SHELLBOXE

Niftopia
Smart Contract Security Audit

Prepared by ShellBoxes
July 22"9 2022 - September 1, 2022
Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Metaverse Trading
Version 10

Classification Public
Scope

The Niftopia Contractin the Niftopia Repository

Repo

Commit Hash

https://github.com/wale-cyberpunk/

niftopia-swaping

e21c7f2dfad461623adfe88160514575d4c8dcce

https://github.com/wale-cyberpunk/
niftopia-swaping/tree/updated-contract

147a91e663a8a94859925815db690dd22cb1b98e

Files

MD5 Hash

Updated Swap contract & project/contract/Swap
Connect.sol

55a48b6616fba794b31acab402268343

Marketing/contract/Marketing.sol

4b2c5b5ad76bbedff47e6699e324420a

https://github.com/wale-cyberpunk/niftopia-swaping
https://github.com/wale-cyberpunk/niftopia-swaping
https://github.com/wale-cyberpunk/niftopia-swaping/tree/updated-contract
https://github.com/wale-cyberpunk/niftopia-swaping/tree/updated-contract

Re-Audit Files

Files

MD5 Hash

Marketing.sol

f3fb2772e5a423837312de8ee836b960

swapContract.sol

f0555bch5abc872b53706278eddeelff

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

mailto:contact@shellboxes.com

Contents

1 Introduction 6
11 AboutMetaverseTrading, 6
1.2 Approach &Methodology 7

121 RiskMethodology, 7

2 Findings Overview 8
21 SUMMArY . . . e e e e 8
22 KeyFindings 8

3 Finding Details 10
A Marketing.sol 10

Al Token Holders Can Drain The Contract [CRITICAL] 10
A2 Reentrancy Leads To The Draining Of The Contract [CRITICAL] 12
A3 TheCollateral Can Be Withdrawn Anytime- 14
A4 WrongendTime Calculation When Purchasing Marketing- .. 15
A5 CentralizationRisk[[lIEDIONN - . . - 16
A6 User Might Purchase A Marketing For Free- 18
AT Missmatch Between The Code And The Error Message- 19
A.8 The marketingFee Variable Is Initialized ButNotImplemented- 20
A9 totalBalance Is Incompatible With The Contract Balance- A
A10 Avoidusing.send() to transfer Ether- 22
A1l Marketing Types And Options Can Be Duplicated- 24
Al12 ForLoopOver Dynamic Array- 25
A13 Usage of block.timestamp- 28
Al4 Floating Pragma- 30
B SwapConnectsol 31
= Reentrancy Leads To The Draining Of The Contract [CRITICAL] 31
B.2 Missing Verification Over valueOne, valueTwo And
swapFee [CRITICAL] KK;
B.3 Anyonels Authorized To Close Any Swaplntent [CRITICAL] 35
B.4 swapFeels Only Utilized When The Swap Is Cancelled- .. 36
B.5 Missing Transfer Verification- 37
B.6 Avoid using .transfer() to transfer Ether- 38

B.7 Missing Address Verification-
B.8 Owner Can Renounce Ownership-

B.9 Floating Pragma-

Best Practices

BP.1 State variablesthat could be declaredimmutable

BP.2 Unnecessary Initializations

BP.3 Public Function Can Be Called External

Static Analysis (Slither)

Conclusion

1 Introduction

Metaverse Trading engaged ShellBoxes to conduct a security assessment on the
Niftopia beginning on July 22", 2022 and ending September 1%, 2022. In this report, we
detail our methodical approach to evaluate potential security issues associated with the
implementation of smart contracts, by exposing possible semantic discrepancies
between the smart contract code and design document, and by recommending additional
ideas to optimize the existing code. Our findings indicate that the current version of smart
contracts can still be enhanced further due to the presence of many security and
performance concerns.
This document summarizes the findings of our audit.

1.1 About Metaverse Trading

Niftopia is a Secondary nft market that gives nft's owner a chance to generate income from
their nft collection and to create a non-crypto currency trading market.
The Niftopia market weill be devided into two specific markets:

— Trading market: Here, users will be able to trade their nft's for other nft's. They can
list their nft's to receive offers or send offers to other users. The offers may include a

pack of nft's in exchange for one or several.

— Marketing market: Here users will be able to list their nft's so companies, artists or
any person can buy the rights to use an nft in marketing campaigns or other promo-

tional or artistic events.

Issuer Metaverse Trading
Website https://niftopia.io/
Type Solidity Smart Contract
Audit Method Whitebox

https://niftopia.io/

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.
— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact andis categorized into four levels, namely Critical, High, Medium, and Low.

5 High Critical
S Medium
£
— Low
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the Niftopia implemen-
tation. During the first part of our audit, we examine the smart contract source code and run
the codebase via a static code analyzer. The objective here is to find known coding prob-
lems statically and then manually check (reject or confirm) issues highlighted by the tool.
Additionally, we check business logics, system processes, and DeFi-related components
manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include
critical-severity, 2 high-severity, 5 medium-severity, 11 low-severity vulnerabilities.

Vulnerabilities Severity | Status

A.l. Token Holders Can Drain The Contract CRITICAL | Fixed
A.2. Reentrancy Leads To The Draining Of The Contract | CRITICAL | Fixed
B.1. Reentrancy Leads To The Draining Of The Contract | CRITICAL | Fixed

B.2. Missing Verification Over valueOne, valueTwo And | CRITICAL | Fixed
swapFee

B.3. Anyone Is Authorized To Close Any Swaplintent CRITICAL | Fixed

A.3.The Collateral Can Be Withdrawn Anytime Fixed
A.4. Wrong endTime Calculation When Purchasing Fixed
Marketing

A.5. Centralization Risk Fixed
A.6. User Might Purchase A Marketing For Free Fixed
A.7. Missmatch BetweenThe Code And The Error Mes- Fixed

sage

B.4. swapFee Is Only Utilized When The Swap Is Can- Fixed

celled

B.5. Missing Transfer Verification

A.8. The marketingFee Variable Is Initialized But Not
Implemented

Fixed

A.9. totalBalance Is Incompatible With The Contract
Balance

Fixed

A.10. Avoid using .send() to transfer Ether

Fixed

A11. Marketing Types And Options Can Be Duplicated

Fixed

A12. For Loop Over Dynamic Array

Fixed

A13. Usage of block.timestamp

Acknowledged

A14. Floating Pragma

Acknowledged

B.6. Avoid using .transfer() to transfer Ether

Fixed

B.7. Missing Address Verification

Fixed

B.8. Owner Can Renounce Ownership

Fixed

B.9. Floating Pragma

Fixed

Fixed

3 Finding Details

A Marketing.sol

A.1 TokenHolders Can Drain The Contract [CRITICAL]

When a marketing is created, anyone can add items to it. When the marketing is purchased,
the holders of the items have the option of withdrawing a portion of the marketing balance
based on the number of items that were added. The token holder can drain the contract, by
burning all of his marketing items, and then add them back, which would reset the with-
drewAmount to zero. That will provide him infinite withdrawals and drain the contract’s

funds.

Listing 1: Marketing.sol

26 function _addItemInMarketing(

an uint256 _marketingld,

218 address collectionAddress,

29 uint256[] memory _tokenIds

20) private {

221 uint256 tokenCount = marketings[marketingId].tokenIds.length;

222 for (uint256 i = 0; i < _tokenIds.length; i++) {

223 marketings[marketingId] .tokenIds.push(_tokenIds[i]);

224 tokenCount++;

225 if (marketingOwnerBalance[_marketingId] [msg.sender] .tokenCount

—==0) {

226 marketingOwnerBalance[_marketingId] [msg.sender] = TokenOwner
—

227 tokenCount: 1,

228 withdrewAmount: O

229 IR

10

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

} else {
marketingOwnerBalance[_marketingId] [msg.sender] .tokenCount++;

}
marketingTokenIdOwner [marketingId] [_tokenIds[i]]

msg.sender;

marketingTokenIdIndex [marketingId] [tokenIds[i]]
if (1s721(_collectionAddress)) {
IERC721(_collectionAddress) .safeTransferFrom(

tokenCount;

msg.sender,
address(this),
_tokenIds[i],

Likelihood -5

Impact-5

When adding new items whenever the tokenCountis zero, itis advised to not reset the with-

drewAmount.

- Fixed

The Niftopiateam has fixed the issue by onlyincrementing tokenCount and not resetting the

withdrewAmount.

1

A.2 Reentrancy Leads To The Draining Of The
Contract [CRITICAL]

The withdrawCollateral and the withdrawMarketingAmount functions are exposed to a
reentrancy attacks, a user can call the withdrawCollateral using a contract, if this contract
contains in its fallback function a call to the same function the user can drain the contract
since the collateralis set to zero after the transfer call, and the same scenario goes for the
withdrawMarketingAmount function since the withdrewAmount is updated after the
transfer call.

