
Cleandefi
Smart Contract Security Audit

Prepared by ShellBoxes

June 9th, 2022 - July 5th, 2022

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Cleandefi

Version 1.0

Classification Public

Scope

TheCleandefi program

Files MD5Hash

src/entrypoint.rs 5c7b7c676dedd6b4f9c4b304589b04aa

src/error.rs eb8c029f1ed7bb9d2cc6e7853d5806c5

src/instruction.rs 7a681c3a56d9c5ff9f0d11677852bb1d

src/lib.rs 2e74efe8cf8f9a1a9a58032eed588912

src/native_mint.rs 107bd09494956b9446fd77c905a44d7a

src/processor.rs 58a13d2535c5d0566092361223f4c0c6

src/state.rs c3488b85aa7e8da2f25d26f0f596a4cd

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

mailto:contact@shellboxes.com

Contents
1 Introduction 4

1.1 About Cleandefi . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

A processor.rs . 7

A.1 Forking SPL TokenProgramWithNoCustomChanges [MEDIUM] . . 7

A.2 Missing Validation In TheNumberOf Signers [LOW] 8

A.3 Missing ValidationOn TheState Of TheDelegatedAccount [LOW] . . 9

A.4 Incorrect Result Due ToU64Convertion [LOW] 9

4 Best Practices 11

BP.1 Redundant Functions In The process_initialize_mint 11

BP.2 Duplicate Code In The ValidationOf The IndexOf Signers 13

5 Static Analysis 14

5.1 Soteria . 14

5.2 Cargo Tarpaulin . 14

5.3 Tests . 15

6 Conclusion 18

3

1 Introduction
Cleandefi engaged ShellBoxes to conduct a security assessment on the

Cleandefi beginning on June 9th, 2022 and ending July 5th, 2022. In this report, we detail

our methodical approach to evaluate potential security issues associated with the

implementation of smart contracts, by exposing possible semantic discrepancies

between the smart contract code and design document, and by recommending additional

ideas to optimize the existing code. Our findings indicate that the current version of smart

contracts can still be enhanced further due to the presence of many security and

performance concerns.

This document summarizes the findings of our audit.

1.1 About Cleandefi

TheBest SwapRateswith their innovative AMMscanningmodule.

CleanDefi is an innovative dесеntrаlizеd AMM, Incubator, Yiеld Farming & NFT Launch

ѕоlutiоn gоvеrnеd bу thе соmmunitу and powered bу SOLANA.

Issuer Cleandefi

Website https://cleandefi.finance

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment

technique that considers both the LIKELIHOOD and IMPACT of a security incident. This

framework is effective at conveying the features and consequences of technological

vulnerabilities.

Its quantitative paradigm enables repeatable and precise measurement, while also

revealing the underlying susceptibility characteristics thatwere used to calculate theRisk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5

indicating the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which

correspond to high, medium, and low, respectively. Severity is determined by probability

and impact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview
2.1 Summary

The following is a synopsis of our conclusions from our analysis of the

Cleandefi implementation. During the first part of our audit, we examine the smart

contract source code and run the codebase via a static code analyzer. The objective here is

to find known coding problems statically and then manually check (reject or confirm)

issues highlighted by the tool. Additionally, we check business logics, system processes,

andDeFi-related componentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 1

medium-severity, 3 low-severity vulnerabilities.

Vulnerabilities Severity Status

Forking SPL TokenProgramWithNoCustomChanges MEDIUM Acknowledged

Missing Validation In TheNumberOf Signers LOW Fixed

Missing ValidationOn TheState Of TheDelegatedAccount LOW Fixed

Incorrect Result Due ToU64Convertion LOW Fixed

6

3 FindingDetails

A processor.rs

A.1 Forking SPL Token Program With No Custom

Changes [MEDIUM]

Description:

SPL tokens are to Solanawhat ERC-20, ERC-721, andERC-1155 tokens are to theEthereum

network. As such, SPL can be seen as the token standard for the Solana blockchain.

