136503016E137822DD9b4D7
Investor: 0x79b3£34855c3478Fadbf65344a3f5E3c7b94405¢c
AdapterManager: 0x7CA40e352B402C9800b3fedBFC63b6FE79B8FcOB
depositBNB function test
(1) should be reverted when nft tokenId is invalid (42ms)

(2) should be reverted when amount is 0

25

(3) deposit should success (6335ms)
withdrawBNB() function test
(1) should be reverted when nft tokenId is invalid
(2) should receive the BNB successfully after withdraw function

< (1118ms)

BeefyLPVaultAdapter Integration Test
Owner: O0xf39Fd6eblaad88F6F4ce6aB8827279cffFb92266
Investor: 0x4f07450E£721147D38£29739eEe8079bC147£1£6
Strategy: 0x164fb78cAf2730eFD63380c2a645c32eBal1C52bc
BeefyLPVaultAdapter: 0x0991d3831Ee86D349497039bB604FA1FB2aE0571
depositBNB function test
(1)should be reverted when nft tokenId is invalid
(2)should be reverted when amount is O
(3) deposit should success for Alice (14644ms)
(4) deposit should success for Bob (821ms)
(6) deposit should success for tom (734ms)
withdrawBNB() function test
(1)should be reverted when nft tokenId is invalid
(2)should receive the BNB successfully after withdraw function for
— Alice (2478ms)
(8)should receive the BNB successfully after withdraw function for
— Bob (707ms)
(4)should receive the BNB successfully after withdraw function for

— tom (691ms)

BeefySingleVaultAdapter Integration Test
Owner: O0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Investor: 0xCOBd89573eDD265D3d9E0073£6D1e21e9DE5E1DA
Strategy: 0x725E14C3106EBf4778e01eA974e492£909029aE8
BeefySingleVaultAdapter: 0xa40E009b306B3b4f27374f6e833291DaAeC88cch
depositBNB function test
(1)should be reverted when nft tokenld is invalid

(2)should be reverted when amount is O

26

(3) deposit should success for Alice (12246ms)
(4) deposit should success for Bob (920ms)

(5) deposit should success for tom (913ms)

withdrawBNB() function test

(1) should be reverted
(2)should receive the
— Alice (1973ms)
(3)should receive the
— Bob (1563ms)
(4)should receive the
— tom (1549ms)

when nft tokenId
BNB successfully

BNB successfully

BNB successfully

BeltVaultStakingAdapter Integration Test

Owner:

Investor:

is invalid

after withdraw function for

after withdraw function for

after withdraw function for

0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
0x66908bE96DC195d937530b03£89f23EE54d5202d

Strategy: 0x9171Bf7c050aC8B4cf7835e51F7b4841DFB2cCDO
BeltVaultStakeAdapter: 0x409C36E5Cd41DC79b8B6E13B2371aB6dA506Cb01

depositBNB function test

(1)should be reverted when nft tokenId is invalid

(2)should be reverted

when amount is O

(3) deposit should success for Alice (22170ms)
(4) deposit should success for Bob (1631ms)

(5) deposit should success for tom (1747ms)

withdrawBNB() function test

(1) should be reverted
(2)should receive the
< Alice (1882ms)
(3)should receive the
— Bob (778ms)
(4)should receive the
— tom (849ms)

when nft tokenId
BNB successfully

BNB successfully

BNB successfully

BiswapFarmLPAdapter Integration Test

Owner:

is invalid

after withdraw function for

after withdraw function for

after withdraw function for

0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266

27

Investor: 0x3D7CD28EfDO8SFfE9Ce8cA329EC2e67822C756526
Strategy: 0xDbc1A13490deeF9c3C12b44FE77b503c1B061739
BiswapFarmLPAdapter: 0x0c8Cd13ff68D41263E6937224B9e5c7fF54d72£f9
depositBNB function test
(1) should be reverted when nft tokenId is invalid
(2) should be reverted when amount is 0
(3) deposit should success for Alice (2253ms)
(4) deposit should success for Bob (280ms)
withdrawBNB() function test
(1) revert when nft tokenId is invalid (60ms)
(2) should receive the BNB successfully after withdraw function
— for Alice (403ms)
(3) should receive the BNB successfully after withdraw function

< for Bob (257ms)

BiswapFarmLPAdapter Integration Test
Owner: Oxf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Investor: 0x2639EDb06Fa9aF056AfFO91eA0268Bf06Afc7564F
Strategy: 0xDbc1A13490deeF9c¢3C12b44FE77b503c1B061739
BiswapFarmLPAdapter: 0x340E02C02639522951264df540Fcel1A66D2885E9
depositBNB function test
(1) should be reverted when nft tokenId is invalid
(2) should be reverted when amount is 0
(3) deposit should success for Alice (4271ms)
(4) deposit should success for Bob (583ms)
withdrawBNB() function test
(1) revert when nft tokenlId is invalid
(2) should receive the BNB successfully after withdraw function
— for Alice (1171ms)
(3) should receive the BNB successfully after withdraw function

