SHELLBOXE

AtomPad

Smart Contract Security Audit

Prepared by ShellBoxes
April10th, 2023 - April13th, 2023
Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client AtomPad
Version 1.0

Classification Public
Scope

Contract Name Contract Address

Presalelnternal

0x97363b2c94552246912209CDf77241D0b1AFfFdB

Re-Audit

Contract Name

Contract Address

Presalelnternal

0xe5C2A47545F1f7B2e588B66d9E7cEA33883e01fA

Contacts
COMPANY EMAIL
ShellBoxes contact@shellboxes.com

https://bscscan.com/address/0x97363b2c94552246912209CDf77241D0b1AFfFdB#code
https://bscscan.com/address/0xe5C2A47545F1f7B2e588B66d9E7cEA33883e01fA#code
mailto:contact@shellboxes.com

Contents

1 Introduction
11 AboutAtomPad
1.2 Approach &Methodology
121 RiskMethodology

2 Findings Overview
YA SUMMaArY e e e
2.2 KeyFindings

3 Finding Details
SHB.1 Rounding ErrorInThe Swapped TokenAmount
SHB.2 LostPrecision Due To A Division Before Multiplication
SHB.3 Mismatch In Allocation Calculation Between getUserAllocated And _swap
Functions
SHB.4 The ContractIs Not Guaranteed To Have Funds For Vesting Payments
SHB.5 Potential Vesting Disruption InreturnWantTokens Function
SHB.6 Potential Vesting Disruption With Setter Functions
SHB.7 CentralizationRisk
SHB.8 UncheckedTransferCalls
SHB.9 Missing Value and Address Verification
SHB.10 Renounce OwnershipRisk

4 BestPractices
BP.1 RemoveUnnecessaryChecks
BP.2 UsePre-increment(i.e, ++i)inforLoops
BP.3 Use Custom Solidity Errors with if and revert Instead of require Statements

5 Tests
6 Conclusion

7 ScopeFiles
7.1 Audit . . .
1.2 Re-Audit e

o O o1 o1

~N 3

30
30
31
Ky

33

34

8 Disclaimer

36

1 Introduction

AtomPad engaged ShellBoxes to conduct a security assessment on the AtomPad begin-
ning on April 10™", 2023 and ending April 13, 2023. In this report, we detail our methodical
approachto evaluate potential securityissues associated withthe implementation of smart
contracts, by exposing possible semantic discrepancies between the smart contract code
and desigh document, and by recommending additional ideas to optimize the existing code.
Our findings indicate that the current version of smart contracts can still be enhanced fur-
ther due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About AtomPad

AtomPad is a multichain launchpad, focused on secure and faultless project launches,
which grants token stakers exclusive access to pre-sales of projects which have been
carefully selected for their launchpad. AtomPad is deployed on Binance Smart Chain and
provides a platform with multichain support.

Issuer AtomPad

Website https://www.atompad.io
Type Solidity Smart Contract
Documentation AtomPad Gitbook docs
Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

https://www.atompad.io
https://atompad.gitbook.io/atompad/whitepaper/what-is-atompad

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-

pact and is categorized into four levels, namely Critical, High, Medium, and Low.

Impact

High
Medium

Critical

Low

High Medium Low

Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the AtomPad imple-
mentation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include , 2
high-severity, 5 medium-severity, 3 low-severity vulnerabilities.

Vulnerabilities Severity | Status

SHB.1. Rounding Error In The Swapped Token Amount Fixed

SHB.2. Lost Precision Due To A Division Before Multiplication Fixed

SHB.3. Mismatch In Allocation Calculation Between getUserAl- Fixed

located And _swap Functions

SHB.4. The Contractls Not Guaranteed To Have Funds For Vest-
ing Payments

Acknowledged

SHB.5. Potential Vesting DisruptionIn returnWantTokens Func- Acknowledged

tion

SHB.6. Potential Vesting Disruption With Setter Functions Acknowledged

SHB.7. Centralization Risk Acknowledged

SHB.8. Unchecked Transfer Calls Fixed

SHB.9. Missing Value and Address Verification

SHB.10. Renounce Ownership Risk

Partially Fixed

Acknowledged

3 Finding Details

SHB.1 Rounding Error In The Swapped Token Amount

- Severity: [HIGH - Likelihood: 3

- Status: Fixed - Impact: 2

The getTokenAmount function calculates the token amount based on the _amount, iDeci-
mals, and wDecimals values. However, there is a rounding error in the returned value that
may cause a loss of tokens for the user.