Listing 2: Marketing.sol

s function withdrawCollateral(uint256 _marketingId, uint256 _purchaseId)

— external onlyPurchaseCreator(_marketingId, _purchaseId){

392 require(_marketinglId > O && _marketingld < marketingId, "markeing ID
< is not existing");

393 Marketing storage marketing = marketings[marketingId];

394 if (!marketing.isExclusive) {

395 marketings[_marketingId] .currentPurchaseld = 0;

396 }

397 uint256 collateralAMount = marketingPurchases[marketingId] [

— _purchaselId].collateral;

398 bool isSent = payable(msg.sender).send(collateralAMount);

399 require(isSent, "Failed to send Ether");

400 marketingPurchases[_marketingId] [_purchaseId].collateral = O;

401 emit WithdrawCollateral(_marketingld, _purchaseld, collateralAMount,

— uint32(block.timestamp));
402 }

Listing 3: Marketing.sol

ws function withdrawMarketingAmount(uint256 _marketingId) external {

12

406 require(_marketingId > O &% _marketingId < marketingld, "range out

— of marketings");

408 Marketing memory marketing = marketings[marketingId];

409 TokenOwner storage tokenOwner = marketingOwnerBalance[marketingId] [
410 msg.sender

an 1;

2 uint256 withdrawableFees = _withdrawableMarketingFees(marketing,

— tokenOwner) ;

413 bool isSent = payable(msg.sender) .send(withdrawableFees) ;
4 require(isSent, "Failed to send Ether");

415 tokenOwner .withdrewAmount += withdrawableFees;

46 emit WithdrawMarketingAmount(_marketingld, msg.sender,

— withdrawableFees, uint32(block.timestamp));
a1

Likelihood -5
Impact-5

Consider setting the collateralto zero and updating the withdrewAmount before the trans-
fer calls, an additional security layer can be added by using the nonReentrant modifier from
the ReentrancyGuard contract.

- Fixed

The Niftopia team has fixed the issue by using the nonReentrant modifier from the Reen-
trancyGuard contract.

13

A.3 The Collateral Can Be Withdrawn Anytime |[HIGH]

In order for a user to purchase a marketing, he has to pay the marketing.depositValue as a

collateralin addition to the daily price depending on the duration of the purchase. However,

the collateral can be withdrawn instantly using the withdrawCollateral function.

Listing 4: Marketing.sol

s function withdrawCollateral(uint256 _marketingId, uint256 _purchaseId)

306

307

308

309

310

3n

312

313

314

315

316

— external onlyPurchaseCreator(_marketingId, _purchaseId){

require(_marketingId > O && _marketingld < marketingId, "markeing ID
< 1is not existing");

Marketing storage marketing = marketings[_marketingId];

if (!marketing.isExclusive) {
marketings[marketingId].currentPurchaseld = 0;

}

uint256 collateralAMount = marketingPurchases[_marketingId] [
— _purchaseId].collateral;

bool isSent = payable(msg.sender).send(collateralAMount);

require(isSent, "Failed to send Ether");

marketingPurchases[_marketingId] [_purchaseld].collateral = 0;

emit WithdrawCollateral(_marketingld, _purchaseld, collateralAMount,
— uint32(block.timestamp));

Likelihood -5
Impact - 4

14

Consider locking the collateral until the end of the purchase duration to assure its value.

- Fixed

The Niftopia team has fixed the issue by mandating that the marketing expire before allow-
ing withdrawal of the collateral.

A4 Wrong endTime Calculation When Purchasing

Marketing-

The endTime is calculated the wrong way when purchasing a marketing, this attribute
should be calculated using the following formula: marketing.startDate + 86400 * duration
orendTime + 86400 * duration.

Listing 5: Marketing.sol

35 //check end date and duration compaire
306 uint32 endTime = uint32(block.timestamp) ;

s 1f (endTime < marketing.startDate) {

308 endTime = (marketing.startDate + 86400) * _duration;
w9 } else {

310 endTime = (endTime + 86400) * _duration;

m }

Likelihood - 4

Impact - 4

15

Consider using the correct formula to calculate the endTime attribute when purchasing a
marketing.

- Fixed

The Niftopia team has fixed the issue by using the correct formula to calculate the endTime
attribute.

A5 Centralization Risk_

The burnMarketing function allows the marketing creator to burn the marketing without
checking if someone has already a valid purchase. This represents a significant central-
ization risk where the marketing creator can cancel the user’s purchases.

Listing 6: Marketing.sol

9 function burnMarketing(uint256 _marketingld) external
— onlyMarketingCreator (_marketingId) {
360 require(_marketingId > O && _marketingId < marketingId, "range out

— of marketings");

362 Marketing memory marketing = marketings[marketingId];

364 marketings[_marketingld] .isActive = false;

366 if (!marketing.isCollection) {

368 for (uint256 i = 0; i < marketing.tokenIds.length; i++) {
370 IERC721 (marketing.collection) .safeTransferFrom(

[

an address(this),

372 msg.sender,

373 marketing.tokenIds[i],

374 nn

375);

a7 if (marketingOwnerBalance[_marketingId] [msg.sender].

< tokenCount > 0) {

378 marketingOwnerBalance[_marketingId] [msg.sender] .tokenCount
— =

379 }

380 marketingTokenIdOwner [_marketingId] [marketing.tokenIds[i]] =
— address (0x0) ;

381 marketingTokenIdIndex [marketingId] [marketing.tokenIds[i]] =
— 0;

382 delete marketings[marketingId] .tokenIds[i];

383 }

385 }

387 emit ChangeMarketingStatus(_marketingId, false, uint32(block.

— timestamp));

U

Likelihood -3

Impact - 3

Consider preventing the marketing burn operation whenever there is a valid purchase in

the marketing.

17

- Fixed

The issue has been resolved by the Niftopia team by making sure the marketing is not pur-

chased before burningit.

A.6 User Might Purchase A Marketing For Free _

Everytime a marketing purchase is made under the contract, the purchaseMarketing func-

tionis used, which increases the marketing balance by ((marketing.dailyPrice * duration)

*95) /100. Due to atype conversion issue, if the value of marketing.dailyPrice is less than 2,

the user will be permitted to purchase a marketing for free.

Listing 7: Marketing.sol

312

313

315

316

318

319

320

321

322

323

324

325

327

require(endTime <= marketing.endDate, "date range out");

require(msg.value == marketing.dailyPrice * _duration + marketing.

— depositValue, "you have to deposit enough money");

uint256 _collateral = marketing.depositValue;

uint32 purchasedTime = uint32(block.timestamp) ;

Purchase memory purchase = Purchase({
creator: payable(msg.sender),
duration: _duration,
collateral: _collateral,
purchasedTime: purchasedTime,
endTime: endTime

)5

marketing.currentPurchaseId++;

marketingPurchases[_marketingId] [marketing.currentPurchaseId] = purchase

cﬁ ;

18

w28 marketing.balance = marketing.balance + ((marketing.dailyPrice *

< _duration) * 95) / 100;

30 totalBalance += msg.value;

Likelihood - 3
Impact - 4

Consider requiring the value of the daily pricing to be higher or equal than two.

- Fixed

The Niftopia team has resolved the issue by requiring the daily price to be greater than
0.00001 ether whichis equivalent to 10000000000000 Wei.

A.7 Missmatch Between The Code And The

Message_

Error

The purchaseMarketing function contains a condition that makes sure if the marketing is
not exclusive, the purchased cannot get completed if the marketing was already bought.
However, the error message is: this marketing is exclusive and already was bought. which
does not match with the condition that assures the marketing is not exclusive.

Listing 8: Marketing.sol

s require(marketing.isActive, "this marketing is disabled");

s if (!marketing.isExclusive) {

19

302 require(marketing.currentPurchaseld == 0, "this marketing is
— exclusive and already was bought.");

303 }

Likelihood - 4
Impact - 2

Consider matching the code with what is mentioned in the error message.

- Fixed

The Niftopia team has resolved the issue by changing the condition in the if statement to
match the error message.

A.8 The marketingFee Variable Is Initialized But Not

Implemented-

Thevariable marketingFeeisinitialized, butitis not used toimplement afee structureinthe
contract.

Listing 9: Marketing.sol

50 uint256 public marketingFee = O;

Likelihood - 4
Impact - 2

20

Consider utilizing the marketingFee variable to build a fee structure, or eliminating it if the

fee structureis not part of the business logic.

- Fixed

The Niftopia team has resolved the issue by removing the marketingFee variable.

A9 totalBalance Is Incompatible With The Contract

Balance-

The totalBalance variable represents the contract balance. In the withdrawCollateral and
withdrawMarketingAmount functions, this variable is not updated. Therefore, the getTotal-
BalanceOfContract function it will return an inaccurate value.

Listing 10: Marketing.sol

w9 function getTotalBalanceOfContract() public view returns (uint256) {

490 return totalBalance;

491 }

Likelihood - 3
Impact -1

Consider updating the totalBalance variable in the withdrawCollateral and withdrawMar-
ketingAmount functions, or using the address(this).balance to get the balance of the con-
tract.