< for Bob (786ms)

PancakeSwapFarmLPAdapter Integration Test
Owner: O0xf39Fd6eblaad88F6F4ce6aB8827279cffFb92266

28

Investor: 0xbfb5d778c6E2040bDf3a0985ac2f386b624Ff5c7a
Strategy: 0xabf8C5Dbd5F286960b9d90548680aE5ebFf07652
PancakeSwapFarmLPAdapter: 0x7914a8b73E11432953d9cCda060018EA1d9DCde9
depositBNB function test
(1) should be reverted when nft tokenId is invalid
(2) should be reverted when amount is 0
(3) deposit should success for Alice (1119ms)
(4) deposit should success for Bob (431ms)
withdrawBNB() function test
(1) revert when nft tokenlId is invalid
(2) should receive the BNB successfully after withdraw function
— for Alice (716ms)
(3) should receive the BNB successfully after withdraw function

< for Bob (513ms)

Pancakeswap Stake Adapter Integration Test
YBNFT: 0x10FcD639d832188e94c50eD1C4C3A9F6403a0a64
Investor: 0x6706EB14Aa62f96F605A8492063¢c810C2a411e9d
PKSStakeAdapter: 0x1b53D58fFC6e69e6589a1A42eDf363584c0760f7
AdapterManager: 0x71498EdO08E4C968551e26eB4B803631241B5D26
Strategy: 0xabD57C5dca083a7051797920c78fb2b19564176B
Owner: O0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
should set correct state variable
(1)Check strategy address
(2)Check owner wallet
(3)Check AdapterManager address in Investor contract
(4)Check Investor address in AdapterManager contract
(56)Check owner wallet
(6)Check AdapterInfo of YBNFT
depositBNB function test
(1)should be reverted when nft tokenld is invalid
(2)should be reverted when amount is O
(3)deposit should success for Alice (2371ms)
(4)deposit should success for Bob (274ms)

29

(6)deposit should success for Tom (261ms)

withdrawBNB() function test

(1)should be reverted when nft tokenId is invalid

(2)should receive BNB successfully after withdraw function for

< Alice (399ms)

(3)should receive BNB successfully after withdraw function for Bob

>

(249ms)

(4)should receive BNB successfully after withdraw function for Tom

<_>

(244ms)

VenusLendAdapter Integration Test
YBNFT: 0xf9fe9360A5849437Dda072652c4dA0f7ac73£8E3

Investor:

0x641c1a78EBAe28B8AC165f7FO9BOE41£4DD3C4£5B

VenusAdapter: 0xE35C265ECE9fdda7c99708dEc45E67Ddb7804193
AdapterManager: 0x9E1Aa060Ad2A£934a9aD876705E320063Dae1492
Strategy: 0x95c78222B3D6e262426483D42CfA53685A67Ab9D
Owner: Oxf39Fd6e51aad88F6F4ce6aB8827279cffFb92266

should set correct state variable

(1)
(2)
(3)
(4)
(8)
(6)

Check
Check
Check
Check
Check
Check

strategy address

owner wallet

AdapterManager address in Investor contract
Investor address in AdapterManager contract
owner wallet

AdapterInfo of YBNFT

deposit() function test

(1)should be reverted when nft tokenld is invalid

(2)should be reverted when amount is O

(3)should success 1 time and receive the vToken successfully after

— deposit function (3575ms)

(4)should success multiple times (676ms)

withdraw() function test

(1)should be reverted when nft tokenlId is invalid

(2)should be reverted when amount is O

(3)should receive the WBNB successfully after withdraw function

30

<~ (957ms)

VenusLonglLevAdapter Integration Test
Owner: O0xf39Fd6eb5laad88F6F4ce6aB8827279cffFb92266
Investor: 0x2C007C7c20£06036DfBe8D7A05c24775a8370199
Strategy: 0x95c78222B3D6e262426483D42C£A53685A67AbOD
VenusLonglevAdapter: 0x621420020d4C2345b72a47A5324c74462A440263
depositBNB function test
(1) should be reverted when nft tokenId is invalid
(2) should be reverted when amount is 0
(3) deposit should success for Alice (4887ms)
(4) deposit should success for Bob (1425ms)
withdrawBNB() function test
(1) revert when nft tokenlId is invalid
(2) should receive the BNB successfully after withdraw function
— for Alice (1558ms)
(3) should receive the BNB successfully after withdraw function

< for Bob (1386ms)

VenusShortLevAdapter Integration Test
Owner: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Investor: OxfFD89CD4cA0e083f25E1bFFc2fb480e251Cc2208
Strategy: 0x95c78222B3D6e262426483D42CfA53685A67Ab9D
VenusShortLevAdapter: 0x2F7e3763CAb88d161eA199d591db36aBA7536474
depositBNB function test
(1) should be reverted when nft tokenId is invalid
(2) should be reverted when amount is 0
(3) deposit should success for Alice (2221ms)
(4) deposit should success for Bob (709ms)
withdrawBNB() function test
(1) revert when nft tokenlId is invalid
(2) should receive the BNB successfully after withdraw function
— for Alice (916ms)

(3) should receive the BNB successfully after withdraw function

31

< for Bob (764ms)

165 passing (3m)

The tests are passed successfully, and they cover the majority of tests cases, which guar-
antees the functionality of the contracts

kY.