The getTokenAmount function has arounding errorinits calculation, which canleadto a
loss of tokens for the user, potentially up to 108~ wP¢cimals tokens whenever _amount * rate

is lower than 10'® or _amount * rate % 10'® is different from zero.

SHB.1.1: PresaleBase.sol

s function _swap(

226 address from,

227 uint256 _amount,

228 uint256 _perc,

229 uint256 _iDecimals

2) private {

231 uint256 _allocation = (hardCap * _perc);

232

233 if (_iDecimals > 6)

234 _allocation = _allocation * (10 *x (_iDecimals - 6));

235 if (_iDecimals < 6) _allocation = _allocation / (10 ** (_iDecimals))
= ;

236

237 uint256 _swapped = swaps[_from];

238

239 uint256 _remaining = _allocation - _swapped;

240

241 require(_remaining >= _amount, "Presale: Insufficient allocation");
242

243 swaps[_from] += _amount;

244

245 claims[_from] .reserved += getTokenAmount(_amount) ;
246

247 swapTotal += _amount;

248

249 emit Swapped(msg.sender, _amount);

250 }

SHB.1.2: PresaleBase.sol

7 function getTokenAmount(uint256 _amount) public view returns (uint256) {

158 uint256 iDecimals = investToken.decimals;
159 uint256 wDecimals = wantToken.decimals;

160

161 if (iDecimals !'= wDecimals) {

162 _amount = _amount / 10 ** (iDecimals);
163 _amount = _amount * 10 ** (wDecimals);
164 }

165

166 return (_amount * rate) / (10 ** 18);
61}

To addressthisissue, consider requiringthe _amount *rate % 10'® to be equal to zero before
performing the swap.

10

The AtomPad team resolved the issue by adding a require statement to prevent rounding

errors.

SHB.1.3: PresaleBase.sol

s function swap(

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

uint256 _amount

external
nonReentrant
whenNotPaused
swapEnabled
onProgress

returns (bool)

uint256 _perc = allocPercentageOf (msg.sender);

uint256 _swapTotalAfter = swapTotal + _amount;

Token memory _investToken = investToken;

require(_perc > 0, "Presale: No allocation");

require(

_swapTotalAfter <= hardCap * (10 ** (_investToken.decimals)),

"Presale: Hard cap reached"

¥
require(

(_amount * rate) % (10 ** 18) == 0,

"Presale: Swap not allowed due to potential rounding errors."
)

1

SHB.2 LostPrecision Due To A Division Before Multiplication

- Severity: [HIGH - Likelihood: 3

- Status: Fixed « Impact: 2

The getTokenAmount function performs a division operation before multiplication, which

may result in significant precision loss, leading to inaccuracies in the calculated token

amounts.

In the getTokenAmount function, the division operation is performed prior to multipli-

cation when adjusting the _amount value based on iDecimals and wDecimals. This order-

ing can cause significant precision loss, negatively affecting the accuracy of the calculated

token amounts.

SHB.2.1: PresaleBase.sol

157

158

159

160

161

162

163

164

165

166

167

function getTokenAmount(uint256 _amount) public view returns (uint256) {

uint256 iDecimals = investToken.decimals;

uint256 wDecimals = wantToken.decimals;

if (iDecimals != wDecimals) {

_amount = _amount / 10 ** (iDecimals);

_amount = _amount * 10 ** (wDecimals);

return (_amount * rate) / (10 ** 18);

12

To resolve this issue, consider reordering the operations by performing the multiplication
first, followed by the division. This approach will help to minimize precision loss and main-
tainthe accuracy of the token amount calculations. Theissue can be resolved by calculating
the _amount using the following code:

SHB.2.2: PresaleBase.sol

_amount = _amount * 10 ** (wDecimals-iDecimals);

The AtomPadteamresolvedtheissue by performingthe multiplication operation before the
division.