21

- Fixed

The Niftopia team has fixed the issue by removing the totalBalance variable and using the
address(this).balance to get the balance of the contract.

A.10 Avoid using.send() to transfer Ether-

Although transfer() and send() are recommended as a security best-practice to prevent
reentrancy attacks because they only forward 2300 gas, the gas repricing of opcodes may
break deployed contracts.

Listing 11: Marketing.sol

s function withdrawCollateral(uint256 _marketingId, uint256 _purchaseId)

— external onlyPurchaseCreator(_marketingId, _purchaseId){

392 require(_marketinglId > O && _marketingld < marketingId, "markeing ID
— is not existing");

393 Marketing storage marketing = marketings[marketingId];

39 if (!marketing.isExclusive) {

395 marketings[_marketingld] .currentPurchaseld = 0;

396 }

397 uint256 collateralAMount = marketingPurchases[marketingId] [

< _purchaseld].collateral;

398 bool isSent = payable(msg.sender).send(collateralAMount);

399 require(isSent, "Failed to send Ether");

400 marketingPurchases[_marketingId] [_purchaseld].collateral = O;

401 emit WithdrawCollateral(_marketingld, _purchaseld, collateralAMount,

< uint32(block.timestamp)) ;
402 }

Listing 12: Marketing.sol

ws function withdrawMarketingAmount(uint256 _marketingId) external {

22

406 require(_marketingId > O &% _marketingId < marketingld, "range out

— of marketings");

408 Marketing memory marketing = marketings[marketingId];

409 TokenOwner storage tokenOwner = marketingOwnerBalance[marketingId] [
410 msg.sender

an 1;

2 uint256 withdrawableFees = _withdrawableMarketingFees(marketing,

— tokenOwner) ;

413 bool isSent = payable(msg.sender) .send(withdrawableFees) ;
4 require(isSent, "Failed to send Ether");

415 tokenOwner .withdrewAmount += withdrawableFees;

46 emit WithdrawMarketingAmount(_marketingld, msg.sender,

— withdrawableFees, uint32(block.timestamp));
a1

Likelihood -1
Impact - 3

Consider using.call{value: ... }("") instead, without hardcoded gas limits along with checks-

effects-interactions pattern or reentrancy guards for reentrancy protection.

- Fixed

The Niftopia team has resolved the issue by using .call{ value: ... }("") instead of send().

23

A1l Marketing Types And Options Can Be Duplicated -

Due to the lack of a duplication check in the setMarketingTypes and setMarketingOptions
functions, the same type or option canbe added to the contract more than once, which might
impact the contract’s logic.

Listing 13: Marketing.sol

22 function setMarketingTypes(string memory marketingType) external

— onlyAdmin {

123 require(

124 keccak256 (abi.encodePacked (marketingType)) !=

125 keccak256 (abi.encodePacked("")),

2 "

127);

128 marketingTypes [marketingTypeNumber] = marketingType;
129 marketingTypeNumber++;

B0}

Listing 14: Marketing.sol

w2 function setMarketingOptions(string memory marketingOption)

133 external

134 onlyAdmin

s

136 require(

137 keccak256 (abi.encodePacked (marketingOption)) !=
138 keccak256 (abi.encodePacked("")),

39 "

”);

i marketingOptions[marketingOptionNumber] = marketingOption;
142 marketingOptionNumber++;

us }

24

Likelihood -1
Impact - 3

To prevent the marketing types and options from being duplicated, considerincluding a du-
plication check.

- Fixed

The Niftopia team has fixed the issue by preventing the marketing types and options from
being duplicated.

A12 ForLoop Over Dynamic Array-

When smartcontracts aredeployed ortheirassociated functions are invoked, the execution
of these operations always consumes a certain quantity of gas, according to the amount of
computation required to accomplish them. Modifying an unknown-size array that grows
in size over time can result in a Denial of Service attack. Simply by having an excessively
huge array, users can exceed the gas limit, therefore preventing the transaction from ever
succeeding.

Listing 15: Marketing.sol

3 for (uint32 i = 0; i < _marketing.optionIds.length; i++) {

154 require(

155 _marketing.optionIds[i] > O && _marketing.optionIds[i] <
— marketingOptionNumber,

156 "NiftopiaMarketing: :Marketing options are incurrect"

157);

25

158

Listing 16: Marketing.sol

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

for (uint256 i = 0; i < _tokenlds.length; i++) {

marketings[marketingId] .tokenIds.push(_tokenIds[i]);
tokenCount++;
if (marketingOwnerBalance[_marketingId] [msg.sender].tokenCount ==
—) {
marketingOwnerBalance[_marketingId] [msg.sender] = TokenOwner ({
tokenCount: 1,
withdrewAmount: O
Dk
} else {
marketingOwnerBalance [marketingId] [msg.sender] .tokenCount++;
}
marketingTokenIdOwner [_marketingId] [_tokenIds[i]]

msg.sender;

marketingTokenIdIndex [marketingId] [_tokenIds[i]]
if (is721(_collectionAddress)) {
IERC721(_collectionAddress) .safeTransferFrom(

tokenCount;

msg.sender,
address(this),
_tokenIds[i],

Listing 17: Marketing.sol

266

267

268

269

270

for (uint256 i = 0; i < _tokenlds.length; i++) {

require(marketingTokenIdOwner [marketingId] [_tokenIds[i]] == msg.
— sender, "you don't owner of the token");

tokenIndex = marketingTokenIdIndex [marketingId] [_tokenIds[i]];

delete marketings[_marketingId].tokenIds[tokenIndex];

if (marketingOwnerBalance[marketingId] [msg.sender].tokenCount > 0) {

26

27

272

273

274

275

276

277

278

279

280

281

282

marketingOwnerBalance [marketingId] [msg.sender] .tokenCount--;

}
marketingTokenIdOwner [marketingId] [_tokenIds[i]] = address(0x0);
marketingTokenIdIndex [marketingId] [_tokenIds[i]] = O0;

if (is721(_collectionAddress)) {
IERC721(_collectionAddress) .safeTransferFrom(
address(this),
msg.sender,
_tokenIds[i],

)}

Listing 18: Marketing.sol

368

370

37N

372

373

374

375

377

378

379

380

381

382

383

for (uint256 i = 0; i < marketing.tokenIds.length; i++) {

IERC721 (marketing.collection) .safeTransferFrom(
address(this),
msg.sender,
marketing.tokenIds[i],

);

if (marketingOwnerBalance[_marketingld] [msg.sender].tokenCount > 0)
— {

marketingOwnerBalance [_marketingId] [msg.sender] .tokenCount--;

}

marketingTokenIdOwner [_marketingId] [marketing.tokenIds[i]] = address
— (0x0);

marketingTokenIdIndex [marketingId] [marketing.tokenIds[i]] = 0;

delete marketings[marketingId].tokenIds[i];

27

Likelihood -1
Impact - 3

Avoid actions that involve looping across the entire data structure. If you really must loop
over an array of unknown size, arrange for it to consume many blocks and thus multiple
transactions.

- Acknowledged

The Niftopia team has acknowledged the issue, stating that there is no alternative to imple-
ment their business logic.

A13 Usage of block.timestamp -

block.timestamp is used in the contract. The variable block is a set of variables. The times-
tamp does not always reflect the current time and may be inaccurate. The value of a block
can be influenced by miners. Maximal Extractable Value attacks require a timestamp of up
to 900 seconds. Thereis no guarantee that the value isright, allwhat is guaranteedis that it
is higher than the timestamp of the previous block.

Listing 19: Marketing.sol

us function createMarketing(Marketing memory _marketing) external {

147 ensurelsNotZeroAddr(_marketing.collection);

148 require(_marketing.dailyPrice > 0, "");

149 require(_marketing.typeId > O && _marketing.typeld <
— marketingTypeNumber, "");

28

150

151

require(_marketing.startDate > uint32(block.timestamp), "start date
— error");
require(_marketing.endDate > marketing.startDate, "end date error")

= ;

Listing 20: Marketing.sol

184

185

186

187

188

189

190

191

192

193

195

196

function updatePeriodOfMarketing(
uint256 _marketingld,
uint32 _startDate,
uint32 _endDate
) external onlyMarketingCreator (_marketingId) {
require(_startDate > uint32(block.timestamp), "start date error");
require(_endDate > _startDate, "end date error");
Marketing storage marketing = marketings[marketingId];
marketing.startDate = _startDate;

marketing.endDate = _endDate;

emit UpdatePeriodOfMarketing(_marketingld, _startDate, _endDate,
— uint32(block.timestamp));

Listing 21: Marketing.sol

306

307

308

309

310

3n

312

313

315

316

uint32 endTime = uint32(block.timestamp);
if (endTime < marketing.startDate) {

endTime = (marketing.startDate + 86400) * _duration;
} else {

endTime

(endTime + 86400) * _duration;

}

require(endTime <= marketing.endDate, "date range out");

require(msg.value == marketing.dailyPrice * _duration + marketing.