5 Static Analysis (Slither)

ShellBoxes expanded the coverage of the specific contract areas using automated test-
ing methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
usedtotest mathematical relationships between Solidityinstances statically and variables
thatallow forthe detection of errorsorinconsistentusage of the contracts’ APls throughout
the entire codebase.

IAdapter.strategy() .strategy (interfaces/IAdapter.sol#20) shadows:

- IAdapter.strategy() (interfaces/IAdapter.sol#20) (function)
IAdapter.vStrategy() .vStrategy (interfaces/IAdapter.sol#22) shadows:

- IAdapter.vStrategy() (interfaces/IAdapter.sol#22) (function)
IAdapter.getAdapterStrategy(uint256) .strategy (interfaces/IAdapter.sol

— #41) shadows:

- IAdapter.strategy() (interfaces/IAdapter.sol#20) (function)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #local-variable-shadowing

HedgepieAdapterManager.setInvestor (address) (HedgepieAdapterManager.sol
— #144-147) should emit an event for:
- investor = _investor (HedgepieAdapterManager.sol#146)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #missing-events-access-control

Ownable.constructor() .msgSender (libraries/Ownable.sol#30) lacks a zero-
< check on :
- _owner = msgSender (libraries/Ownable.sol#31)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #missing-zero-address-validation

33

Context._msgData() (libraries/Context.sol#23-26) is never used and
< should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #dead-code

Pragma version~0.8.4 (HedgepieAdapterManager.sol#2) necessitates a
<> version too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6
Pragma version~0.8.4 (interfaces/IAdapter.sol#2) necessitates a version
< too recent to be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version~0.8.4 (libraries/Context.sol#2) necessitates a version
< too recent to be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version~0.8.4 (libraries/Ownable.sol#2) necessitates a version
< too recent to be trusted. Consider deploying with 0.6.12/0.7.6
501c-0.8.6 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity

Parameter HedgepieAdapterManager.getAdapterStrat(address)._adapter (
— HedgepieAdapterManager.sol#60) is not in mixedCase

Parameter HedgepieAdapterManager.getDepositCallData(address,uint256) .
— _adapter (HedgepieAdapterManager.sol#74) is not in mixedCase

Parameter HedgepieAdapterManager.getDepositCallData(address,uint256) .
— _amount (HedgepieAdapterManager.sol#74) is not in mixedCase

Parameter HedgepieAdapterManager.getWithdrawCallData(address,uint256).
— _adapter (HedgepieAdapterManager.sol#94) is not in mixedCase

Parameter HedgepieAdapterManager.getWithdrawCallData(address,uint256) .
— _amount (HedgepieAdapterManager.sol#94) is not in mixedCase

Parameter HedgepieAdapterManager.addAdapter(address)._adapter (
— HedgepieAdapterManager.sol#114) is not in mixedCase

Parameter HedgepieAdapterManager.setAdapter(uint256,bool)._adapterId (
— HedgepieAdapterManager.sol#134) is not in mixedCase

34

Parameter HedgepieAdapterManager.setAdapter(uint256,bool)._status (
— HedgepieAdapterManager.sol#134) is not in mixedCase
Parameter HedgepieAdapterManager.setInvestor (address)._investor (
— HedgepieAdapterManager.sol#144) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #conformance-to-solidity-naming-conventions

Redundant expression "this (libraries/Context.sol#24)" inContext (
< libraries/Context.sol#14-27)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #iredundant-statements

owner () should be declared external:

- Ownable.owner() (libraries/Ownable.sol#38-40)
renounceOwnership() should be declared external:

- Ownable.renounceOwnership() (libraries/Ownable.sol#57-60)
transferOwnership(address) should be declared external:

- Ownable.transferOwnership(address) (libraries/Ownable.sol

— #66-68)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #public-function-that-could-be-declared-external

HedgepieMasterChef.pendingReward(uint256,address) (HedgepieMasterChef.
— s01#118-141) performs a multiplication on the result of a
— division:
-hpieReward = multiplier.mul(rewardPerBlock) .mul(pool.allocPoint)
— .div(totalAllocPoint) (HedgepieMasterChef.sol#132-135)
—accHpiePerShare = accHpiePerShare.add(hpieReward.mul(1e12) .div(
— 1pSupply)) (HedgepieMasterChef.sol#136-138)
HedgepieMasterChef .updatePool (uint256) (HedgepieMasterChef.sol#198-217)
< performs a multiplication on the result of a division:
-hpieReward = multiplier.mul (rewardPerBlock) .mul(pool.allocPoint)
— .div(totalAllocPoint) (HedgepieMasterChef.sol#209-212)