SHB.2.3: PresaleBase.sol

s function getTokenAmount (

126 uint256 investAmount

2) public view returns (uint256) {

128 uint256 iDecimals = investToken.decimals;

129 uint256 wDecimals = wantToken.decimals;

130

131 //rate: 18 decimals

132 uint256 wantAmount = investAmount * rate;

133

134 if (iDecimals < wDecimals) {

135 uint256 decimalDifference = 10 ** (wDecimals - iDecimals);
136 wantAmount = wantAmount * decimalDifference;

137 }

138

139 if (iDecimals > wDecimals) {

140 uint256 decimalDifference = 10 ** (iDecimals - wDecimals);
1 wantAmount = wantAmount / decimalDifference;

142 }

143

" return wantAmount / (10 ** 18);

13

145 }

SHB.3 Mismatch In Allocation Calculation Between getUser-

Allocated And _swap Functions

- Severity: _ - Likelihood: 2

- Status: Fixed « Impact: 2

Thereis aninconsistency in the allocation calculation logic between the getUserAllocated
functionandthe _swap function. The getUserAllocated function calculates the basic alloca-
tionusing hardCap *_perc, andthenit adjusts the allocation based on _iDecimals. However,
inthe _swap function, the allocation adjustment logic differs and includes a case for _iDec-
imals < 6.

SHB.3.1: PresaleBase.sol

ws function getUserAllocated(address _wallet) external view returns (

— uint256) {

195 uint256 _iDecimals = investToken.decimals;

19 /// retrieve absolute amount of remaining allocation for this;

197 uint256 _perc = allocPercentageOf(_wallet);

198

199 /// retrieve basic allocation

200 uint266 _allocate = (hardCap * _perc);

201

202 if (_iDecimals > 6) _allocate = _allocate * (10 **x (_iDecimals - 6))
—

203

14

204

205

206

207

208

209

/// check to avoid < O error

if (_allocate <= swaps[_wallet]) return 0;

/// returns remaining allocation

return (_allocate - swaps[_wallet]);

SHB.3.2: PresaleBase.sol

2s function _swap(

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

address _from,
uint256 _amount,
uint256 _perc,

uint256 _iDecimals

) private {

uint256 _allocation = (hardCap * _perc);

if (_iDecimals > 6)

_allocation = _allocation * (10 ** (_iDecimals - 6));
if (_iDecimals < 6) _allocation = _allocation / (10 ** (_iDecimals))
—

uint256 _swapped = swaps[_from];

uint256 _remaining = _allocation - _swapped;

require(_remaining >= _amount, "Presale: Insufficient allocation");
swaps[_from] += _amount;

claims[_from] .reserved += getTokenAmount(_amount) ;

swapTotal += _amount;

emit Swapped(msg.sender, _amount);

15

250 }

To fix this issue, ensure that both the getUserAllocated and _swap functions have consis-
tent calculation logic for determining the allocation. This will prevent discrepancies in the
allocated amounts and ensure accurate allocation values across the smart contract.

The AtomPad team resolved the issue by removing the _iDecimals < 6 case in the _swap
function.

SHB.3.3: PresaleBase.sol

w2 function _swap(

193 address _from,

194 uint256 _amount,
195 uint256 _perc,

196 uint256 _iDecimals

w) private {

198 uint256 _allocation = (hardCap * _perc);

199

200 if (_iDecimals > 6)

201 _allocation = _allocation * (10 ** (_iDecimals - 6));
202

203 uint256 _swapped = swaps[_from];

SHB.4 The Contract Is Not Guaranteed To Have Funds For

Vesting Payments

- Severity: [IEDIEN - Likelihood: 1

- Status: Acknowledged - Impact: 3

[

The smart contract does not guarantee the availability of sufficient funds in the wantToken
to fulfill vested amounts when users claim their tokens.

The currentimplementation of the smart contractdoes not ensure thatthereare enough
fundsinthe wantToken balance to coverthe vested amounts when users claim their tokens.
Thismayresultinusersbeingunable toreceive their full vested token amounts upon claim-

ing.

SHB.4.1: PresaleBase.sol

2w /// extra check2 to avoid overspending

223 if (claims[_from].claimed > claims[from].reserved) {

284 // we are overspending here!!! revert

285 claims[from].claimed -= _amount;

2 } else {

287 // transfer tokens to the investor

288 TIERC20 (wantToken. token) .safeTransfer (_from, _amount);
289 }

Toaddressthisissue, considerimplementing safeguards withinthe smart contractto guar-
antee that the wantToken balance is sufficient to cover all vested amounts. This may in-
clude checks or restrictions during the token allocation process, ensuring that tokens are
reserved for vesting payouts and preventing any withdrawals that would cause an insuffi-
cient balance for vested claims.