— depositValue, "you have to deposit enough money");

uint256 _collateral = marketing.depositValue;

uint32 purchasedTime = uint32(block.timestamp) ;

29

Listing 22: Marketing.sol

s uint32 endTime = uint32(block.timestamp);

sz 1f (endTime < marketing.startDate) {

343 endTime = marketing.startDate + 86400 * _duration;
ss + else {

345 endTime = endTime + 86400 * _duration;

6}

Likelihood -1

Impact - 2

Verify that a delay of 900 seconds will not harm the logic of the contract.

- Acknowledged

The Niftopia team has acknowledged the issue, stating that 900 seconds delay will not im-
pact the business logic.

A14 Floating Pragma -

The contract makes use of the floating-point pragma 0.8.6. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

30

Listing 23: Marketing.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.6;

Likelihood -1
Impact - 2

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

- Fixed

The Niftopia team has fixed the issue by locking the pragma version to 0.8.4.

B SwapConnect.sol

B.1 Reentrancy Leads To The Draining Of The
Contract [CRITICAL]

The cancelSwaplntent function is exposed to a reentrancy attack, a user can call the can-
celSwaplntent using a contract, if this contract contains in its fallback function a call to the
same function the user can drain the contract. The reentrancy attack occurs in the transfer
of the swapFee and the valueOne.

31

Listing 24: SwapConnect.sol

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

function cancelSwapIntent(uint256 _swapId) public {
require(swapList [msg.sender] [swapMatch[_swapId]].addressOne == msg.
— sender, "You're not the interested counterpart");
require(swapList [msg.sender] [swapMatch[_swapId]].status ==
— swapStatus.Opened, "Swap Status is not opened");
//Rollback
if (swapList [msg.sender] [swapMatch[_swapId]].swapFee>0)
payable(msg.sender) .transfer (swapList [msg.sender] [swapMatch[
— _swapld]].swapFee);
uint256 i;
for(i=0; i<nftsOne[_swapId].length; i++) {
if (nftsOne[_swapId] [i].typeStd == ERC20) {
ERC20Interface(nftsOne[_swapId] [i] .dapp) .transfer(swapList[
— msg.sender] [swapMatch[_ swapId]].addressOne, nftsOnel[
— _swapId] [i].blc[0]);
}
else if (nftsOne[_swapId] [i].typeStd == ERC721) {
ERC721Interface(nftsOne[_swapId] [i] .dapp) .safeTransferFrom(
— address(this), swapList[msg.sender] [swapMatch[_swapId
<]] .addressOne, nftsOne[swapId] [i].tokenId[0], nftsOnel[
— _swapld] [i] .data);
}
else if (nftsOne[_swapId] [i].typeStd == ERC1155) {
ERC1155Interface(nftsOne[_swapId] [i] .dapp) .
— safeBatchTransferFrom(address(this), swapList[msg.
— sender] [swapMatch[_swapId]].addressOne, nftsOne[_ swapId
<] [i] .tokenId, nftsOne[_swapId] [i] .blc, nftsOne[_swapId
—][i] .data);

else {

kY.

194 customInterface(dappRelations [nftsOne[_swapId] [i].dapp]) .
— bridgeSafeTransferFrom(nftsOne[_swapId] [i].dapp,
— dappRelations[nftsOne[swapId] [i].dapp], swapList[msg.
— sender] [swapMatch[_swapId]].addressOne, nftsOne[_swapId
—][i] .tokenId, nftsOne[_swapId] [i].blc, nftsOne[swapId
—][i].data);

195 }

196 }

198 if (swapList [msg.sender] [swapMatch[_swapId]].valueOne > 0)

199 swapList[msg.sender] [swapMatch[_swapId]].addressOne.transfer(
— swapList [msg.sender] [swapMatch[_swapId]].valueOne);

Likelihood - 5

Impact-5

Consider using the nonReentrant modifier from the ReentrancyGuard contract.

- Fixed

The Niftopia team has fixed the issue by using the nonReentrant modifier from the Reen-
trancyGuard contract.

B.2 Missing Verification Over valueOne, valueTwo And
swapFee [CRITICAL]

Users are able to exchange numerous assets in addition to a certain number of native to-
kens using the createSwaplntent function.
The swap closer should payvalueTwo, and the swap creator should payvalueOne + swapFee

33

of native tokens. The createSwaplntent function does not verify if msg.value and valueOne
+ swapFee are equivalent. The closeSwaplntent method does not ensure that msg.value is
equivalent to valueTwo in the same way.

Listing 25: SwapConnect.sol

me 1if (swapList[_swapCreator] [swapMatch[_swapId]].valueTwo>0)
i swapList [_swapCreator] [swapMatch[_swapId]].addressOne.transfer(

— swapList[_swapCreator] [swapMatch[_swapId]].valueTwo) ;

Listing 26: SwapConnect.sol

s 1f (swapList[_swapCreator] [swapMatch[_ swapId]].valueOne > 0)
169 swapList [_swapCreator] [swapMatch[_swapId]].addressTwo.transfer(

— swapList[_swapCreator] [swapMatch[_ swapId]].valueOne);

Likelihood - 5
Impact-5

Consider verifyingthe valueOne + swapFee tobe the same as msg.value inthe createSwap-
Intent function, and verifying the valueTwo to be the same as msg.value in the closeSwap-
Intent function.

- Fixed

The issue has been resolved by the Niftopia team by making sure that the values of the pa-
rameters valueOne + swapFee and valueTwo in the functions createSwapintent and clos-
eSwaplntent are identical to msg.value.

34

B.3 Anyone Is Authorized To Close Any
Swaplntent [CRITICAL]

While creating a swaplntent, the creator can specify the addressTwo to only allow it to be
able to close the swap, or he can leave it as address(0) to allow anyone to close it. The clos-
eSwaplintent functiondoes notimplementthislogic, andit overwritesthe addressTwo value

with the msg.sender without checking its previous value for authorization.

Listing 27: SwapConnect.sol

e function closeSwapIntent(address _swapCreator, uint256 _swapld) payable
— public whenNotPaused {
127 require(swapList [_swapCreator] [swapMatch[_swapId]].status ==

— swapStatus.Opened, "Swap Status is not opened");

129 swapList [_swapCreator] [swapMatch[_swapId]].addressTwo = payable(msg.
< sender) ;

130 swapList [_swapCreator] [swapMatch[_swapId]].swapEnd = block.timestamp
—

131 swapList [_swapCreator] [swapMatch[_swapId]].status = swapStatus.
— Closed;

Likelihood -5

Impact-5

Consider adding a condition in the closeSwaplntent function that allows only the
addressTwo to close the swap and allows anyone to do so if the addressTwo is equal to the
address(0).

35

- Fixed

The Niftopia team has fixed the issue by verifying the addressTwo to be the same as the
msg.sender when the addressTwo is not set.

B.4 swapFee Is Only Utilized When The Swap Is

Cancelled _

The business logic states that the user should pay fees when creating a swap or accepting
a swap. However, the contact utilizes the swapFee only when the swap is cancelled.

Listing 28: SwapConnect.sol

wo 1f (swapList[msg.sender] [swapMatch[_swapId]].swapFee>0)
181 payable(msg.sender) .transfer (swapList [msg.sender] [swapMatch[_ swapId

— 1] .swapFee) ;

Likelihood -0
Impact-0

Consider implementing the swap fee in the createSwaplintent function.

- Fixed

The Niftopia team has resolved the issue by implementing the swap fee in the createSwap-
Intent function.

36

B.5 Missing Transfer Verification _

The ERC20 standard token implementation functions return the transaction status as a
Boolean. Itis a good practice to check for the return status of the function call to ensure
that the transaction was executed successfully. It is the developer’s responsibility to
enclose these function calls with require() to ensure that, when the intended ERC20
function call returns false, the caller transaction also fails.

Listing 29: SwapConnect.sol

w if (nftsOne[_swapIntent.id] [i].typeStd == ERC20) {

108 ERC20Interface(nftsOne[_swapIntent.id] [i].dapp) .transferFrom(
— _swapIntent.addressOne, address(this), nftsOne[_swapIntent.id
— 1[i].blc[0]);

09}

Listing 30: SwapConnect.sol

e if (nftsTwo[_swapId] [i].typeStd == ERC20) {

137 ERC20Interface(nftsTwo[_swapId] [i].dapp) .transferFrom(swapList [
— _swapCreator] [swapMatch[_swapId]].addressTwo, swapList[
— _swapCreator] [swapMatch[_swapId]].addressOne, nftsTwo[_swapId
— 1[i].blc[0]);

s}

Listing 31: SwapConnect.sol

s 1f (nftsOne[_swapId] [i].typeStd == ERC20) {

156 ERC20Interface(nftsOne[_swapId] [i].dapp) .transfer(swapList[
— _swapCreator] [swapMatch[_swapId]].addressTwo, nftsOne[_swapId
— 1[i].blc[01);

157}

37

Listing 32: SwapConnect.sol

w4 1f (nftsOne[_swapId] [i].typeStd == ERC20) {

185 ERC20Interface(nftsOne[_swapId] [i] .dapp) .transfer(swapList [msg.
— sender] [swapMatch[_swapId]].addressOne, nftsOne[_swapId] [i].
— blc[0]);

6}

Likelihood -2

Impact - 4

Use the safeTransfer function from the safeERC20 Implementation, or put the transfer call
inside an assert or require to verify that it returned true.