35

—-pool.accHpiePerShare = pool.accHpiePerShare.add(hpieReward.mul (1
— e12) .div(1lpSupply)) (HedgepieMasterChef.sol#213-215)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #divide-before-multiply

Reentrancy in HedgepieMasterChef.deposit(uint256,uint256) (
— HedgepieMasterChef.sol#234-265) :
External calls:
- rewardToken.safeTransferFrom(rewardHolder,address(msg.sender),
— pending) (HedgepieMasterChef.sol#246-250)
- pool.lpToken.safeTransferFrom(address(msg.sender) ,address(this)
— ,_amount) (HedgepieMasterChef.sol#254-258)
State variables written after the call(s):
- pool.totalShares += _amount (HedgepieMasterChef.sol#259)
- user.amount = user.amount.add(_amount) (HedgepieMasterChef.sol
— #260)
- user.rewardDebt = user.amount.mul (pool.accHpiePerShare).div(1
— e12) (HedgepieMasterChef.sol#262)
Reentrancy in HedgepieMasterChef.emergencyWithdraw(uint256) (
— HedgepieMasterChef.sol#304-314):
External calls:
- pool.lpToken.safeTransfer (address(msg.sender) ,user.amount) (
— HedgepieMasterChef .sol#308)
State variables written after the call(s):
- pool.totalShares -= user.amount (HedgepieMasterChef.sol#309)
- user.amount = 0 (HedgepieMasterChef.sol#312)
- user.rewardDebt = O (HedgepieMasterChef.sol#313)
Reentrancy in HedgepieMasterChef.withdraw(uint256,uint256) (
— HedgepieMasterChef.sol#272-298) :
External calls:
- rewardToken.safeTransferFrom(rewardHolder,address(msg.sender),
— pending) (HedgepieMasterChef.sol#284-288)

State variables written after the call(s):

36

- user.amount = user.amount.sub(_amount) (HedgepieMasterChef.sol
— #291)
Reentrancy in HedgepieMasterChef.withdraw(uint256,uint256) (
— HedgepieMasterChef.sol#272-298) :
External calls:
- rewardToken.safeTransferFrom(rewardHolder,address(msg.sender),
— pending) (HedgepieMasterChef.sol#284-288)
- pool.lpToken.safeTransfer (address(msg.sender), amount) (
— HedgepieMasterChef.sol#292)
State variables written after the call(s):
- pool.totalShares -= _amount (HedgepieMasterChef.sol#293)
- user.rewardDebt = user.amount.mul (pool.accHpiePerShare).div(1
— e12) (HedgepieMasterChef.sol#295)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-1

HedgepieMasterChef.add(uint256,IBEP20) (HedgepieMasterChef.sol#149-167)
< should emit an event for:
- totalAllocPoint = totalAllocPoint.add(_allocPoint) (
— HedgepieMasterChef.sol#157)
HedgepieMasterChef.set (uint256,uint256) (HedgepieMasterChef.sol#174-183)
<~ should emit an event for:
- totalAllocPoint = totalAllocPoint.sub(prevAllocPoint) .add(
— _allocPoint) (HedgepieMasterChef.sol#179-181)
HedgepieMasterChef.updateMultiplier(uint256) (HedgepieMasterChef.sol
< #189-192) should emit an event for:
- BONUS_MULTIPLIER = multiplierNumber (HedgepieMasterChef.sol
— #191)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #missing-events-arithmetic
Ownable.constructor() .msgSender (libraries/Ownable.sol#30) lacks a zero-

— check on :

- _owner = msgSender (libraries/Ownable.sol#31)

37

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #missing-zero-address-validation

Reentrancy in HedgepieMasterChef.deposit(uint256,uint256) (
— HedgepieMasterChef.sol#234-265) :
External calls:
- rewardToken.safeTransferFrom(rewardHolder,address(msg.sender),
— pending) (HedgepieMasterChef.sol#246-250)
- pool.lpToken.safeTransferFrom(address(msg.sender) ,address(this)
— ,_amount) (HedgepieMasterChef.sol#254-258)
Event emitted after the call(s):
- Deposit(msg.sender, pid, amount) (HedgepieMasterChef.sol#264)
Reentrancy in HedgepieMasterChef.emergencyWithdraw(uint256) (
— HedgepieMasterChef.sol#304-314):
External calls:
- pool.lpToken.safeTransfer (address(msg.sender) ,user.amount) (
— HedgepieMasterChef.sol#308)
Event emitted after the call(s):
- EmergencyWithdraw(msg.sender, pid,user.amount) (
— HedgepieMasterChef.sol#310)
Reentrancy in HedgepieMasterChef.withdraw(uint256,uint256) (
— HedgepieMasterChef.sol#272-298):
External calls:
- rewardToken.safeTransferFrom(rewardHolder,address(msg.sender),
— pending) (HedgepieMasterChef.sol#284-288)
- pool.lpToken.safeTransfer(address(msg.sender), amount) (
— HedgepieMasterChef.sol#292)
Event emitted after the call(s):
- Withdraw(msg.sender, pid,_amount) (HedgepieMasterChef.sol#297)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-3