The AtomPad team acknowledged the risk stating that they support projects even at seed
sale stages, and at that stage projects’ tokens/coins are still under audit process. There-
fore, the processis not automated to maintain flexibility.

17

SHB.5 Potential Vesting Disruption In returnWantTokens

Function

. Severity: |IEBIN . Likelihood: 1

- Status: Acknowledged - Impact: 3

The returnWantTokens function allows the contract owner to withdraw wantToken
balances, which may disrupt the vesting process if a portion or all of the vested amounts
are withdrawn.

The current implementation of the returnWantTokens function permits the contract
owner to withdraw the entire wantToken balance held in the smart contract without
considering the vested amounts reserved for users. This withdrawal can potentially
disrupt the vesting process, leaving users unable to claim their vested tokens.

SHB.5.1: PresaleBase.sol

s function returnWantTokens() external onlyOwner {

320 IERC20 _wantToken = IERC20(wantToken.token);
321 //

22 // do some checks

323 require(

324 _wantToken.balanceOf (address(this)) > O,
325 "Presale: Nothing to return"

326);

327

328 uint256 _remaining = _wantToken.balanceOf (address(this));
329

330 _wantToken. transfer(msg.sender, _remaining);

331

18

332 /// set total supply

333 tokenSupply = O;

334

335 emit WantTokensReturned(msg.sender, _remaining);
336 }

To mitigate this issue, consider implementing a mechanism within the returnWantTokens
function to ensure that any withdrawal by the contract owner does not affect the vested
amountsreserved for users. This can be achieved by tracking the total vested balance sep-
arately and only allowing the contract owner to withdraw amounts in excess of the vested
balance. This approach will protect the vested amounts and ensure users can successfully
claim their tokens during the vesting period.

The AtomPad team acknowledged the issue stating that the launchpad is not automated, so
they get permission to return want tokens even in the cases where projects try to do mali-
cious activities to give users tokens, and moderate settings.

SHB.6 Potential Vesting Disruption With Setter Functions

- Severity: _ - Likelihood: 1

- Status: Acknowledged - Impact:3

The setVest, setlnvestToken, and setWantToken functions can be called by the contract
owner when a vesting is active, potentially disrupting the vesting process.

The currentimplementation ofthe setVest, setinvestToken, and setWantToken functions
allows the contract owner to modify the vesting parameters, invest token, and want token,

19

respectively, without any restrictions during an active vesting period. This can resultin the

vesting process being disrupted, negatively affecting users participating in the vesting.

SHB.6.1: PresaleBase.sol

s function setVest(Vest memory _vest) external onlyOwner {

396

397

398

399

400

401

402

vest = _vest;
vest.duration.end =
_vest.duration.start +

(_vest.durationPerVest * _vest.noOfVests);

emit VestUpdated(msg.sender, _vest);

SHB.6.2: PresaleBase.sol

m function setInvestToken(Token memory _investToken) external onlyOwner {

412

413

414

415

416

417

418

419

420

421

422

/// check this is a valid address
require(
_investToken.token !'= address(0),

"Presale: Invalid token address"

)

require(_investToken.decimals != 0, "Presale: Invalid token decimals
<_>||).

investToken = _investToken;

emit InvestTokenUpdated(msg.sender, _investToken.token);

SHB.6.3: PresaleBase.sol

w4 function setWantToken(Token memory _wantToken) external onlyOwner {

425

426

/// check this is a valid address

require(

20

w1 _wantToken.token != address(0),

428 "Presale: Invalid token address"

429);

430 require(_wantToken.decimals != 0, "Presale: Invalid token decimals")
—

431

432 wantToken = _wantToken;

433

434 emit WantTokenUpdated(msg.sender, _wantToken.token);

w5}

Topreventthisissue, considerimplementing checks withinthese setter functionstoensure
that they can only be called when no active vesting is taking place. By adding such checks,
the smart contract can prevent unwanted modifications to the vesting parameters or to-
kens and protect the vesting process for users.

The AtomPad team acknowledged the issue, stating that this feature is there to allow
projects toissue a new token when they find a security issue in their token.

SHB.7 Centralization Risk

- Severity: |[HIEBIEN - Likelihood: 1

- Status: Acknowledged - Impact:3

The contracthasalot of owner-controlled functions that can modify contract behavior, such
as changing the rate, hard cap, and vesting schedule. This introduces a level of centraliza-
tion that might lead to misuse or abuse of power.