- Fixed

The Niftopia team has resolved the issue by using the safeTransfer function from the
safeERC20 Implementation.

B.6 Avoid using .transfer() to transfer Ether-

Although transfer() and send() are recommended as a security best-practice to prevent
reentrancy attacks because they only forward 2300 gas, the gas repricing of opcodes may
break deployed contracts.

Listing 33: SwapConnect.sol

uy if (swapList[_swapCreator] [swapMatch[_swapId]].valueTwo>0)

38

150 swapList [_swapCreator] [swapMatch[_swapId]].addressOne.transfer(

— swapList[_swapCreator] [swapMatch[_swapId]].valueTwo) ;

Listing 34: SwapConnect.sol

s 1f (swapList[_swapCreator] [swapMatch[_swapId]].valueOne > 0)
169 swapList [_swapCreator] [swapMatch[_swapId]].addressTwo.transfer(

— swapList[_swapCreator] [swapMatch[_swapId]].valueOne);

Listing 35: SwapConnect.sol

wo 1f (swapList[msg.sender] [swapMatch[_swapId]].swapFee>0)
181 payable(msg.sender) .transfer (swapList [msg.sender] [swapMatch[swapId

— 1] .swapFee) ;

Listing 36: SwapConnect.sol

ws 1f (swapList[msg.sender] [swapMatch[_swapId]].valueOne > 0)
199 swapList [msg.sender] [swapMatch[_swapId]].addressOne.transfer(

— swapList[msg.sender] [swapMatch[_swapId]].valueOne);

Likelihood -1
Impact - 3

Consider using .call{ value: ... }(”) instead, without hard-coded gas limits along with

checks-effects-interactions pattern or reentrancy guards for reentrancy protection.

- Fixed

The Niftopia team has solved the issue by using .call{ value: ... }("") instead of .transfer().

39

B.7 Missing Address Verification -

Certain functions lack a safety check in the address, the address-type arguments should
include a zero-addresstest, otherwise, the contract’s functionality may becomeinaccessi-
ble. The dapp andthe customlinterface arguments should be verified to be different from
address(0).

Listing 37: SwapConnect.sol

26 // Handle dapp relations for the bridges
27 function setDappRelation(address _dapp, address _customInterface) public
< onlyOwner {

208 dappRelations[_dapp] = _customInterface;

209 }

Likelihood -1
Impact -3

We recommend that you make sure the addresses provided in the arguments are different

from the address(0).

- Fixed

The Niftopia team has fixed the issue by verifyingthe customlnterface argumentto be dif-

ferent from the address(0).

40

B.8 Owner Can Renounce Ownership -

Typically, the account that deploys the contract is also its owner. Consequently, the owner
is able to engage in certain privileged activities in his own name. In smart contracts, the
renounceOwnership function is used to renounce ownership, which means that if the con-
tract's ownership has never been transferred, it will never have an Owner, rendering some

owner-exclusive functionality unavailable.

Listing 38: SwapConnect.sol

2 contract SwapConnect is Ownable, Pausable, IERC721Receiver,

<3 IERC1155Receiver {

Likelihood -1
Impact - 3

We recommend that you prevent the owner from calling renounceOwnership without first
transferring ownership to a different address. Additionally, if you decide to use a multi-
signature wallet, then the execution of the renounceOwnership will require for at least two
or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-

tionality by overriding it.

- Fixed

The Niftopia team has resolved the issue by overriding the renounceOwnership function in

order to disable the functionality.

41

B.9 Floating Pragma |[EOWI

The contract makes use of the floating-point pragma 0.8.12. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not

unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

Listing 39: SwapConnect.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.12;

Likelihood -1
Impact - 2

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

- Fixed

The Niftopia team has fixed the issue by locking the pragma version to 0.8.4.

42

4 Best Practices

BP.1 State variables that could be declared

immutable

The above constant state variable should be declared immutable to save gas. Add the im-
mutable attribute to state variables that never change after contact

Listing 40: SwapConnect.sol

35 address constant ERC20 = 0x90b7cf88476cc99D295429d4C1Bb1ff£52448abeE;
36 address constant ERC721 = 0x58874d2951524F7{£851bbBE240f0C3cF0b992d79;
37 address constant ERC1155 = 0xEDfdd7266667D48£3C9aB10194C3d325813d8c39;

Listing 41: SwapConnect.sol

4 uint256 constant secs = 86400;
BP.2 Unnecessary Initializations

When a variable is declared in solidity, it gets initialized with its type’s default value. Thus,

thereis no needtoinitialize a variable with the default value.

Listing 42: Marketing.sol

%5 uint256 tokenIndex = O;

43

s uint256 private totalBalance = O;

s0 uint256 public marketingFee 0;

1 _marketing.currentPurchaseld = 0;

w2 _marketing.balance = 0;

BP.3 Public Function Can Be Called External

Description:

Functions with a public scope that are not called inside the contract should be declared ex-
ternalto reduce the gas fees.

Code:

g8 function createSwapIntent(swapIntent memory _swaplntent, swapStructl[]
— memory _nftsOne, swapStruct[] memory _nftsTwo) payable public
— whenNotPaused {

s function calculateMarketingFees(uint256 _marketingId, address _ownerAddr

<) public view returns (uint256) {

ss function getTokenOwnerData(address _tokenOwnerAddress, uint256

— _marketinglId) public view returns (TokenOwner memory){

B
B

ws function getLastMarketingId() public view returns (uint256) {

wms function getMarketingDetail(uint256 _marketinglId) public view returns (

— Marketing memory) {

s function getMarketingPurchaseDetail(uint256 _marketingId, uint256

< _purchaseld) public view returns (Purchase memory) {

45

5 Static Analysis (Slither)

ShellBoxes expanded the coverage of the specific contract areas using automated test-
ing methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
usedtotest mathematical relationships between Solidityinstances statically and variables
thatallow forthe detection of errorsorinconsistentusage of the contracts’ APls throughout
the entire codebase.

NiftMarketing._addItemInMarketing(uint256,address,uint256[]) (Marketing.
— s01#255-283) uses a dangerous strict equality:
- marketingOwnerBalance[marketingId] [msg.sender].tokenCount ==
— (Marketing.sol#264)
NiftMarketing.calculateMarketingFees(uint256,address) (Marketing.sol
— #564-570) uses a dangerous strict equality:
- require(bool,string) (marketing.creator == _ownerAddr,Not
— marketing creator) (Marketing.sol#567)
NiftMarketing.onlyMarketingCreator (uint256) (Marketing.sol#124-131) uses
<~ a dangerous strict equality:
- require(bool,string) (msg.sender == marketings[marketingId] .
— creator,You must be creator of this marketing) (Marketing.
— sol#126-129)
NiftMarketing.onlyPurchaseCreator (uint256,uint256) (Marketing.sol
< #133-145) uses a dangerous strict equality:
- require(bool,string) (msg.sender == marketingPurchases[
— _marketingId] [_purchaseld].creator,You must be creator of
— this purchase) (Marketing.sol#140-143)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #dangerous-strict-equalities

46

Reentrancy in NiftMarketing.burnMarketing(uint256) (Marketing.sol
— #503-532):
External calls:
- IERC721(marketing.collection) .safeTransferFrom(address(this),
— msg.sender,marketing.tokenIds[i],) (Marketing.sol#514-519)
State variables written after the call(s):
- delete marketings[_marketingId].tokenIds[i] (Marketing.sol#526)
Reentrancy in NiftMarketing.createMarketing(NiftMarketing.Marketing) (
— Marketing.sol#175-222):
External calls:
- _addItemInMarketing(marketingId, marketing.collection,tokenIds)
— (Marketing.sol#217)
- IERC721(_collectionAddress) .safeTransferFrom(msg.sender,
— address(this), tokenIds[i],) (Marketing.sol
— #275-280)
State variables written after the call(s):
- marketingId ++ (Marketing.sol#219)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-1

