SHELLBOX

OptionBlitz

Smart Contract Security Audit

Prepared by ShellBoxes
Feb2"d 2023 - Feb 4'", 2023
Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client OptionBlitz

Version 1.0

Classification Public
Scope

Contract Address

BlxToken 0x0502F0fd4Be7854b5749328f7e3DD013B94e858E
Re-Audit

Contract Address

BlxToken 0x0502F0fd4Be7854b5749328f7e3DD013B94e858E
Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

https://etherscan.io/address/0x0502F0fd4Be7854b5749328f7e3DD013B94e858E#code
https://etherscan.io/address/0x0502F0fd4Be7854b5749328f7e3DD013B94e858E#code
mailto:contact@shellboxes.com

Contents

1 Introduction

11 AboutOptionBlitz

1.2 Approach

&Methodology

121 RiskMethodology

2 Findings Overview

YA Summary

2.2 KeyFindings

3 Finding Details

SHB.1 PotentialImbalancein Token Distribution

SHB.2 ApproveRaceCondition

SHB.3 Usageofblocktimestamp

SHB.4 Floatingpragma

4 BestPractices

BP.1 Removeunnecessaryfunction
BP.2 Publicfunctions canbedeclaredexternal
BP.3 EliminateUnnecessaryCode

5 Conclusion

6 ScopeFiles
6.1 Audit . .
6.2 Re-Audit

7 Disclaimer

g N &~ B

O 00 93

12
12
12
13

15

16
16
16

17

1 Introduction

OptionBlitz engaged ShellBoxes to conduct a security assessment on the OptionBlitz be-
ginning on Feb 2", 2023 and ending Feb 4'", 2023. In this report, we detail our methodical
approachto evaluate potential securityissues associated withthe implementation of smart
contracts, by exposing possible semantic discrepancies between the smart contract code
and desigh document, and by recommending additional ideas to optimize the existing code.
Our findings indicate that the current version of smart contracts can still be enhanced fur-
ther due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About OptionBlitz

OptionBlitz is a decentralised trading platform built on the blockchain. You can buy
different types of options including binary options, barrier options, American options,
European Options and Turbos. OptionBlitz also supports liquidity staking where clients
can invest funds in exchange for a revenue share which is generated from fees collected
from traders.

Issuer OptionBlitz

Website https://optionblitz.co

Type Solidity Smart Contract

Whitepaper https://optionblitz.co/static/media/

optionblitz whitepaper.ce295a0d387dd3ce94b9.pdf

Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and

4

https://optionblitz.co
https://optionblitz.co/static/media/optionblitz_whitepaper.ce295a0d387dd3ce94b9.pdf
https://optionblitz.co/static/media/optionblitz_whitepaper.ce295a0d387dd3ce94b9.pdf

implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

= High Critical
2 Medium
£
— Low
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the OptionBlitz imple-
mentation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, this token contract is well-designed and constructed, but the implementation
might be improved by addressing the discovered flaws, which include, 4 low-severity vul-

nerabilities.
Vulnerabilities Severity | Status
SHB.1. Potential Imbalance in Token Distribution Acknowledged
SHB.2. Approve Race Condition Acknowledged
SHB.3. Usage of block.timestamp Acknowledged
SHB.4. Floating pragma Fixed

3 Finding Details

SHB.1 Potential Imbalance in Token Distribution

. Severity: |HOW . Likelihood : 1

- Status: Acknowledged - Impact: 2

The contractdeployment processassignsthe entiretoken supplytoasingle address, which
could result in an imbalance in token distribution. There is a risk that the designated ad-
dress may be incorrect, leading to a situation where the entire supply of tokens isinacces-
sible.

SHB.1.1: BlxToken.sol

w9 constructor (address mintTo) ERC20(name_, symbol) ERC20Permit(name) {

1520 if (mintTo == address(0)) mintTo = _msgSender();
1521 _mint(mintTo, totalSupply_);
1522 }

Itisrecommended to use a multisig as the deployer of the contract to include multiple par-
ties in the supply allocation.

The OptionBlitz team has acknowledged the issue. They have confirmed that the contract
has already been deployed on the mainnet and the initial minter address is correct. Fur-
thermore, theteam has stated thatthetokenswillbetransferredtothetokensale contracts

7

when they are ready, and any remaining balance will be transferred to the DAO Treasury as

documented in the OptionBlitz whitepaper - DECENTRALISED OPTIONS TRADING PROTO-
(0]

SHB.2 Approve Race Condition

- Severity: [EOW| - Likelihood: 1

- Status: Acknowledged - Impact: 2

The standard ERC20 implementation contains a well-known racing condition inits approve
function, wherein a spender can observe the token owner broadcast a transaction alter-
ing their approval,and then quickly sign and broadcast a transaction using transferFrom to
claimthe current approved amount to the spender’s balance. If the spender’s transactionis
verified prior to the owner’s, the spender will be able to receive both approval amounts.

SHB.2.1: BlxToken.sol

27 function approve(address spender, uint256 amount) public virtual

< override returns (bool) {

288 address owner = _msgSender();

289 _approve (owner, spender, amount);
290 return true;

291 }

We recommend using increaseAllowance and decreaseAllowance functions to modify the
approvalamountinstead of usingthe approve functionto modifyit. Thiscanbeimplemented
by overriding the approve function and disabling it using a revert.

https://optionblitz.co/static/media/optionblitz_whitepaper.ce295a0d387dd3ce94b9.pdf
https://optionblitz.co/static/media/optionblitz_whitepaper.ce295a0d387dd3ce94b9.pdf

The OptionBlitz team has acknowledged the potential race condition present in the stan-
dard ERC20 implementation’s approve function and decided to retain the function for com-
patibility reasons. The team is aware that this function is widely expected to be present in
ERC20 contracts and that disabling it could result in compatibility issues with other DApps
and contracts. The approve race conditionis widely known in the industry, and the team be-
lievesthatitisthe responsibility of the usersto be aware of the associated risks and choose
alternative methods if they so choose.