21

Allfunctions with the onlyOwner modifier.

To address this issue, it's important to implement more decentralized and democratic ap-
proaches to decision-making, such as multi-signature control or community governance
models that distribute power more evenly.

The AtomPad team acknowledged the risk stating that the launchpad does not claim to be
permissionless and should be trusted by its community. However, the user should be
aware of the risk associated with trusting a third party that has centralized control over
the project.

SHB.8 Unchecked Transfer Calls

- Severity: [EOW - Likelihood: 1

. Status: Fixed - Impact: 2

The smart contract contains transfer calls where the returnvalue is not checked to confirm
if the transfer was successful, potentially leading to unexpected behavior or loss of funds.

The current implementation of the smart contract includes transfer calls without veri-
fyingthereturnvaluetoensurethatthe transfer was successful. Failingto checkthe return
value canresultin unexpected behavior if the transfer fails silently without throwing an ex-
ception.

22

sw function depositTokens(uint256 _amount) external onlyOwner {

302 Token memory _token = wantToken;

303 IERC20 _wantToken = IERC20(_token.token);

304 /// @dev set minimum amount of tokens for this presale
305 require(

306 _amount >= (10 * 10 ** _token.decimals),

307 "Presale: Min amount is 10 tokens"

308)

309 /// transfer x amount of wantToken to presale

310 _wantToken. transferFrom(msg.sender, address(this), _amount);
an

312 /// set total supply

313 tokenSupply += _amount;

314

ats // rate = (tokenSupply / hardCap);

316 emit Deposited(msg.sender, _amount);

U

s function returnWantTokens() external onlyOwner {

320 IERC20 _wantToken = IERC20(wantToken.token) ;
321 //

22 // do some checks

323 require(

324 _wantToken.balanceOf (address(this)) > 0,
325 "Presale: Nothing to return"

326)

327

328 uint256 _remaining = _wantToken.balanceOf (address(this));
329

330 _wantToken.transfer(msg.sender, _remaining);
3l

332 /// set total supply

23

333 tokenSupply = O;
334

335 emit WantTokensReturned(msg.sender, _remaining);

336 }

SHB.8.3: PresaleBase.sol

us function forwardInvestTokens() external onlyOwner {

339 IERC20 _investToken = IERC20(investToken.token) ;
340 //

341 /// do some checks

342 require(

343 _investToken.balance0Of (address(this)) > 0,

344 "Presale: Not enough tokens"

345);

346

347 uint256 _invested = _investToken.balanceOf (address(this));
348

349 _investToken.transfer(msg.sender, _invested);

350

351 emit InvestTokensForwarded(msg.sender, _invested);
2}

To address this issue, consider updating the transfer calls to include a check for the return
value. This canbe done by either wrapping the transfer calls in arequire statement or using
the SafeERC20 library that ensures the transferis successful and reverts the transaction if
the transfer fails. This approach will help guarantee that transfers are completed success-
fully and prevent potential issues resulting from unchecked transfer calls.

The AtomPad team resolved the issue by using the SafeERC20 function to perform trans-
fers.

24

SHB.? Missing Value and Address Verification

- Severity: [EOW - Likelihood: 1

- Status: Partially Fixed - Impact: 2

The constructor and the setters for the PresaleBase contract are missing value and ad-
dressverification checks for their arguments, which may lead to unintended consequences
or vulnerabilities.

The constructor and the setters for the PresaleBase contract currently do not include
any validation checks for the provided values and addresses of the input arguments, such
as _metadata, _rate, _hardCap, _investToken, _wantToken, _saleDuration, and _vest. As a
result, this lack of validation may lead to unintended consequences or vulnerabilities within
the contract.