NiftMarketing. addItemInMarketing(uint256,address,uint256[]) (Marketing.
— s0l#255-283) has external calls inside a loop: IERC721(
— _collectionAddress) .safeTransferFrom(msg.sender,address(this),
— _tokenIds[i],) (Marketing.sol#275-280)
NiftMarketing. burnMarketingItem(uint256,address,uint256[]) (Marketing.
— s0l#298-322) has external calls inside a loop: IERC721(
< _collectionAddress) .safeTransferFrom(address(this) ,msg.sender,
— _tokenIds[i],) (Marketing.sol#314-319)
NiftMarketing.burnMarketing(uint256) (Marketing.sol#503-532) has
— external calls inside a loop: IERC721(marketing.collection).
— safeTransferFrom(address(this) ,msg.sender,marketing.tokenIds[i],)
— (Marketing.sol#514-519)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— /#calls-inside-a-loop

47

Reentrancy in NiftMarketing.burnMarketing(uint256) (Marketing.sol
— #503-532):
External calls:
- IERC721(marketing.collection) .safeTransferFrom(address(this),
— msg.sender ,marketing.tokenIds[i],) (Marketing.sol#514-519)
State variables written after the call(s):
- marketingOwnerBalance[_marketingId] [msg.sender] .tokenCount -- (

— Marketing.sol#522)

I
o

- marketingTokenIdIndex[marketingId] [marketing.tokenIds[i]]
— (Marketing.sol#525)

- marketingTokenIdOwner [_marketingId] [marketing.tokenIds[i]]
— address(0x0) (Marketing.sol#524)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-2

Reentrancy in NiftMarketing.addItemInMarketingCollection(uint256,address
< ,uint256[]) (Marketing.sol#240-253):
External calls:
- _addItemInMarketing(marketingId, collectionAddress,_tokenIds) (
— Marketing.sol#250)
- IERC721(_collectionAddress) .safeTransferFrom(msg.sender,
— address(this),_tokenIds[i],) (Marketing.sol
— #275-280)
Event emitted after the call(s):
- AddItemInMarketing(marketingId, collectionAddress, tokenIds,
— uint32(block.timestamp)) (Marketing.sol#252)
Reentrancy in NiftMarketing.burnMarketingItem(uint256,address,uint256[])
— (Marketing.sol#286-296) :
External calls:
- _burnMarketingItem(_marketingId, collectionAddress,_tokenIds) (
— Marketing.sol#294)
- IERC721(_collectionAddress) .safeTransferFrom(address/(
— this) ,msg.sender, tokenIds[i],) (Marketing.sol

48

— #314-319)
Event emitted after the call(s):
- BurnMarketingItems(_marketingId, collectionAddress,_ tokenIds,
— uint32(block.timestamp)) (Marketing.sol#295)
Reentrancy in NiftMarketing.createMarketing(NiftMarketing.Marketing) (
— Marketing.sol#175-222):
External calls:
- _addItemInMarketing(marketingId, marketing.collection,tokenIds)
— (Marketing.sol#217)
- IERC721(_collectionAddress) .safeTransferFrom(msg.sender,
— address(this),_tokenIds[i],) (Marketing.sol
— #275-280)
Event emitted after the call(s):
- CreatMarketing(_marketing.collection,tokenlds, marketing.typeld
—> ,_marketing.optionlds,_marketing.isExclusive, marketing.
— dailyPrice, marketing.penaltyValue, marketing.depositValue
— ,_marketing.startDate, marketing.endDate, marketing.
— isCollection,msg.sender,marketingId,uint32(block.timestamp
—)) (Marketing.sol#220)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-3

NiftMarketing.createMarketing(NiftMarketing.Marketing) (Marketing.sol
— #175-222) uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string) (_marketing.dailyPrice > 0,) (Marketing.sol
— #177)

require(bool,string) (_marketing.typeld > O && _marketing.typeld
— < marketingTypeNumber,) (Marketing.sol#178)

require(bool,string) (_marketing.startDate > uint32(block.
— timestamp),start date error) (Marketing.sol#179)

require(bool,string) (_marketing.endDate > _marketing.startDate,

— end date error) (Marketing.sol#180)

49

- require(bool,string) (_marketing.optionIds[i] > O && _marketing.
— optionIds[i] < marketingOptionNumber,NiftopiaMarketing::
— Marketing options are incurrect) (Marketing.sol#183-186)
- require(bool,string) (is721(_marketing.collection),
— NiftopiaMarketing::Collection must be ERC721 token.) (
— Marketing.sol#213)
- require(bool,string) (tokenIds.length > O,token Id is required)
— (Marketing.sol#216)
NiftMarketing.updatePeriod0fMarketing(uint256,uint32,uint32) (Marketing.
— s0l#225-237) uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string) (_startDate > uint32(block.timestamp),start
— date error) (Marketing.sol#230)
NiftMarketing._ addItemInMarketing(uint256,address,uint256[]) (Marketing.
— s01#255-283) uses timestamp for comparisons
Dangerous comparisons:
- 1 < _tokenlIds.length (Marketing.sol#261)
- marketingOwnerBalance[_marketingId] [msg.sender] .tokenCount ==
— (Marketing.sol#264)
NiftMarketing.burnMarketingItem(uint256,address,uint256[]) (Marketing.
— s0l1#286-296) uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string) (marketings[_marketingId] .currentPurchaseld
— == 0,can't withdraw items) (Marketing.sol#292)
NiftMarketing. burnMarketingItem(uint256,address,uint256[]) (Marketing.
— s0l#298-322) uses timestamp for comparisons
Dangerous comparisons:
- marketingOwnerBalance[marketingId] [msg.sender] .tokenCount > 0 (
— Marketing.sol#308)
NiftMarketing.purchaseMarketing(uint256,uint8) (Marketing.sol#331-403)
— uses timestamp for comparisons
Dangerous comparisons:

- endTime < marketing.startDate (Marketing.sol#345)

50

- require(bool,string) (endTime <= marketing.endDate,date range
— out) (Marketing.sol#350)
- require(bool,string) (marketing.proposal.endtime < block.
— timestamp,voting result is not finalized) (Marketing.sol
— #358)
NiftMarketing.vote(uint256,bool) (Marketing.sol#405-433) uses timestamp
— for comparisons
Dangerous comparisons:
- require(bool,string) (marketing.proposal.endtime > block.
— timestamp,voting result is not finalized) (Marketing.sol
— #412)
NiftMarketing.placeProposal (uint256,uint256) (Marketing.sol#435-477)
— uses timestamp for comparisons
Dangerous comparisons:
- marketing.proposal.endtime < block.timestamp (Marketing.sol
— #445)
NiftMarketing.upgradeDurationOfPurchase(uint256,uint256,uint8) (
— Marketing.sol#479-501) uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string) (_duration > purchase.duration, duration >
— purchase.duration) (Marketing.sol#482)
- require(bool,string) (msg.value == marketing.dailyPrice * (
— _duration - purchase.duration),you have to deposit enough
— money) (Marketing.sol#483)
- endTime < marketing.startDate (Marketing.sol#486)
- require(bool,string) (endTime <= marketing.endDate,date range
— out) (Marketing.sol#493)
NiftMarketing.burnMarketing(uint256) (Marketing.sol#503-532) uses
— timestamp for comparisons
Dangerous comparisons:
- i < marketing.tokenIds.length (Marketing.sol#512)
- marketingOwnerBalance[_marketingId] [msg.sender].tokenCount > 0

— (Marketing.sol#521)

o1

NiftMarketing.withdrawCollateral (uint256,uint256) (Marketing.sol
— #535-546) uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string) (isSent,Failed to send Ether) (Marketing.
— sol#543)
NiftMarketing.withdrawMarketingAmount (uint256) (Marketing.sol#549-561)
— uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string) (isSent,Failed to send Ether) (Marketing.
> s01#558)
NiftMarketing.calculateMarketingFees(uint256,address) (Marketing.sol
— #564-570) uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string) (marketing.creator == _ownerAddr,Not
— marketing creator) (Marketing.sol#567)
NiftMarketing.getTokenOwnerData(address,uint256) (Marketing.sol#582-586)
— uses timestamp for comparisons
Dangerous comparisons:
- require(bool,string) (marketingOwnerBalance[_marketingId] [
— _tokenOwnerAddress] .tokenCount > 0,address is bad) (
— Marketing.sol#584)
NiftMarketing.getMarketingDetail (uint256) (Marketing.sol#592-603) uses
— timestamp for comparisons
Dangerous comparisons:
- marketing.proposal.endtime < block.timestamp (Marketing.sol
— #597)
NiftMarketing.getTimeDiffence(uint256) (Marketing.sol#605-608) uses
— timestamp for comparisons
Dangerous comparisons:
- (marketing.proposal.endtime < block.timestamp) (Marketing.sol
— #607)
NiftMarketing.getMarketingPurchaseDetail (uint256,uint256) (Marketing.sol
— #610-615) uses timestamp for comparisons

Dangerous comparisons:

92

require(bool,string) (_purchaseId > O && _purchaseld <=
— marketings[marketingId].currentPurchaseld,purchase id

— error) (Marketing.sol#612)

