
Tribex
Smart Contract Security Audit

Prepared by ShellBoxes

March 31st, 2022 -May 5th, 2022

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Tribex

Version 1.0

Classification Public

Scope

The Tribex Contract deployed in the EthereumMainnet

Contract Name Contract Address

txtest.sol 0xff9981d2c6c6d612e03e4a32f5488e552eeae285

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://etherscan.io/address/0xff9981d2c6c6d612e03e4a32f5488e552eeae285#code
mailto:contact@shellboxes.com

Contents
1 Introduction 4

1.1 About Tribex . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

A txtest.sol . 7

A.1 User CanBuyWith AHigher Price [HIGH] 7

A.2 Missing Value Verification [MEDIUM] 8

A.3 RaceCondition [LOW] . 9

A.4 RenounceOwnership [LOW] . 11

A.5 Floating Pragma [LOW] . 12

4 Best Practices 13

BP.1 Unnecessary variable initialization . 13

5 Static Analysis (Slither) 14

6 Conclusion 20

3

1 Introduction
Tribex engaged ShellBoxes to conduct a security assessment on the Tribex beginning on

March 31st, 2022 and ending May 5th, 2022. In this report, we detail our methodical

approach to evaluate potential security issues associated with the implementation of

smart contracts, by exposing possible semantic discrepancies between the smart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Tribex

Tribex is Ametaverse brand built by the community and for the community.

Tribe XEmpire is an ambitiousNFT collectible featuring 11,111 exclusive avatars thatwill live

on the Ethereum Blockchain. their aim is to bridge the tech gap and empower

underrepresented communities. By holding a Tribe X Empire NFT, userswill be eligible for

giveaways, airdrops, whitelisted for future drops, access to members-only

benefits/experiences, access to the Tribe X Ecosystemandmore.

Issuer Tribex

Website https://www.iamtribex.com

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

https://www.iamtribex.com

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview
2.1 Summary

The following is a synopsis of our conclusions fromour analysis of the Tribex implementa-

tion. During the first part of our audit, we examine the smart contract source code and run

the codebase via a static code analyzer. The objective here is to find known coding prob-

lems statically and thenmanually check (reject or confirm) issues highlighted by the tool.

Additionally, we check business logics, system processes, and DeFi-related components

manually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 1

high-severity, 1medium-severity, 3 low-severity vulnerabilities.

Vulnerabilities Severity Status

A.1. User CanBuyWith AHigher Price HIGH Acknowledged

A.2. Missing Value Verification MEDIUM Acknowledged

A.3. Race Condition LOW Acknowledged

A.4. RenounceOwnership LOW Acknowledged

A.5. Floating Pragma LOW Acknowledged

6

3 FindingDetails

A txtest.sol

A.1 User CanBuyWith AHigher Price [HIGH]

Description:

In themintOGSaleandmintWLSale functions, theusers that are included in thepresale can

mintaquantityof tokensafterpayingenoughnative tokens. If theuserpaysmorethannum-

berOfMints * price there is noway to get this amount back.

Code:

Listing 1: txtest.sol

98 require(
99 msg.value >= numberOfMints * OGprice,
100 "Not enough ether to mint, please add more eth to your wallet"
101);

Listing 2: txtest.sol

139 require(
140 msg.value >= numberOfMints * WLprice,
141 "Amount of ether is not enough to mint, please send more eth based

,! on price"
142);

Listing 3: txtest.sol

166 require(
167 msg.value >= numberOfMints * price,
168 "Amount of ether is not enough, please add more eth"
169);

7

Risk Level:

Likelihood – 4

Impact - 4

Recommendation:

It is recommended tomake sure the user pays only the required amount for themint.

Status - Acknowledged

The Tribex teamhas acknowledged the risk stating that the input is controlled by the front-

enduser interface (mint.iamtribex.com)and theuserswill only pay the requiredamount for

the mint. However, the front-end checks are not enough to remediate the risk as it can be

easily bypassed.

A.2 Missing Value Verification [MEDIUM]

Description:

Certain functions lack a safety check in the values, the values of the arguments should be

verified to allow only the ones that go with the contract’s logic. The maxSupply variable

should only be allowed to get updated to a higher value, if not, it will cause a conflict and

it will be possible to have the number of minted tokens be higher than the max supply. In

addition to that, the value of the prices should be verified to be different than zero.