However, the SPL token programhave some limitations concerning the implementation of

a custom logic since everyone uses the same deployed token program, the solution to that

is to create a custom program that suits the required custom implementation separated

from the SPL token program. In the case of the audited program, it is a fork of the SPL

token programwithout any custom implementation, whichwill cause losing the support of

the wallets to the standard SPL tokens and deploying a new program that implements

functionalities that are already existing in the standard.

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

It is recommended to create a token in the SPL Token Program using the spl-token CLI, as

there is no need to deploy a new program if the business logic does not require custom

features that cannot be implemented using the spl-token.

Status - Acknowledged

The CleanDeFi team has acknowledged the risk, stating that it is convenient for the

CleanDeFi project development in the future.

7

A.2 Missing Validation In TheNumberOf Signers [LOW]

Description:

In the InitializeMultisig instruction, n is the number of signers and m is the number of

required signers, if m has a value that is greater than n, the Multisig will not be able to

performany action.

Code:

Listing 1: processor.rs

192 let signer_infos = account_info_iter.as_slice();
193 multisig.m = m;
194 multisig.n = signer_infos.len() as u8;
195 if !is_valid_signer_index(multisig.n as usize) {
196 return Err(TokenError::InvalidNumberOfProvidedSigners.into());
197 }

Recommendation:

It is recommended to add a verification in the Multisig initialization tomake sure that the n

thatwill be stored in theMultisig account is higher thanm.

Status - Fixed

The CleanDeFi teamhas fixed the issue by requiring the n that will be stored in theMultisig

account to be higher thanm.

8

A.3 Missing Validation On The State Of The Delegated

Account [LOW]

Description:

Using the process_approve function, a user can delegate a specific amount to be

manipulated by another account, however in this functionwe are only verifying the state of

the source account not the delegate account.

Code:

Listing 2: processor.rs

359 if source_account.is_frozen() {
360 return Err(TokenError::AccountFrozen.into());
361 }

Recommendation:

Consider validating also the delegate account by using the is_frozen function.

Status - Fixed

The CleanDeFi has fixed the issue by adding a condition that makes sure that the delegate

account is not frozen.

A.4 Incorrect Result Due ToU64Convertion [LOW]

Description:

The ui_amount_to_amount function convert theUI representation by taking the ui_amount

and multiply it by 10.pow(decimals), the result is converted to u64. Therefore, by taking an

amount greater than 2.pow(64)/10.pow(9) (if the decimal is 9), the result will be incorrect

due the conversion exceeds 2.pow(64).

9

Code:

Listing 3: processor.rs

21 pub fn ui_amount_to_amount(ui_amount: f64, decimals: u8) -> u64 {
22 (ui_amount * 10_usize.pow(decimals as u32) as f64) as u64}

Recommendation:

Consider returning an u128 or verifying that ui_amount is always less than

2.pow(64)/10.pow(9).

Status - Fixed

TheCleanDeFi teamhas fixed the issue by returning an u128 to avoid precision errors.

10

4 Best Practices

BP.1 Redundant Functions In The

process_initialize_mint
Description:

In the processor module, we found two public functions process_initialize_mint and

process_initialize_mint2 calling the same internal function _process_initialize_mint with

the parameter rent_sysvar_account different. The same remark goes for the

process_initialize_account and the process_initialize_multisig.

Code:

Listing 4: processor.rs (Line 63)

1 //Processes an [InitializeMint](enum.TokenInstruction.html) instruction
2 pub fn process_initialize_mint(
3 accounts: &[AccountInfo],
4 decimals: u8,
5 mint_authority: Pubkey,
6 freeze_authority: COption<Pubkey>,
7) -> ProgramResult {
8 Self::_process_initialize_mint(accounts,decimals,mint_authority,
9 freeze_authority, true)
10 }
11