Address.isContract(address) (libraries/Address.sol#25-36) uses assembly
- INLINE ASM (libraries/Address.sol#32-34)

38

Address._functionCallWithValue(address,bytes,uint256,string) (libraries/
< Address.sol#151-179) uses assembly
- INLINE ASM (libraries/Address.sol#171-174)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #assembly-usage

Address.functionCall (address,bytes) (libraries/Address.sol#86-91) is
— never used and should be removed
Address.functionCallWithValue(address,bytes,uint256) (libraries/Address.
< s0l#118-130) is never used and should be removed
Address.functionCallWithValue(address,bytes,uint256,string) (libraries/
— Address.sol#138-149) is never used and should be removed
Address.sendValue (address,uint256) (libraries/Address.sol#54-66) is
— never used and should be removed
Context._msgData() (libraries/Context.sol#23-26) is never used and
— should be removed
SafeBEP20.safeApprove (IBEP20,address,uint256) (libraries/SafeBEP20.sol
— #42-59) is never used and should be removed
SafeBEP20.safeDecreaseAllowance (IBEP20,address,uint256) (libraries/
— SafeBEP20.s0l#79-96) is never used and should be removed
SafeBEP20.safeIncreaseAllowance (IBEP20,address,uint256) (libraries/
— SafeBEP20.s0l#61-77) is never used and should be removed
SafeMath.mod (uint256,uint256) (libraries/SafeMath.sol#55-57) is never
— used and should be removed
SafeMath.mod (uint256,uint256,string) (libraries/SafeMath.sol#59-66) is
<— never used and should be removed
SafeMath.sqrrt(uint256) (libraries/SafeMath.sol#69-80) is never used and
— should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #dead-code

Pragma version~0.8.4 (HedgepieMasterChef.sol#2) necessitates a version

< too recent to be trusted. Consider deploying with 0.6.12/0.7.6

39

Pragma version~0.8.4 (interfaces/IBEP20.so0l#2) necessitates a version
< too recent to be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version~0.8.4 (libraries/Address.sol#2) necessitates a version
< too recent to be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version~0.8.4 (libraries/Context.sol#2) necessitates a version
< too recent to be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version~0.8.4 (libraries/Ownable.sol#2) necessitates a version
< too recent to be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version~0.8.4 (libraries/SafeBEP20.sol#2) necessitates a version
< too recent to be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version~0.8.4 (libraries/SafeMath.sol#2) necessitates a version
< too recent to be trusted. Consider deploying with 0.6.12/0.7.6
501c-0.8.6 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity

Low level call in Address.sendValue(address,uint256) (libraries/Address.
— sol#54-66) :
- (success) = recipient.call{value: amount}() (libraries/Address.
— sol#61)
Low level call in Address._functionCallWithValue(address,bytes,uint256,
— string) (libraries/Address.sol#151-179):
- (success,returndata) = target.call{value: weiValue}(data) (
— libraries/Address.sol#160-162)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #low-level-calls

Parameter HedgepieMasterChef.getMultiplier(uint256,uint256). from (
— HedgepieMasterChef.sol#105) is not in mixedCase

Parameter HedgepieMasterChef.getMultiplier(uint256,uint256)._to (
— HedgepieMasterChef.sol#105) is not in mixedCase

Parameter HedgepieMasterChef.pendingReward(uint256,address)._pid (
— HedgepieMasterChef.sol#118) is not in mixedCase

40

Parameter HedgepieMasterChef.pendingReward(uint256,address)._user (
— HedgepieMasterChef.sol#118) is not in mixedCase
Parameter HedgepieMasterChef.add(uint256,IBEP20)._allocPoint (
— HedgepieMasterChef.sol#149) is not in mixedCase
Parameter HedgepieMasterChef.add(uint256,IBEP20). 1pToken (
— HedgepieMasterChef.sol#149) is not in mixedCase
Parameter HedgepieMasterChef.set(uint256,uint256)._pid (
— HedgepieMasterChef.sol#174) is not in mixedCase
Parameter HedgepieMasterChef.set(uint256,uint256). allocPoint (
— HedgepieMasterChef.sol#174) is not in mixedCase
Parameter HedgepieMasterChef.updateMultiplier(uint256) . multiplierNumber
— (HedgepieMasterChef.sol#189) is not in mixedCase
Parameter HedgepieMasterChef.updatePool(uint256). pid (
— HedgepieMasterChef.sol#198) is not in mixedCase
Parameter HedgepieMasterChef.deposit(uint256,uint256)._pid (
— HedgepieMasterChef.sol#234) is not in mixedCase
Parameter HedgepieMasterChef.deposit(uint256,uint256) . amount (
— HedgepieMasterChef.sol#234) is not in mixedCase
Parameter HedgepieMasterChef.withdraw(uint256,uint256)._pid (
— HedgepieMasterChef.sol#272) is not in mixedCase
Parameter HedgepieMasterChef.withdraw(uint256,uint256) . amount (
— HedgepieMasterChef.sol#272) is not in mixedCase
Parameter HedgepieMasterChef.emergencyWithdraw(uint256)._pid (
— HedgepieMasterChef.sol#304) is not in mixedCase
Variable HedgepieMasterChef.BONUS_MULTIPLIER (HedgepieMasterChef.sol#39)
— 1is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #conformance-to-solidity—-naming-conventions