SHB.9.1: PresaleBase.sol

% constructor(

47 Metadata memory _metadata,
48 uint256 _rate,

49 uint256 _hardCap,

50 Token memory _investToken,
51 Token memory _wantToken,
52 Duration memory _saleDuration,
53 Vest memory _vest

s) {

55 metadata = _metadata;

56 vest = _vest;

57 rate = _rate;

58 hardCap = _hardCap;

25

59 duration = _saleDuration;

60 investToken = _investToken;

61 wantToken = _wantToken;

62 swapOn = true;

63 fcfsPercentage = 100;

64 vest.duration.end =

65 _vest.duration.start +

66 (_vest.durationPerVest * _vest.noOfVests);
o}

s function setHardCap(uint256 _cap) external onlyOwner {

369 hardCap = _cap;

370

am emit HardCapUpdated(msg.sender, _cap);
372 }

s function setRate(uint256 _rate) external onlyOwner {

375 rate = _rate;

376

am emit RateUpdated(msg.sender, _rate);
378 }

0 function setVestDuration(Duration memory _vestDuration) external

— onlyOwner {

381 vest.duration = _vestDuration;

382 vest.duration.end =

383 vest.duration.start +

384 (vest.durationPerVest * vest.noOfVests);

385

386 emit VestDurationUpdated(msg.sender, _vestDuration);

387 }

9 function setSaleTime(Duration memory _saleDuration) external onlyOwner {

390 duration = _saleDuration;

391

392 emit SaleTimeUpdated(msg.sender, _saleDuration);
393 }

»s function setVest(Vest memory _vest) external onlyOwner {

39 vest = _vest;

397 vest.duration.end =

398 _vest.duration.start +

399 (_vest.durationPerVest * _vest.noOfVests);
400

401 emit VestUpdated(msg.sender, _vest);

402 }

m function setInvestToken(Token memory _investToken) external onlyOwner {

a2 /// check this is a valid address

e require(

m _investToken.token != address(0),

w5 "Presale: Invalid token address"

416)

a7 require(_investToken.decimals != 0, "Presale: Invalid token decimals
— ")

418

9 investToken = _investToken;

420

a1 emit InvestTokenUpdated(msg.sender, _investToken.token);

422 }

s« function setWantToken(Token memory _wantToken) external onlyOwner {

425 /// check this is a valid address

426 require(

427 _wantToken.token != address(0),

428 "Presale: Invalid token address"

429);

430 require(_wantToken.decimals != 0, "Presale: Invalid token decimals")
—

431

432 wantToken = wantToken;

433

434 emit WantTokenUpdated(msg.sender, _wantToken.token);

s}

To address this issue, consider implementing validation checks for these input arguments
within the constructor and the setters. This may include checking for non-zero values for
parameters like _rate and _hardCap, ensuring valid token addresses for _investToken and
_wantToken, and verifying that the duration and vesting parameters are within acceptable
ranges. Adding these validation checks will enhance the robustness and security of the
smart contract.

The AtomPad team partially resolved the issue by implementing input verification in the
setHardCap, setRate, setVestDuration, setSaleTime functions.

SHB.100 Renounce Ownership Risk

- Severity: [EOW - Likelihood: 1

- Status: Acknowledged - Impact: 2

28

The contract inherits from the Ownable pattern, which includes a renounceOwnership
function. This function, if called, can result in the contract having no owner, causing a
Denial of Service (DoS) for the functions with the onlyOwner modifier.

In the current implementation, the contract is ownable, and the renounceOwnership
function allows the contract owner to permanently relinquish ownership. If the ownership
is renounced, the contract will not have an owner, and any function with the onlyOwner
modifier will become unreachable. This scenario could lead to a Denial of Service (DoS) on
these functions, as no one would be able to execute them, effectively rendering them
useless.

SHB.10.1: .sol

6 contract PresaleBase is PresaleStorage, Ownable, Pausable,

— ReentrancyGuard {

To mitigate this risk, consider either removing the renounceOwnership function or replac-
ing it with a safer alternative, such as allowing ownership transfer to a predefined address,
like a multisig wallet or a timelock contract. This approach will maintain control over the
contract and prevent a potential DoS on the functions with the onlyOwner modifier.

The AtomPad team acknowledged the risk stating that the renounceOwnership will be used
after the sale ends.

29

4 Best Practices

BP.1 Remove Unnecessary Checks

The current implementation of the contract contains multiple checks that may not be nec-
essary, asthe conditionstheyvalidate should always hold true. These additionalchecks can
make the code more complex and harder to read, and they can also increase gas costs for
contract interactions.

By removing unnecessary checks, you can make the smart contract code more concise,

easiertounderstand, and more efficientinterms of gas usage. This will contribute toamore
maintainable and reliable smart contract.