NiftMarketing.ensureIsMarketingAssets(uint256,address,uint256[]) (

— Marketing.sol#617-627) uses timestamp for comparisons

Dangerous comparisons:

require(bool,string) (marketings[_marketingId].isCollection,can'
< t add items in personal marketing) (Marketing.sol#623)
require(bool,string) (_collectionAddress == marketings[
— _marketingId].collection,collection address must be same

— to marketing collection address.) (Marketing.sol#625)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #block-timestamp

Different versions of Solidity is used:

Version used: ['~0.8.0', '"0.8.6']

~0.8.0 (../../../openzeppelin-contracts/contracts/security/
— ReentrancyGuard.sol#3)

~0.8.0 (../../../openzeppelin-contracts/contracts/token/ERC1155
— /IERC1155.s01#3)

~0.8.0 (../../../openzeppelin-contracts/contracts/token/ERC1155
— /IERC1155Receiver.sol#3)

~0.8.0 (../../../openzeppelin-contracts/contracts/token/ERC1155
— /utils/ERC1155Holder.sol#3)

~0.8.0 (../../../openzeppelin-contracts/contracts/token/ERC1155
— /utils/ERC1155Receiver.sol#3)

~0.8.0 (../../../openzeppelin-contracts/contracts/token/ERC20/
— ERC20.s01#3)

~0.8.0 (../../../openzeppelin-contracts/contracts/token/ERC20/
— IERC20.s01#3)

~0.8.0 (../../../openzeppelin-contracts/contracts/token/ERC20/
— extensions/IERC20Metadata.sol#3)

~0.8.0 (../../../openzeppelin-contracts/contracts/token/ERC721/
— IERC721.s01#3)

33

- 70.8.0 (../../../openzeppelin-contracts/contracts/token/ERC721/
— IERC721Receiver.sol#3)

- 70.8.0 (../../../openzeppelin-contracts/contracts/token/ERC721/
— utils/ERC721Holder.sol#3)

- 70.8.0 (../../../openzeppelin-contracts/contracts/utils/Context
— .sol#3)

- 70.8.0 (../../../openzeppelin-contracts/contracts/utils/
— introspection/ERC165.s01#3)

- 70.8.0 (../../../openzeppelin-contracts/contracts/utils/
— introspection/IERC165.s01#3)

- 70.8.6 (Marketing.sol#2)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

Context._msgData() (../../../openzeppelin-contracts/contracts/utils/
— Context.sol#20-22) is never used and should be removed

ERC20. burn(address,uint256) (../../../openzeppelin-contracts/contracts/
— token/ERC20/ERC20.s01#274-289) is never used and should be
— removed

ERC20. mint(address,uint256) (../../../openzeppelin-contracts/contracts/
— token/ERC20/ERC20.s01#251-261) is never used and should be
— removed

NiftMarketing.ensurelsZeroAddr (address) (Marketing.sol#641-643) is never
— used and should be removed

NiftMarketing.is1155(address) (Marketing.sol#633-635) is never used and
— should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #dead-code

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/security
— /ReentrancyGuard.sol#3) necessitates a version too recent to be
— trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/token/

< FERC1155/1ERC1155.s01#3) necessitates a version too recent to be

94

— trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/token/
— ERC1155/IERC1155Receiver.sol#3) necessitates a version too recent
<~ to be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/token/
— ERC1155/utils/ERC1155Holder.sol#3) necessitates a version too
< recent to be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/token/
— ERC1155/utils/ERC1155Receiver.sol#3) necessitates a version too
— recent to be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/token/
— ERC20/ERC20.s0l#3) necessitates a version too recent to be
— trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/token/
— ERC20/IERC20.s0l#3) necessitates a version too recent to be
— trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/token/
— ERC20/extensions/IERC20Metadata.sol#3) necessitates a version too
— recent to be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/token/
— ERC721/IERC721.s0l#3) necessitates a version too recent to be
— trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/token/
— ERC721/IERC721Receiver.sol#3) necessitates a version too recent
— to be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/token/
— ERC721/utils/ERC721Holder.sol#3) necessitates a version too
— recent to be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/utils/
— Context.sol#3) necessitates a version too recent to be trusted.
— Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/utils/
— introspection/ERC165.s01#3) necessitates a version too recent to

— be trusted. Consider deploying with 0.6.12/0.7.6

95

Pragma version~0.8.0 (../../../openzeppelin-contracts/contracts/utils/
— introspection/IERC165.s0l#3) necessitates a version too recent to
< be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.6 (Marketing.sol#2) necessitates a version too recent
— to be trusted. Consider deploying with 0.6.12/0.7.6

501c-0.8.6 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity

Parameter NiftMarketing.createMarketing(NiftMarketing.Marketing) .
— _marketing (Marketing.sol#175) is not in mixedCase

Parameter NiftMarketing.updatePeriodOfMarketing(uint256,uint32,uint32).
— marketingId (Marketing.sol#226) is not in mixedCase

Parameter NiftMarketing.updatePeriodOfMarketing(uint256,uint32,uint32).
— _startDate (Marketing.sol#227) is not in mixedCase

Parameter NiftMarketing.updatePeriodOfMarketing(uint256,uint32,uint32).
— _endDate (Marketing.sol#228) is not in mixedCase

Parameter NiftMarketing.addItemInMarketingCollection(uint256,address,
— uint256[]) . _marketingId (Marketing.sol#241) is not in mixedCase

Parameter NiftMarketing.addItemInMarketingCollection(uint256,address,
— uint256[])._collectionAddress (Marketing.sol#242) is not in
— mixedCase

Parameter NiftMarketing.addItemInMarketingCollection(uint256,address,
— uint256[]) ._tokenIds (Marketing.sol#243) is not in mixedCase

Parameter NiftMarketing.burnMarketingIltem(uint256,address,uint256[]) .
— _marketingId (Marketing.sol#287) is not in mixedCase

Parameter NiftMarketing.burnMarketingItem(uint256,address,uint256[]).
< _collectionAddress (Marketing.sol#288) is not in mixedCase

Parameter NiftMarketing.burnMarketingltem(uint256,address,uint256[]) .
— _tokenIds (Marketing.sol#289) is not in mixedCase

Parameter NiftMarketing.changeMarketingStatus(uint256)._marketingId (
< Marketing.sol#325) is not in mixedCase

Parameter NiftMarketing.purchaseMarketing(uint256,uint8) . marketingId (
< Marketing.sol#331) is not in mixedCase

56

Parameter NiftMarketing.purchaseMarketing(uint256,uint8)._duration (
— Marketing.sol#331) is not in mixedCase

Parameter NiftMarketing.vote(uint256,bool)._marketingld (Marketing.sol
— #405) is not in mixedCase

Parameter NiftMarketing.vote(uint256,bool). vote (Marketing.sol#405) is
— not in mixedCase

Parameter NiftMarketing.placeProposal(uint256,uint256)._offerPrice (
< Marketing.sol#435) is not in mixedCase

Parameter NiftMarketing.placeProposal(uint256,uint256). marketingId (
> Marketing.sol#435) is not in mixedCase

Parameter NiftMarketing.upgradeDurationOfPurchase(uint256,uint256,uint8)
— ._marketingld (Marketing.sol#479) is not in mixedCase

Parameter NiftMarketing.upgradeDurationOfPurchase(uint256,uint256,uint8)
— ._purchaseld (Marketing.sol#479) is not in mixedCase

Parameter NiftMarketing.upgradeDurationOfPurchase(uint256,uint256,uint8)
< ._duration (Marketing.sol#479) is not in mixedCase

Parameter NiftMarketing.burnMarketing(uint256). marketingId (Marketing.
— sol#503) is not in mixedCase

Parameter NiftMarketing.withdrawCollateral(uint256,uint256)._marketingld
— (Marketing.sol#535) is not in mixedCase

Parameter NiftMarketing.withdrawCollateral(uint256,uint256). purchaseId
— (Marketing.sol#535) is not in mixedCase

Parameter NiftMarketing.withdrawMarketingAmount(uint256)._marketingId (
< Marketing.sol#549) is not in mixedCase

Parameter NiftMarketing.calculateMarketingFees(uint256,address).
— _marketinglId (Marketing.sol#564) is not in mixedCase

Parameter NiftMarketing.calculateMarketingFees(uint256,address) .
— _ownerAddr (Marketing.sol#564) is not in mixedCase

Parameter NiftMarketing.getTokenOwnerData(address,uint256) .
— _tokenOwnerAddress (Marketing.sol#582) is not in mixedCase

Parameter NiftMarketing.getTokenOwnerData(address,uint256). marketingId
— (Marketing.sol#582) is not in mixedCase

Parameter NiftMarketing.getMarketingDetail (uint256). marketingId (
< Marketing.sol#592) is not in mixedCase

57

Parameter NiftMarketing.getTimeDiffence(uint256). marketingId (Marketing
< .so0l#605) is not in mixedCase