12 //Processes an [InitializeMint2](enum.TokenInstruction.html) instruction
13 pub fn process_initialize_mint2(
14 accounts: &[AccountInfo],
15 decimals: u8,
16 mint_authority: Pubkey,
17 freeze_authority: COption<Pubkey>,
18) -> ProgramResult {

11

19 Self::_process_initialize_mint(accounts,decimals,mint_authority,
20 freeze_authority, false)
21 }

Listing 5: processor.rs (Line 143)

1 /// Processes an [InitializeAccount](enum.TokenInstruction.html)
2 /// instruction
3 pub fn process_initialize_account(
4 program_id: &Pubkey,
5 accounts: &[AccountInfo],
6) -> ProgramResult {
7 Self::_process_initialize_account(program_id, accounts, None, true)
8 }
9

10 /// Processes an [InitializeAccount2](enum.TokenInstruction.html)
11 ///instruction.
12 pub fn process_initialize_account2(
13 program_id: &Pubkey,
14 accounts: &[AccountInfo],
15 owner: Pubkey,
16) -> ProgramResult {
17 Self::_process_initialize_account(program_id,accounts,Some(&owner),true)
18 }
19

20 /// Processes an [InitializeAccount3](enum.TokenInstruction.html)
21 /// instruction.
22 pub fn process_initialize_account3(
23 program_id: &Pubkey,
24 accounts: &[AccountInfo],
25 owner: Pubkey,
26) -> ProgramResult {
27 Self::_process_initialize_account(program_id,accounts,Some(&owner),false)
28 }

12

Listing 6: processor.rs (Line 211)

1 /// Processes a [InitializeMultisig](enum.TokenInstruction.html)
2 /// instruction.
3 pub fn process_initialize_multisig(accounts: &[AccountInfo], m: u8)
4 -> ProgramResult {
5 Self::_process_initialize_multisig(accounts, m, true)
6 }
7

8 /// Processes a [InitializeMultisig2](enum.TokenInstruction.html)
9 /// instruction.
10 pub fn process_initialize_multisig2(accounts: &[AccountInfo], m: u8)
11 -> ProgramResult {
12 Self::_process_initialize_multisig(accounts, m, false)
13 }

BP.2 Duplicate Code In The Validation Of The Index

Of Signers

Description:

The _process_initialize_multisig takes the length of the signers and verify if it’s between

MIN_SIGNERS and MAX_SIGNERS, however this verification is duplicated two times.

Consider removing the second verification (L198).

Code:

Listing 7: KommunitasProject (Line 195)

1 if !is_valid_signer_index(multisig.n as usize) {
2 return Err(TokenError::InvalidNumberOfProvidedSigners.into());
3 }
4 if !is_valid_signer_index(multisig.m as usize) {
5 return Err(TokenError::InvalidNumberOfRequiredSigners.into());
6 }

13

5 Static Analysis

5.1 Soteria

Description:

Soteria can automatically detect security vulnerabilities in Solana programs by checking

all code paths against common pitfalls.The fundamental idea is to examine the data flow of

each user account supplied to the program and flag it as untrustworthy if its validity is not

properly verified in the program’s execution context.

Results:

Analyzing /program/.coderrect/build/bpfel-unknown-unknown/release/all.ll ...
- �[00m:01s] Loading IR From File
- �[00m:00s] Running Compiler Optimization Passes
EntryPoints:
entrypoint
- �[00m:00s] Running Compiler Optimization Passes
- �[00m:00s] Running Pointer Analysis
- �[00m:00s] Building Static Happens-Before Graph
- �[00m:00s] Detecting Vulnerabilities
detected 0 untrustful accounts in total.
detected 0 unsafe math operations in total.
--------The summary of potential vulnerabilities in all.ll--------

No vulnerabilities detected

5.2 Cargo Tarpaulin

Results:

INFO cargo_tarpaulin::report: Coverage Results:
|| Tested/Total Lines:
|| src/entrypoint.rs: 0/5
|| src/error.rs: 2/4