Code:

Listing 4: txtest.sol

300 //change the supply limit
301 function changeSupplyLimit(uint256 _new) external onlyOwner {
302 maxSupply = _new;
303 }
304 //set public mint price
305 function setOGprice(uint256 _new) external onlyOwner {

8

306 OGprice = _new;
307 }
308 function setWLprice(uint256 _new) external onlyOwner {
309 WLprice = _new;
310 }
311 function setMintPrice(uint256 _new) external onlyOwner {
312 price = _new;
313 }

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

It’s recommended to verify the values provided in the arguments. The concerns can be re-

solved by utilizing a require statement.

Status - Acknowledged

The Tribex team has acknowledged the risk stating that the input is controlled by the

front-end user interface (mint.iamtribex.com) and users are limited and only able to mint

per maxSupply, but even with the front-end check , it is still not enough to eliminate the

risk.

A.3 RaceCondition [LOW]

Description:

The prices ofmints aremodifiable by the owner, if a usermint a quantity of tokens then the

owner changes theprice, therewill be apossibility that theowner’s transaction getsmined

first, therefore theuser’s transactionwill getexecutedusing thenewpricewhichwill cause

the user to pay an unexpected amount.

9

Code:

Listing 5: txtest.sol

98 require(
99 msg.value >= numberOfMints * OGprice,
100 "Not enough ether to mint, please add more eth to your wallet"
101);

Listing 6: txtest.sol

139 require(
140 msg.value >= numberOfMints * WLprice,
141 "Amount of ether is not enough to mint, please send more eth based on

,! price"
142);

Listing 7: txtest.sol

166 require(
167 msg.value >= numberOfMints * price,
168 "Amount of ether is not enough, please add more eth"
169);

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

It’s recommended to verify the values provided in the arguments. The concerns can be re-

solved by utilizing a require statement.

Status - Acknowledged

The Tribex teamhas acknowledged the risk.

10

A.4 RenounceOwnership [LOW]

Description:

Typically, the contract’s owner is the account that deploys the contract. As a result, the

owner can perform certain privileged activities. The renounceOwnership function is used

in smart contracts to renounce ownership. However, if the contract’s ownership has never

been transferred before renouncing it, it will never have an Owner, which may result in a

denial of service.

Code:

Listing 8: txtest.sol

16 contract Empire is ERC721A, Ownable, ReentrancyGuard {

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

It isadvised that theOwnercannot call renounceOwnershipwithout first transferringown-

ership to a different address. Additionally, if a multi-signature wallet is utilized, executing

the renounceOwnershipmethodwill require twoormoreusers to sign the transaction. Al-

ternatively, theRenounceOwnership functionality can be disabled by overriding it.

Status - Acknowledged

The Tribex teamhas acknowledged the risk.

11

A.5 Floating Pragma [LOW]

Description:

The contract makes use of the floating-point pragma 0.8.4. Contracts should be deployed

using thesamecompilerversionandflagsthatwereusedduring the testingprocess. Lock-

ing the pragmahelps ensure that contracts are not unintentionally deployed using another

pragma, such as an obsolete version thatmay introduce issues in the contract system.

Code:

Listing 9: txtest.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.4;

Risk Level:

Likelihood – 2

Impact - 2

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

Status - Acknowledged

The Tribex teamhas acknowledged the risk.

12

4 Best Practices

BP.1 Unnecessary variable initialization

Description:

When a variable is declared in solidity, it gets initialized with its type’s default value. Thus,

there is no need to initialize a variablewith the default value.

Code:

Listing 10: txtest.sol

25 bool public OGsaleActive = false;
26 bool public WLsaleActive = false;
27 bool public saleActive = false;

13

5 Static Analysis (Slither)
Description:

ShellBoxes expanded the coverage of the specific contract areas using automated test-

ingmethodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be

usedto testmathematical relationshipsbetweenSolidity instancesstaticallyandvariables

thatallowfor thedetectionoferrorsor inconsistentusageof thecontracts’APIs throughout

the entire codebase.