Parameter NiftMarketing.getMarketingPurchaseDetail(uint256,uint256).
— _marketingId (Marketing.sol#610) is not in mixedCase

Parameter NiftMarketing.getMarketingPurchaseDetail (uint256,uint256).
< _purchaseId (Marketing.sol#610) is not in mixedCase

Parameter NiftMarketing.ensureIlsMarketingAssets(uint256,address,uint256
— [])._marketingIld (Marketing.sol#618) is not in mixedCase

Parameter NiftMarketing.ensureIsMarketingAssets(uint256,address,uint256
< [1)._collectionAddress (Marketing.sol#619) is not in mixedCase

Parameter NiftMarketing.ensureIlsMarketingAssets(uint256,address,uint256
— [])._tokenIds (Marketing.sol#620) is not in mixedCase

Parameter NiftMarketing.is721(address). nft (Marketing.sol#629) is not
— 1in mixedCase

Parameter NiftMarketing.is1155(address)._nft (Marketing.sol#633) is not
< in mixedCase

Parameter NiftMarketing.ensureIsNotZeroAddr(address). addr (Marketing.
< sol#637) is not in mixedCase

Parameter NiftMarketing.ensureIsZeroAddr (address)._addr (Marketing.sol
< #641) is not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #conformance-to-solidity-naming-conventions

Reentrancy in NiftMarketing.withdrawCollateral(uint256,uint256) (
— Marketing.sol#535-546) :

External calls:

- isSent = address(msg.sender).send(collateralAMount) (Marketing.
— sol#b42)

State variables written after the call(s):

- marketingPurchases[_marketingId] [_purchaselId].collateral = 0 (
— Marketing.sol#544)

Event emitted after the call(s):

- WithdrawCollateral (_marketingId, purchaseld,collateralAMount,
— uint32(block.timestamp)) (Marketing.sol#545)

58

Reentrancy in NiftMarketing.withdrawMarketingAmount (uint256) (Marketing.
— sol#549-561):
External calls:
- isSent = address(msg.sender).send(withdrawableFees) (Marketing.
— sol#557)
State variables written after the call(s):
- tokenOwner.withdrewAmount += withdrawableFees (Marketing.sol
— #559)
Event emitted after the call(s):
- WithdrawMarketingAmount (_marketingId,msg.sender,
— withdrawableFees,uint32(block.timestamp)) (Marketing.sol
— #560)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-4

NiftMarketing.marketingFee (Marketing.sol#51) should be constant
NiftMarketing.votingDays (Marketing.sol#44) should be constant
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #istate-variables-that-could-be-declared-constant

onERC1155Received (address,address,uint256,uint256,bytes) should be
< declared external:
- ERC1155Holder.onERC1155Received (address,address,uint256,uint256
— ,bytes) (../../../openzeppelin-contracts/contracts/token/
— ERC1155/utils/ERC1155Holder.sol#11-19)
onERC1155BatchReceived(address,address,uint256[] ,uint256[],bytes) should
— be declared external:
- ERC1155Holder.onERC1155BatchReceived(address,address,uint2561[],
— uint256[] ,bytes) (../../../openzeppelin-contracts/
— contracts/token/ERC1155/utils/ERC1155Holder.sol#21-29)
name () should be declared external:
- ERC20.name() (../../../openzeppelin-contracts/contracts/token/
— ERC20/ERC20.s01#61-63)
symbol () should be declared external:

99

- ERC20.symbol() (../../../openzeppelin-contracts/contracts/token
< /ERC20/ERC20.s01#69-71)
decimals() should be declared external:
- ERC20.decimals() (../../../openzeppelin-contracts/contracts/
— token/ERC20/ERC20.s01#86-88)
totalSupply() should be declared external:
- ERC20.totalSupply() (../../../openzeppelin-contracts/contracts/
— token/ERC20/ERC20.s01#93-95)
balance0f (address) should be declared external:
- ERC20.balanceOf (address) (../../../openzeppelin-contracts/
— contracts/token/ERC20/ERC20.s01#100-102)
transfer(address,uint256) should be declared external:
- ERC20.transfer (address,uint256) (../../../openzeppelin-
— contracts/contracts/token/ERC20/ERC20.s0l1#112-115)
allowance(address,address) should be declared external:
- ERC20.allowance(address,address) (../../../openzeppelin-
— contracts/contracts/token/ERC20/ERC20.s01#120-122)
approve (address,uint256) should be declared external:
- ERC20.approve(address,uint256) (../../../openzeppelin-contracts
— /contracts/token/ERC20/ERC20.s01#131-134)
transferFrom(address,address,uint256) should be declared external:
- ERC20.transferFrom(address,address,uint256) (../../../
— openzeppelin-contracts/contracts/token/ERC20/ERC20.s0l
— #149-163)
increaseAllowance(address,uint256) should be declared external:
- ERC20.increaseAllowance(address,uint256) (../../../openzeppelin
— —contracts/contracts/token/ERC20/ERC20.s01#177-180)
decreaseAllowance(address,uint256) should be declared external:
- ERC20.decreaseAllowance(address,uint256) (../../../openzeppelin
— -contracts/contracts/token/ERC20/ERC20.s01#196-204)
onERC721Received(address,address,uint256,bytes) should be declared
— external:
- ERC721Holder.onERC721Received(address,address,uint256,bytes)
— (../../../openzeppelin-contracts/contracts/token/ERC721/

60

— utils/ERC721Holder.sol#19-26)
vote(uint256,bool) should be declared external:
- NiftMarketing.vote(uint256,bool) (Marketing.sol#405-433)
placeProposal (uint256,uint256) should be declared external:
- NiftMarketing.placeProposal (uint256,uint256) (Marketing.sol
— #435-477)
calculateMarketingFees(uint256,address) should be declared external:
- NiftMarketing.calculateMarketingFees(uint256,address) (
— Marketing.sol#564-570)
getTokenOwnerData(address,uint256) should be declared external:
- NiftMarketing.getTokenOwnerData(address,uint256) (Marketing.sol
— #582-586)
getLastMarketingId() should be declared external:
- NiftMarketing.getLastMarketingId() (Marketing.sol#588-590)
getMarketingDetail (uint256) should be declared external:
- NiftMarketing.getMarketingDetail (uint256) (Marketing.sol
— #592-603)
getTimeDiffence(uint256) should be declared external:
- NiftMarketing.getTimeDiffence(uint256) (Marketing.sol#605-608)
getMarketingPurchaseDetail (uint256,uint256) should be declared external:
- NiftMarketing.getMarketingPurchaseDetail (uint256,uint256) (
— Marketing.sol#610-615)
getTotalBalanceOfContract() should be declared external:
- NiftMarketing.getTotalBalanceOfContract() (Marketing.sol
— #645-647)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #public-function-that-could-be-declared-external

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

61

6 Conclusion

In this audit, we examined the design and implementation of Niftopia contract and discov-
eredseveralissues of varying severity. Metaverse Tradingteam addressed 2lissuesraised
intheinitial reportandimplemented the necessary fixes, while classifying the restas arisk
with low-probability of occurrence. Shellboxes’ auditors advised Metaverse Trading Team
to maintain a high level of vigilance and to keep those findings in mind in order to avoid any
future complications.

62

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

63

mailto:contact@shellboxes.com

	Introduction
	About Metaverse Trading
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Marketing.sol
	Token Holders Can Drain The Contract [CRITICAL]
	Reentrancy Leads To The Draining Of The Contract [CRITICAL]
	The Collateral Can Be Withdrawn Anytime [HIGH]
	Wrong endTime Calculation When Purchasing Marketing [HIGH]
	Centralization Risk [MEDIUM]
	User Might Purchase A Marketing For Free [MEDIUM]
	Missmatch Between The Code And The Error Message [MEDIUM]
	The marketingFee Variable Is Initialized But Not Implemented [LOW]
	totalBalance Is Incompatible With The Contract Balance [LOW]
	Avoid using .send() to transfer Ether [LOW]
	Marketing Types And Options Can Be Duplicated [LOW]
	For Loop Over Dynamic Array [LOW]
	Usage of block.timestamp [LOW]
	Floating Pragma [LOW]

	SwapConnect.sol
	Reentrancy Leads To The Draining Of The Contract [CRITICAL]
	Missing Verification Over valueOne, valueTwo And swapFee [CRITICAL]
	Anyone Is Authorized To Close Any SwapIntent [CRITICAL]
	swapFee Is Only Utilized When The Swap Is Cancelled [MEDIUM]
	Missing Transfer Verification [MEDIUM]
	Avoid using .transfer() to transfer Ether [LOW]
	Missing Address Verification [LOW]
	Owner Can Renounce Ownership [LOW]
	Floating Pragma [LOW]

	Best Practices
	State variables that could be declared immutable
	Unnecessary Initializations
	Public Function Can Be Called External

	Static Analysis (Slither)
	Conclusion

