
Okratech
Token

Smart Contract Security Audit

Prepared by ShellBoxes

Jan 14th, 2022 - Jan 18th, 2022

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Okratech

Version 1.0

Classification Public

Scope

TheOkratech Token Contract in theOkratech Token Repository

Contract Name Contract Address

Ortcoin Contract 0x9e711221b34a2d4b8f552bd5f4a6c4e7934920f7

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

mailto:contact@shellboxes.com

Contents
1 Introduction 4

1.1 About Okratech . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

A Okratech.sol . 7

A.1 ApproveRace [LOW] . 7

A.2 RenounceOwnership [LOW] . 8

4 Static Analysis (Slither) 9

5 Conclusion 12

3

1 Introduction
OkratechengagedShellBoxestoconductasecurityassessmentontheOkratechToken be-

ginning on Jan 14th, 2022 and ending Jan 18th, 2022. In this report, we detail ourmethodical

approachtoevaluatepotentialsecurity issuesassociatedwiththe implementationofsmart

contracts, by exposing possible semantic discrepancies between the smart contract code

and design document, and by recommending additional ideas to optimize the existing code.

Our findings indicate that the current version of smart contracts can still be enhanced fur-

ther due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Okratech

Okratech is a DeFi powered and self–governing DAO designed to act as a revolutionary

decentralized and broad platform for freelancing. Not only does it provide the highest

quality experience for B2B (Business to Business) but also for P2P (Peer to Peer)

interactions. Through its intuitive user interface, Ort will match skilled freelancers for job

postings across the globe. The highlight of the platform is the absence of transaction fees.

Ort’s innovative model assures professional mediation ensures both the employer and

employee,with the highest quality ofwork.

Issuer Okratech

Website https://ortcoin.org

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

4

https://ortcoin.org

contracts and can quickly detect code that does not complywith security best practices.

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview
2.1 Summary

The following is a synopsis of our conclusions fromour analysis of theOkratech Token im-

plementation. During the first part of ouraudit,weexamine thesmart contract sourcecode

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 2

low-severity vulnerabilities.

Vulnerabilities Severity Status

ApproveRace LOW Acknowledged

RenounceOwnership LOW Acknowledged

6

3 FindingDetails

A Okratech.sol

A.1 ApproveRace [LOW]

Description:

The standard ERC20 implementation contains a widely-known racing condition in its ap-

prove function, wherein a spender is able to witness the token owner broadcast a trans-

action altering their approval and quickly sign and broadcast a transaction using transfer-

From tomove the current approved amount from the owner’s balance to the spender. If the

spender’s transaction is validated before the owner’s, the spender will be able to get both

approval amounts of both transactions.

Code:

Listing 1: Ortcoin.sol

434 function approve(address spender, uint256 amount) external returns (bool
,!) {

435 _approve(_msgSender(), spender, amount);
436 return true;
437 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

Use the approve function for the first approval, then use the increaseAllowance and de-

creaseAllowance functions in order to override the allowance value.

7

Status -Acknowledged

TheOkratech teamhas acknowledged the risk, stating that the issue is not likely to occur.

A.2 RenounceOwnership [LOW]

Description:

Typically, the contract’s owner is the account that deploys the contract. As a result, the

owner is able to perform certain privileged activities on his behalf. The

renounceOwnership function is used in smart contracts to renounce ownership.

Otherwise, if the contract’s ownership has not been transferred previously, it will never

have anOwner,which can cause a denial of service.

Code:

Listing 2: Ortcoin.sol

343 contract BEP20Token is Context, IBEP20, Ownable {
344 using SafeMath for uint256

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

It isadvised that theOwnercannot call renounceOwnershipwithout first transferringown-

ership to a different address. Additionally, if a multi-signature wallet is utilized, executing

the renounceOwnershipmethod for twoormore users should be confirmed. Alternatively,

the renounce ownership functionality can be disabled by overriding it.

Status - Acknowledged

The Okratech team has acknowledged the risk, stating that the issue is not likely to occur,

and the teamwillmake sure to avoid this special casewhen changing the ownership.

8

4 Static Analysis (Slither)
Description:

ShellBoxes expanded the coverage of the specific contract areas using automated test-

ingmethodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be

usedto testmathematical relationshipsbetweenSolidity instancesstaticallyandvariables

thatallowfor thedetectionoferrorsor inconsistentusageof thecontracts’APIs throughout

the entire codebase.

Results:

BEP20Token.allowance(address,address).owner (Okratech.sol#423) shadows:
- Ownable.owner() (Okratech.sol#301-303) (function)

BEP20Token._approve(address,address,uint256).owner (Okratech.sol#578)
,! shadows:

- Ownable.owner() (Okratech.sol#301-303) (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #local-variable-shadowing

BEP20Token._burn(address,uint256) (Okratech.sol#557-563) is never used
,! and should be removed

BEP20Token._burnFrom(address,uint256) (Okratech.sol#592-595) is never
,! used and should be removed

Context._msgData() (Okratech.sol#117-120) is never used and should be
,! removed

SafeMath.div(uint256,uint256) (Okratech.sol#216-218) is never used and
,! should be removed

SafeMath.div(uint256,uint256,string) (Okratech.sol#231-238) is never
,! used and should be removed

SafeMath.mod(uint256,uint256) (Okratech.sol#251-253) is never used and
,! should be removed

9

SafeMath.mod(uint256,uint256,string) (Okratech.sol#266-269) is never
,! used and should be removed

SafeMath.mul(uint256,uint256) (Okratech.sol#191-203) is never used and
,! should be removed

SafeMath.sub(uint256,uint256) (Okratech.sol#162-164) is never used and
,! should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #dead-code

Redundant expression "this (Okratech.sol#118)" inContext (Okratech.sol
,! #108-121)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #redundant-statements

BEP20Token.constructor() (Okratech.sol#355-363) uses literals with too
,! many digits:

- _totalSupply = 900000000 * 10 ** 8 (Okratech.sol#359)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #too-many-digits

renounceOwnership() should be declared external:
- Ownable.renounceOwnership() (Okratech.sol#320-323)

transferOwnership(address) should be declared external:
- Ownable.transferOwnership(address) (Okratech.sol#329-331)

increaseAllowance(address,uint256) should be declared external:
- BEP20Token.increaseAllowance(address,uint256) (Okratech.sol

,! #469-472)
decreaseAllowance(address,uint256) should be declared external:

- BEP20Token.decreaseAllowance(address,uint256) (Okratech.sol
,! #488-491)

mint(uint256) should be declared external:
- BEP20Token.mint(uint256) (Okratech.sol#501-504)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #public-function-that-could-be-declared-external

10

Okratech.sol analyzed (5 contracts with 78 detectors), 18 result(s)
,! found

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

11

5 Conclusion
In this audit, we examined the design and implementation of Okratech Token contracts and

discovered several issues of low severity. Okratech teamhas acknowledged all the issues

raised in the initial report. Shellboxes’ auditors advised Okratech Team to maintain a high

level of vigilance and to keep those findings in mind in order to avoid any future complica-

tions.

12

For a Contract Audit, contact us at contact@shellboxes.com

13

mailto:contact@shellboxes.com

	Introduction
	About Okratech
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Okratech.sol
	Approve Race [LOW]
	Renounce Ownership [LOW]

	Static Analysis (Slither)
	Conclusion