Redundant expression "this (libraries/Context.sol#24)" inContext (
< libraries/Context.sol#14-27)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #redundant-statements

41

add (uint256,IBEP20) should be declared external:
- HedgepieMasterChef.add(uint256,IBEP20) (HedgepieMasterChef.sol
— #149-167)
set (uint256,uint256) should be declared external:
- HedgepieMasterChef.set(uint256,uint256) (HedgepieMasterChef.sol
— #174-183)
updateMultiplier(uint256) should be declared external:
- HedgepieMasterChef.updateMultiplier (uint256) (
— HedgepieMasterChef.sol#189-192)
deposit(uint256,uint256) should be declared external:
- HedgepieMasterChef.deposit(uint256,uint256) (HedgepieMasterChef
— .s0l#234-265)
withdraw(uint256,uint256) should be declared external:
- HedgepieMasterChef.withdraw(uint256,uint256) (
— HedgepieMasterChef .sol#272-298)
emergencyWithdraw(uint256) should be declared external:
- HedgepieMasterChef.emergencyWithdraw(uint256) (
— HedgepieMasterChef .sol#304-314)
owner () should be declared external:
- Ownable.owner() (libraries/Ownable.sol#38-40)
renounceOwnership() should be declared external:
- Ownable.renounceOwnership() (libraries/Ownable.sol#57-60)
transferOwnership(address) should be declared external:
- Ownable.transferOwnership(address) (libraries/Ownable.sol
— #66-68)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #public-function-that-could-be-declared-external

ApeswapFarmLPAdapter.setInvestor(address) (apeswap-farm-lp-adapter.sol
< #147-150) should emit an event for:
- investor = _investor (apeswap-farm-lp-adapter.sol#149)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #missing-events-access-control

42

ApeswapFarmLPAdapter.constructor(uint256,address,address,address,address
— ,string)._stakingToken (apeswap-farm-lp-adapter.sol#45) lacks a
— zero-check on :
- stakingToken = _stakingToken (apeswap-farm-lp-adapter.
— sol#51)
ApeswapFarmLPAdapter.constructor(uint256,address,address,address,address
— ,string)._rewardToken (apeswap-farm-lp-adapter.sol#46) lacks a
— zero-check on :
- rewardToken = _rewardToken (apeswap-farm-lp-adapter.sol
— #52)
ApeswapFarmLPAdapter.constructor(uint256,address,address,address,address
— ,string)._strategy (apeswap-farm-lp-adapter.sol#44) lacks a zero-
— check on :

- strategy = _strategy (apeswap-farm-lp-adapter.sol#53)
ApeswapFarmLPAdapter.constructor (uint256,address,address,address,address
— ,string)._router (apeswap-farm-lp-adapter.sol#47) lacks a zero-

— check on :
- router = _router (apeswap-farm-lp-adapter.sol#54)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #missing-zero-address-validation

Different versions of Solidity is used:
- Version used: ['70.8.0', '70.8.4']
- 70.8.0 (../../../../../openzeppelin-contracts/contracts/access/
— Ownable.sol#3)
- 70.8.0 (../../../../../openzeppelin-contracts/contracts/utils/
— Context.sol#3)
- 70.8.4 (apeswap-farm-lp-adapter.sol#2)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

Context. _msgData() (../../../../../openzeppelin-contracts/contracts/

< utils/Context.sol#20-22) is never used and should be removed

43

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #dead-code

Pragma version~0.8.0 (../../../../../openzeppelin-contracts/contracts/
— access/0Ownable.sol#3) necessitates a version too recent to be
< trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../../../openzeppelin-contracts/contracts/
— utils/Context.sol#3) necessitates a version too recent to be
— trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.4 (apeswap-farm-lp-adapter.sol#2) necessitates a
— version too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6

501c-0.8.6 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity

Parameter ApeswapFarmLPAdapter.getWithdrawalAmount (address,uint256).
— _user (apeswap-farm-lp-adapter.sol#63) is not in mixedCase
Parameter ApeswapFarmLPAdapter.getWithdrawalAmount (address,uint256).
— nftld (apeswap-farm-lp-adapter.sol#63) is not in mixedCase
Parameter ApeswapFarmLPAdapter.getInvestCallData(uint256)._amount (
— apeswap-farm-lp-adapter.sol#75) is not in mixedCase
Parameter ApeswapFarmLPAdapter.getDevestCallData(uint256)._amount (
— apeswap-farm-lp-adapter.sol#97) is not in mixedCase
Parameter ApeswapFarmLPAdapter.increaseWithdrawalAmount (address,uint256,
— uint256)._user (apeswap-farm-lp-adapter.sol#122) is not in
— mixedCase
Parameter ApeswapFarmLPAdapter.increaseWithdrawalAmount (address,uint256,
— uint256) . _nftld (apeswap-farm-lp-adapter.sol#123) is not in
— mixedCase
Parameter ApeswapFarmLPAdapter.increaseWithdrawalAmount (address,uint256,
< uint256) . _amount (apeswap-farm-lp-adapter.sol#124) is not in