14

|| src/instruction.rs: 652/713
|| src/lib.rs: 34/36
|| src/native_mint.rs: 7/7
|| src/processor.rs: 2836/2892
|| src/state.rs: 236/236
|| tests/action.rs: 0/5
||
96.64% coverage, 3767/3898 lines covered

5.3 Tests

Results:

running 47 tests
test native_mint::test_id ... ok
test instruction::test::test_instruction_packing ... ok
test native_mint::tests::test_decimals ... ok
test processor::tests::test_amount_to_ui_amount ... ok
test processor::tests::test_approve ... ok
test processor::tests::test_approve_dups ... ok
test processor::tests::test_burn ... ok
test processor::tests::test_burn_dups ... ok
test processor::tests::test_close_account ... ok
test processor::tests::test_close_authority_close_account_dups ... ok
test processor::tests::test_error_unwrap - should panic ... ok
test processor::tests::test_freeze_account ... ok
test processor::tests::test_freeze_thaw_dups ... ok
test processor::tests::test_frozen ... ok
test processor::tests::test_get_account_data_size ... ok
test processor::tests::test_burn_and_close_system_and_incinerator_tokens
... ok
test processor::tests::test_initialize_account2_and_3 ... ok
test processor::tests::test_initialize_immutable_owner ... ok
test processor::tests::test_initialize_mint2 ... ok
test processor::tests::test_initialize_mint ... ok

15

test processor::tests::test_initialize_mint_account ... ok
test processor::tests::test_mint_to ... ok
test processor::tests::test_mintable_token_with_zero_supply ... ok
test processor::tests::test_mint_to_dups ... ok
test processor::tests::test_multisig ... ok
test processor::tests::test_overflow ... ok
test processor::tests::test_native_token ... ok
test processor::tests::test_owner_close_account_dups ... ok
test processor::tests::test_pack_unpack ... ok
test processor::tests::test_print_error ... ok
test processor::tests::test_self_transfer ... ok
test processor::tests::test_set_authority_dups ... ok
test processor::tests::test_set_authority ... ok
test processor::tests::test_sync_native ... ok
test processor::tests::test_transfer ... ok
test processor::tests::test_transfer_dups ... ok
test processor::tests::test_ui_amount_to_amount ... ok
test processor::tests::test_unique_account_sizes ... ok
test processor::tests::test_validate_owner ... ok
test state::tests::test_account_state ... ok
test state::tests::test_mint_unpack_from_slice ... ok
test state::tests::test_multisig_unpack_from_slice ... ok
test state::tests::test_unpack_coption_key ... ok
test state::tests::test_unpack_coption_u64 ... ok
test state::tests::test_unpack_token_mint ... ok
test state::tests::test_unpack_token_owner ... ok
test test_id ... ok
test result: ok. 47 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.01s

Running tests/action.rs (target/debug/deps/action-aa7da80bc993f1d6)
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

Running tests/assert_instruction_count.rs (target/debug/deps/assert_

16

instruction_count-c329597181c539d9)
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

Doc-tests spl-token
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

17

6 Conclusion
In this audit, we examined the design and implementation of Cleandefi contract and

discovered several issues of varying severity. Cleandefi teamaddressed 3 issues raised in

the initial report and implemented the necessary fixes, while acknowledging the issue ‘A1‘.

Shellboxes’ auditors advised Cleandefi Team to maintain a high level of vigilance and to

keep this issue inmind in order to avoid any future complications.

18

For a Contract Audit, contact us at contact@shellboxes.com

19

mailto:contact@shellboxes.com

	Introduction
	About Cleandefi
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	processor.rs
	Forking SPL Token Program With No Custom Changes [MEDIUM]
	Missing Validation In The Number Of Signers [LOW]
	Missing Validation On The State Of The Delegated Account [LOW]
	Incorrect Result Due To U64 Convertion [LOW]

	Best Practices
	Redundant Functions In The process_initialize_mint
	Duplicate Code In The Validation Of The Index Of Signers

	Static Analysis
	Soteria
	Cargo Tarpaulin
	Tests

	Conclusion