Results:

Reentrancy in ERC721A._mint(address,uint256,bytes,bool) (contracts/
,! txtest.sol#365-407):

External calls:
- ! _checkContractOnERC721Received(address(0),to,updatedIndex ++,_data)

,! (contracts/txtest.sol#393)
- IERC721Receiver(to).onERC721Received(_msgSender(),from,tokenId,_data

,!) (contracts/txtest.sol#570-580)
State variables written after the call(s):
- _currentIndex = updatedIndex (contracts/txtest.sol#404)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #reentrancy-vulnerabilities-1

ERC721A._checkContractOnERC721Received(address,address,uint256,bytes) (
,! contracts/txtest.sol#564-581) ignores return value by
,! IERC721Receiver(to).onERC721Received(_msgSender(),from,tokenId,
,! _data) (contracts/txtest.sol#570-580)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #unused-return

Variable 'ERC721A._checkContractOnERC721Received(address,address,uint256
,! ,bytes).retval (contracts/txtest.sol#570)' in ERC721A.

14

,! _checkContractOnERC721Received(address,address,uint256,bytes) (
,! contracts/txtest.sol#564-581) potentially used before declaration
,! : retval == IERC721Receiver(to).onERC721Received.selector (
,! contracts/txtest.sol#571)

Variable 'ERC721A._checkContractOnERC721Received(address,address,uint256
,! ,bytes).reason (contracts/txtest.sol#572)' in ERC721A.
,! _checkContractOnERC721Received(address,address,uint256,bytes) (
,! contracts/txtest.sol#564-581) potentially used before declaration
,! : reason.length == 0 (contracts/txtest.sol#573)

Variable 'ERC721A._checkContractOnERC721Received(address,address,uint256
,! ,bytes).reason (contracts/txtest.sol#572)' in ERC721A.
,! _checkContractOnERC721Received(address,address,uint256,bytes) (
,! contracts/txtest.sol#564-581) potentially used before declaration
,! : revert(uint256,uint256)(32 + reason,mload(uint256)(reason)) (
,! contracts/txtest.sol#577)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #pre-declaration-usage-of-local-variables

Address.verifyCallResult(bool,bytes,string) (node_modules/@openzeppelin/
,! contracts/utils/Address.sol#201-221) uses assembly

- INLINE ASM (node_modules/@openzeppelin/contracts/utils/Address.sol
,! #213-216)

ERC721A._checkContractOnERC721Received(address,address,uint256,bytes) (
,! contracts/txtest.sol#564-581) uses assembly

- INLINE ASM (contracts/txtest.sol#576-578)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #assembly-usage

Different versions of Solidity are used:
- Version used: ['^0.8.0', '^0.8.1', '^0.8.4']
- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/IERC721.sol

,! #4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/

,! IERC721Receiver.sol#4)

15

- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/extensions/
,! IERC721Metadata.sol#4)

- ^0.8.1 (node_modules/@openzeppelin/contracts/utils/Address.sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context.sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/Strings.sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/introspection/

,! ERC165.sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/introspection/

,! IERC165.sol#4)
- ^0.8.4 (contracts/txtest.sol#4)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #different-pragma-directives-are-used

ERC721A._burn(uint256) (contracts/txtest.sol#472-474) is never used and
,! should be removed

ERC721A._burn(uint256,bool) (contracts/txtest.sol#486-539) is never used
,! and should be removed

ERC721A._getAux(address) (contracts/txtest.sol#161-163) is never used
,! and should be removed

ERC721A._mint(address,uint256,bytes,bool) (contracts/txtest.sol#365-407)
,! is never used and should be removed

ERC721A._numberBurned(address) (contracts/txtest.sol#154-156) is never
,! used and should be removed

ERC721A._numberMinted(address) (contracts/txtest.sol#147-149) is never
,! used and should be removed

ERC721A._safeMint(address,uint256) (contracts/txtest.sol#333-335) is
,! never used and should be removed

ERC721A._safeMint(address,uint256,bytes) (contracts/txtest.sol#347-353)
,! is never used and should be removed

ERC721A._setAux(address,uint64) (contracts/txtest.sol#169-171) is never
,! used and should be removed

ERC721A._totalMinted() (contracts/txtest.sol#118-124) is never used and
,! should be removed