The following checks are not necessary, as if the statement is false, the transaction will re-
vert due to the overflow protection.
BP.1.1: PresaleBase.sol

2. require(claims[_from].claimed < _released, "Presale: Nothing to claim");

BP.1.2: PresaleBase.sol

o require(tokenSupply >= _amount, "Presale: Insufficient token supply");

The if statement here is unnecessary as _amount is equal to _released -
claims[_from].claimed, therefore by incrementing the claimed attribute the if statement
will never be reached and it will always execute the transfer.

BP.1.3: PresaleBase.sol

223 if (claims[from].claimed > claims[from].reserved) {
284

285 claims[from].claimed -= _amount;

2 } else {

287

30

288 IERC20 (wantToken.token) .safeTransfer (_from, _amount);

289 }

BP.2 UsePre-increment (i.e., ++i)infor Loops

In Solidity, it is generally recommended to use ++i (pre-increment) instead of i++
(post-increment) in for loops. The reason for this preference is that ++i can be slightly
more efficientin terms of gas usage.

When using ++i, the value of i is incremented before it is used in the loop. In contrast,
when using i++, the value of i is incremented after it is used. In some programming lan-
guages, the post-increment operation may create atemporaryvariable to store the original
value before incrementing it, which can result in additional overhead.

However, it is worth noting that modern Solidity compilers like the one in the solc 0.8.x
series are optimized to handle both ++i and i++ efficiently, so the difference in gas usage
between the two may be negligible. Nonetheless, it is still a good practice to use ++iin for
loops to ensure optimal gas efficiency, especially when working with older compilers orin
cases where the optimizations may not be applied.

BP.2.1: PresaleBase.sol

w3 for (uint256 i = 0; i < _vest.noOfVests; i++) {

184 if (_time > _startVest + (i * (_vest.durationPerVest)))
185 _perc = (_vest.initialVestPercentage +

186 (1 * (_vest.percPerVest)));

w7}

31

BP.3 Use Custom Solidity Errors with if and revert
Instead of require Statements

Inthe currentimplementation, the contract uses require statements for various validation
checks. While this approach works, using custom Solidity errors with if and revert state-
ments can provide more informative and specific error messages. This makes it easier for
developers and users to understand the reasons behind failed transactions, and it allows
for better error handling.

Toimplementthis best practice, consider replacing the existing require statements with
if and revert statements that include custom error messages. Define custom error types
using the error keyword, and provide descriptive names and parameters to convey the na-
ture ofthe error. Then, use these custom error typesin combination with revert statements
in your validation checks.

kY.

5 Tests

Because the project lacks unit, integration, and end-to-end tests, we recommend estab-
lishing numerous testing methods covering multiple scenarios for all features in order to

ensure the correctness of the smart contracts.

33

6 Conclusion

Inthis audit, we examined the design and implementation of AtomPad contract and discov-
ered several issues of varying severity. AtomPad team addressed 4 issues raised in the
initial report and implemented the necessary fixes, while classifying the rest as a risk with
low-probability of occurrence. Shellboxes’ auditors advised AtomPad Team to maintain a
high level of vigilance and to keep those findings in mind in order to avoid any future com-
plications.

34

7 ScopecFiles

7.1 Audit

Files

MD5 Hash

PresaleBase.sol

6124a3085b0a95d43245e4793bbeb292

Presalelnternal.sol

de0910092bf79a732501ec8023e374e5

PresaleStorage.sol

892def72c5abdea2e3df2037%e1fc93a

7.2 Re-Audit

Files

MD5 Hash

PresaleBase.sol

Leh54feeT84d3bf4T3b49fd4669d40cc

Presalelnternal.sol

de0910092bf79a732501ec8023e374e5

PresaleStorage.sol

892def72c5abdea2e3df20379e1fc93a

35

8 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

36

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

37

mailto:contact@shellboxes.com

	Introduction
	About AtomPad
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Rounding Error In The Swapped Token Amount
	Lost Precision Due To A Division Before Multiplication
	Mismatch In Allocation Calculation Between getUserAllocated And _swap Functions
	The Contract Is Not Guaranteed To Have Funds For Vesting Payments
	Potential Vesting Disruption In returnWantTokens Function
	Potential Vesting Disruption With Setter Functions
	Centralization Risk
	Unchecked Transfer Calls
	Missing Value and Address Verification
	Renounce Ownership Risk

	Best Practices
	Remove Unnecessary Checks
	Use Pre-increment (i.e., ++i) in for Loops
	Use Custom Solidity Errors with if and revert Instead of require Statements

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