— mixedCase

44

Parameter ApeswapFarmLPAdapter.setWithdrawalAmount (address,uint256,
— uint256)._user (apeswap-farm-lp-adapter.sol#136) is not in
— mixedCase
Parameter ApeswapFarmLPAdapter.setWithdrawalAmount(address,uint256,
— uint256) . nftld (apeswap-farm-lp-adapter.sol#137) is not in
— mixedCase
Parameter ApeswapFarmLPAdapter.setWithdrawalAmount(address,uint256,
< uint256) . _amount (apeswap-farm-lp-adapter.sol#138) is not in
— mixedCase
Parameter ApeswapFarmLPAdapter.setInvestor(address)._investor (apeswap-
— farm-lp-adapter.sol#147) is not in mixedCase
Parameter ApeswapFarmLPAdapter.getPaths(address,address)._inToken (
— apeswap-farm-lp-adapter.sol#157) is not in mixedCase
Parameter ApeswapFarmLPAdapter.getPaths(address,address)._outToken (
— apeswap-farm-lp-adapter.sol#157) is not in mixedCase
Parameter ApeswapFarmLPAdapter.setPath(address,address,addressl[]).
< _inToken (apeswap-farm-lp-adapter.sol#187) is not in mixedCase
Parameter ApeswapFarmLPAdapter.setPath(address,address,address[]).
— _outToken (apeswap-farm-lp-adapter.sol#188) is not in mixedCase
Parameter ApeswapFarmLPAdapter.setPath(address,address,address[])._paths
— (apeswap-farm-lp-adapter.sol#189) is not in mixedCase
Parameter ApeswapFarmLPAdapter.getReward(address)._user (apeswap-farm-1lp
— —adapter.sol#220) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #conformance-to-solidity-naming-conventions

ApeswapFarmLPAdapter.repayToken (apeswap-farm-lp-adapter.sol#17) should
<> be constant

ApeswapFarmLPAdapter.vStrategy (apeswap-farm-lp-adapter.sol#19) should
— be constant

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #istate-variables-that-could-be-declared-constant

renounceOwnership() should be declared external:

45

- Ownable.renounceOwnership() (../../../../../openzeppelin-
< contracts/contracts/access/0Ownable.sol#53-55)
transferOwnership(address) should be declared external:
- Ownable.transferOwnership(address) (../../../../../openzeppelin
— -contracts/contracts/access/Ownable.sol#61-64)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #public-function-that-could-be-declared-external

AutoVaultAdapter.setInvestor(address) (auto-vault-adapter.sol#168-171)
— should emit an event for:
- investor = _investor (auto-vault-adapter.sol#170)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #missing-events-access-control

AutoVaultAdapter.setPoolID(uint256) (auto-vault-adapter.sol#177-179)
— should emit an event for:
- poolID = poollD (auto-vault-adapter.sol#178)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #missing-events-arithmetic

AutoVaultAdapter.constructor (address,address,address,address,address,
— string)._stakingToken (auto-vault-adapter.sol#52) lacks a zero-
— check on :
- stakingToken = _stakingToken (auto-vault-adapter.sol#57)
AutoVaultAdapter.constructor (address,address,address,address,address,
— string)._rewardToken (auto-vault-adapter.sol#53) lacks a zero-
— check on :
- rewardToken = _rewardToken (auto-vault-adapter.sol#58)
AutoVaultAdapter.constructor (address,address,address,address,address,
— string)._strategy (auto-vault-adapter.sol#50) lacks a zero-check
— on :
- strategy = _strategy (auto-vault-adapter.sol#59)
AutoVaultAdapter.constructor (address,address,address,address,address,

— string)._vStrategy (auto-vault-adapter.sol#51) lacks a zero-check

46

- vStrategy = _vStrategy (auto-vault-adapter.sol#60)
AutoVaultAdapter.constructor (address,address,address,address,address,
— string)._router (auto-vault-adapter.sol#54) lacks a zero-check on
s
- router = _router (auto-vault-adapter.sol#62)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #missing-zero-address-validation

Different versions of Solidity is used:
- Version used: ['70.8.0', '70.8.4']
- 70.8.0 (../../../../../openzeppelin-contracts/contracts/access/
— Ownable.sol#3)
- 70.8.0 (../../../../../openzeppelin-contracts/contracts/utils/
— Context.sol#3)
- 70.8.4 (auto-vault-adapter.sol#2)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

Context. _msgData() (../../../../../openzeppelin-contracts/contracts/
— utils/Context.sol#20-22) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #dead-code