SHB.3 Usage of block.timestamp

- Severity: [EOW] - Likelihood: 1

. Status: Acknowledged » Impact:1

block.timestamp is used in the contract. The variable block is a set of variables. The times-
tamp does not always reflect the current time and may be inaccurate. The value of a block
can be influenced by miners. Maximal Extractable Value attacks require a timestamp of up
to 900 seconds. There is no guarantee that the value is right, all what is guaranteed is that it
is higher than the timestamp of the previous block.

SHB.3.1: BlxToken.sol

s function permit(

1445 address owner,
1446 address spender,
1447 uint256 value,

1448 uint256 deadline,
1449 uint8 v,

1450 bytes32 r,

1451 bytes32 s

uws2) public virtual override {

1453 require(block.timestamp <= deadline, "ERC20Permit: expired deadline
(SN Il);

Verify that a delay of 900 seconds will not harm the logic of the contract.

The OptionBlitz team has taken the issue of using block.timestamp in their contract into
consideration. They have acknowledged this issue, stating that the permit call is only in-
tended to have a short duration, and therefore any potential inaccuracies in block.times-
tamp would not pose a significant risk to the overall business logic.

SHB.4 Floating pragma

- Severity: - - Likelihood: 1

. Status: Fixed - Impact:1

The contract makes use of the floating-point pragma 0.8.0. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionallybe deployed usinganother pragma, whichinsome casesmaybe anobsolete
version, that may introduce issues to the contract system.

10

SHB.4.1: BlxToken.sol

509 pragma solidity ~0.8.0;

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

The OptionBlitz team resolved the issue by fixing the pragma version to 0.8.16 in the hard-

hat.config.js file.

SHB.4.2: hardhat.config.js

{
version: "0.8.16",
settings: {
// viaIR: false,
optimizer: {
enabled: true,
runs: 1000000,
details: {
yul: true,
yulDetails: {
stackAllocation: true,

// optimizerSteps: "dhfoDgvulfnTUtnIf"

1

4 Best Practices

BP.1 Remove unnecessary function

The verifyingContract function returns the contract’'s address; however, this functionis re-
dundantbecause the caller already needs the contract's address toinvoke it. Therefore, the
user will not find this function useful and it is recommended to remove it.

BP.1.1: BlxToken.sol

sy function verifyingContract() public view returns(address) { return
< address(this); }

The OptionBlitz team acknowledged the best-practice, stating that verifyingContract func-

tionisimplemented for clarityandtoinformthe usersthat the verifying contractis the same
as the token contract.

BP.2 Publicfunctions can be declared external

The functions with a public scope that are not called inside the contract should be declared
external to accurately express the visibility of the function.

BP.2.1: BlxToken.sol

1530 function burn(uint256 amount)

1531 public override

12

1532 {
1533 _burn(_msgSender (), amount);

153 T

BP.2.2: BlxToken.sol

537 function verifyingContract() public view returns(address) { return

< address(this); }

The OptionBlitz team acknowledged the best-practice, stating that these functions do not
containmemory/calldata parameters, whichimplies that changing the visibility will not im-
pact the gas cost.

BP.3 Eliminate Unnecessary Code

The IBlxToken interface includes commented code that serves no functional or documen-
tation purposes. To maintain code clarity and efficiency, itisrecommended to eliminate this
unused code.

BP.3.1: BlxToken.sol

uyr interface IB1xToken is IERC20 {

uwe // function update_blxusd(uint256 _blxusd) external returns (uint256);
wuy //

woo // function get_blxusd() external view returns (uint256);

1501 function burn(uint256 amount) external;

2 // function burnFor (address holder, uint256 amount) external;

1503 }

13

The OptionBlitz team acknowledged the best-practice, stating that removing comments
from this contract will not impact the generated byte-code. The Solidity compiler only

includes the necessary instructions for the execution of the contract and does not include
any comments in the generated byte-code.

14

5 Conclusion

In this audit, we examined the design and implementation of OptionBlitz contract and dis-
covered severalissues of varying severity. OptionBlitzteam addressed lissue raisedin the
initial report and implemented the necessary fixes, while classifying the rest as a risk with
low-probability of occurrence. Shellboxes’ auditors advised OptionBlitz Team to maintain
a high level of vigilance and to keep those findings in mind in order to avoid any future com-

plications.

15

6 ScopecFiles

6.1 Audit

Files

MD5 Hash

BlxToken.sol

7f97e2ea8e770adflcdae92ca8f2cd54

6.2 Re-Audit

Files

MD5 Hash

BlxToken.sol

7f97e2ea8e770adflcdae92ca8f2cd54

[

7 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

17

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

18

mailto:contact@shellboxes.com

	Introduction
	About OptionBlitz
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Potential Imbalance in Token Distribution
	Approve Race Condition
	Usage of block.timestamp
	Floating pragma

	Best Practices
	Remove unnecessary function
	Public functions can be declared external
	Eliminate Unnecessary Code

	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