16

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #dead-code

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
,! IERC721.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
,! IERC721Receiver.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC721/
,! extensions/IERC721Metadata.sol#4) allows old versions

Pragma version^0.8.1 (node_modules/@openzeppelin/contracts/utils/Address
,! .sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context
,! .sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/Strings
,! .sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/
,! introspection/ERC165.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/
,! introspection/IERC165.sol#4) allows old versions

solc-0.8.17 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #incorrect-versions-of-solidity

Low level call in Address.sendValue(address,uint256) (node_modules/
,! @openzeppelin/contracts/utils/Address.sol#60-65):

- (success) = recipient.call{value: amount}() (node_modules/
,! @openzeppelin/contracts/utils/Address.sol#63)

Low level call in Address.functionCallWithValue(address,bytes,uint256,
,! string) (node_modules/@openzeppelin/contracts/utils/Address.sol
,! #128-139):

- (success,returndata) = target.call{value: value}(data) (node_modules/
,! @openzeppelin/contracts/utils/Address.sol#137)

Low level call in Address.functionStaticCall(address,bytes,string) (
,! node_modules/@openzeppelin/contracts/utils/Address.sol#157-166):

17

- (success,returndata) = target.staticcall(data) (node_modules/
,! @openzeppelin/contracts/utils/Address.sol#164)

Low level call in Address.functionDelegateCall(address,bytes,string) (
,! node_modules/@openzeppelin/contracts/utils/Address.sol#184-193):

- (success,returndata) = target.delegatecall(data) (node_modules/
,! @openzeppelin/contracts/utils/Address.sol#191)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #low-level-calls

Parameter ERC721A.safeTransferFrom(address,address,uint256,bytes)._data
,! (contracts/txtest.sol#313) is not in mixedCase

Variable ERC721A._currentIndex (contracts/txtest.sol#67) is not in
,! mixedCase

Variable ERC721A._burnCounter (contracts/txtest.sol#70) is not in
,! mixedCase

Variable ERC721A._ownerships (contracts/txtest.sol#80) is not in
,! mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #conformance-to-solidity-naming-conventions

totalSupply() should be declared external:
- ERC721A.totalSupply() (contracts/txtest.sol#107-113)
balanceOf(address) should be declared external:
- ERC721A.balanceOf(address) (contracts/txtest.sol#139-142)
name() should be declared external:
- ERC721A.name() (contracts/txtest.sol#214-216)
symbol() should be declared external:
- ERC721A.symbol() (contracts/txtest.sol#221-223)
tokenURI(uint256) should be declared external:
- ERC721A.tokenURI(uint256) (contracts/txtest.sol#228-233)
approve(address,uint256) should be declared external:
- ERC721A.approve(address,uint256) (contracts/txtest.sol#247-256)
setApprovalForAll(address,bool) should be declared external:

18

- ERC721A.setApprovalForAll(address,bool) (contracts/txtest.sol
,! #270-275)

transferFrom(address,address,uint256) should be declared external:
- ERC721A.transferFrom(address,address,uint256) (contracts/txtest.sol

,! #287-293)
safeTransferFrom(address,address,uint256) should be declared external:
- ERC721A.safeTransferFrom(address,address,uint256) (contracts/txtest.

,! sol#298-304)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #public-function-that-could-be-declared-external
. analyzed (9 contracts with 78 detectors), 44 result(s) found

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

19

6 Conclusion
Inthisaudit,weexamined thedesignand implementationof Tribexcontract anddiscovered

several issues of varying severity. Tribex team acknowledged all the issues by classifying

them a risk with low-probability of occurrence. Shellboxes’ auditors advised Tribex Team

tomaintain a high level of vigilance and to keep those findings inmind in order to avoid any

future complications.

20

For a Contract Audit, contact us at contact@shellboxes.com

21

mailto:contact@shellboxes.com

	Introduction
	About Tribex
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	txtest.sol
	User Can Buy With A Higher Price [HIGH]
	Missing Value Verification [MEDIUM]
	Race Condition [LOW]
	Renounce Ownership [LOW]
	Floating Pragma [LOW]

	Best Practices
	Unnecessary variable initialization

	Static Analysis (Slither)
	Conclusion