Pragma version~0.8.0 (../../../../../openzeppelin-contracts/contracts/
— access/Ownable.sol#3) necessitates a version too recent to be
< trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../../../openzeppelin-contracts/contracts/
— utils/Context.sol#3) necessitates a version too recent to be
— trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.4 (auto-vault-adapter.sol#2) necessitates a version
< too recent to be trusted. Consider deploying with 0.6.12/0.7.6

501c-0.8.6 is not recommended for deployment

47

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity

Parameter AutoVaultAdapter.getWithdrawalAmount(address,uint256). user (
— auto-vault-adapter.sol#70) is not in mixedCase
Parameter AutoVaultAdapter.getWithdrawalAmount(address,uint256). nftId (
< auto-vault-adapter.sol#70) is not in mixedCase
Parameter AutoVaultAdapter.getInvestCallData(uint256)._amount (auto-
— vault-adapter.sol#82) is not in mixedCase
Parameter AutoVaultAdapter.getDevestCallData(uint256)._amount (auto-
— vault-adapter.sol#104) is not in mixedCase
Parameter AutoVaultAdapter.increaseWithdrawalAmount (address,uint256,
— uint256) . user (auto-vault-adapter.sol#143) is not in mixedCase
Parameter AutoVaultAdapter.increaseWithdrawalAmount (address,uint256,
— uint256) . nftId (auto-vault-adapter.sol#144) is not in mixedCase
Parameter AutoVaultAdapter.increaseWithdrawalAmount (address,uint256,
— uint256) . _amount (auto-vault-adapter.sol#145) is not in mixedCase
Parameter AutoVaultAdapter.setWithdrawalAmount(address,uint256,uint256) .
— _user (auto-vault-adapter.sol#157) is not in mixedCase
Parameter AutoVaultAdapter.setWithdrawalAmount(address,uint256,uint256) .
— nftld (auto-vault-adapter.sol#158) is not in mixedCase
Parameter AutoVaultAdapter.setWithdrawalAmount(address,uint256,uint256) .
— _amount (auto-vault-adapter.sol#159) is not in mixedCase
Parameter AutoVaultAdapter.setInvestor(address)._investor (auto-vault-
— adapter.sol#168) is not in mixedCase
Parameter AutoVaultAdapter.setPoolID(uint256)._poolID (auto-vault-
— adapter.sol#177) is not in mixedCase
Parameter AutoVaultAdapter.getPaths(address,address)._inToken (auto-
— vault-adapter.sol#186) is not in mixedCase
Parameter AutoVaultAdapter.getPaths(address,address)._outToken (auto-
— vault-adapter.sol#186) is not in mixedCase
Parameter AutoVaultAdapter.setPath(address,address,address[])._inToken (

— auto-vault-adapter.sol#216) is not in mixedCase

48

Parameter AutoVaultAdapter.setPath(address,address,address[])._outToken
— (auto-vault-adapter.sol#217) is not in mixedCase

Parameter AutoVaultAdapter.setPath(address,address,address[])._paths (
< auto-vault-adapter.sol#218) is not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #conformance-to-solidity-naming-conventions

AutoVaultAdapter.repayToken (auto-vault-adapter.sol#22) should be
— constant
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #istate-variables-that-could-be-declared-constant

renounceOwnership() should be declared external:
- Ownable.renounceOwnership() (../../../../../openzeppelin-
— contracts/contracts/access/Ownable.sol#53-55)
transferOwnership(address) should be declared external:
- Ownable.transferOwnership(address) (../../../../../openzeppelin
— -contracts/contracts/access/Ownable.sol#61-64)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #public-function-that-could-be-declared-external

Most of the vulnerabilities found by the analysis have already been addressed by the smart
contract code review.

49

6 Conclusion

Inthis audit, we examined the design and implementation of HEDGEPIE V2 contract and dis-
covered severalissues of varying severity. HedgePie team addressed 2 issues raised in the
initial report and implemented the necessary fixes, while classifying the rest as a risk with
low-probability of occurrence. Shellboxes’ auditors advised HedgePie Team to maintain a
high level of vigilance and to keep those findings in mind in order to avoid any future com-
plications.

50

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

91

mailto:contact@shellboxes.com

	Introduction
	About HedgePie
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	HedgepieInvestor.sol
	Tax can be bypassed [MEDIUM]
	Missing Value Verification [LOW]
	Unnecessary arguments [LOW]
	Avoid using .transfer() to transfer Ether [LOW]
	Owner Can Renounce Ownership [LOW]
	Floating Pragma [LOW]

	HedgepieAdapterManager.sol
	Owner Can Renounce Ownership [LOW]
	Floating Pragma [LOW]

	autofarm-vault-adapter.sol
	Owner Can Renounce Ownership [LOW]
	Floating Pragma [LOW]

	apeswap-farm-adapter.sol
	Owner Can Renounce Ownership [LOW]
	Floating Pragma [LOW]

	Tests
	Static Analysis (Slither)
	Conclusion

