
OptionBlitz
Smart Contract Security Audit

Prepared by ShellBoxes

Feb 2nd, 2023 - Feb 4th, 2023

Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client OptionBlitz

Version 1.0

Classification Public

Scope

Contract Address

BlxToken 0x0502F0fd4Be7854b5749328f7e3DD013B94e858E

Re-Audit

Contract Address

BlxToken 0x0502F0fd4Be7854b5749328f7e3DD013B94e858E

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://etherscan.io/address/0x0502F0fd4Be7854b5749328f7e3DD013B94e858E#code
https://etherscan.io/address/0x0502F0fd4Be7854b5749328f7e3DD013B94e858E#code
mailto:contact@shellboxes.com

Contents

1 Introduction 4

1.1 About OptionBlitz . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

SHB.1 Potential Imbalance in TokenDistribution . 7

SHB.2 ApproveRaceCondition . 8

SHB.3 Usage of block.timestamp . 9

SHB.4 Floating pragma . 10

4 Best Practices 12

BP.1 Remove unnecessary function . 12

BP.2 Public functions can be declared external . 12

BP.3 Eliminate Unnecessary Code . 13

5 Conclusion 15

6 Scope Files 16

6.1 Audit . 16

6.2 Re-Audit . 16

7 Disclaimer 17

3

1 Introduction
OptionBlitz engaged ShellBoxes to conduct a security assessment on the OptionBlitz be-

ginning on Feb 2nd, 2023 and ending Feb 4th, 2023. In this report, we detail our methodical

approachtoevaluatepotentialsecurity issuesassociatedwiththe implementationofsmart

contracts, by exposing possible semantic discrepancies between the smart contract code

and design document, and by recommending additional ideas to optimize the existing code.

Our findings indicate that the current version of smart contracts can still be enhanced fur-

ther due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About OptionBlitz

OptionBlitz is a decentralised trading platform built on the blockchain. You can buy

different types of options including binary options, barrier options, American options,

European Options and Turbos. OptionBlitz also supports liquidity staking where clients

can invest funds in exchange for a revenue share which is generated from fees collected

from traders.

Issuer OptionBlitz

Website https://optionblitz.co

Type Solidity Smart Contract

Whitepaper https://optionblitz.co/static/media/
optionblitz_whitepaper.ce295a0d387dd3ce94b9.pdf

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

4

https://optionblitz.co
https://optionblitz.co/static/media/optionblitz_whitepaper.ce295a0d387dd3ce94b9.pdf
https://optionblitz.co/static/media/optionblitz_whitepaper.ce295a0d387dd3ce94b9.pdf

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview
2.1 Summary

The following is a synopsis of our conclusions from our analysis of the OptionBlitz imple-

mentation. During the first part of our audit, we examine the smart contract source code

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, this token contract is well-designed and constructed, but the implementation

might be improved by addressing the discovered flaws,which include , 4 low-severity vul-

nerabilities.

Vulnerabilities Severity Status

SHB.1. Potential Imbalance in TokenDistribution LOW Acknowledged

SHB.2. ApproveRaceCondition LOW Acknowledged

SHB.3. Usage of block.timestamp LOW Acknowledged

SHB.4. Floating pragma LOW Fixed

6

3 FindingDetails
SHB.1 Potential Imbalance in TokenDistribution

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

Description:

Thecontractdeploymentprocessassignstheentire tokensupply toasingleaddress,which

could result in an imbalance in token distribution. There is a risk that the designated ad-

dressmay be incorrect, leading to a situationwhere the entire supply of tokens is inacces-

sible.

Files Affected:

SHB.1.1: BlxToken.sol

1519 constructor(address mintTo) ERC20(name_, symbol_) ERC20Permit(name_) {
1520 if (mintTo == address(0)) mintTo = _msgSender();
1521 _mint(mintTo, totalSupply_);
1522 }

Recommendation:

It is recommended to use amultisig as the deployer of the contract to includemultiple par-

ties in the supply allocation.

Updates

The OptionBlitz team has acknowledged the issue. They have confirmed that the contract

has already been deployed on the mainnet and the initial minter address is correct. Fur-

thermore, theteamhasstatedthat thetokenswillbetransferredtothetokensalecontracts

7

when they are ready, and any remaining balancewill be transferred to theDAOTreasury as

documented in the OptionBlitz whitepaper - DECENTRALISED OPTIONS TRADING PROTO-

COL.

SHB.2 ApproveRaceCondition

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

Description:

ThestandardERC20 implementation contains awell-knownracing condition in its approve

function, wherein a spender can observe the token owner broadcast a transaction alter-

ing their approval ,and thenquickly signandbroadcast a transactionusing transferFromto

claim thecurrent approvedamount to thespender’s balance. If thespender’s transaction is

verified prior to the owner’s, the spenderwill be able to receive both approval amounts.

Files Affected:

SHB.2.1: BlxToken.sol

287 function approve(address spender, uint256 amount) public virtual
,! override returns (bool) {

288 address owner = _msgSender();
289 _approve(owner, spender, amount);
290 return true;
291 }

Recommendation:

We recommend using increaseAllowance and decreaseAllowance functions tomodify the

approvalamount insteadofusingtheapprovefunctiontomodify it. Thiscanbeimplemented

by overriding the approve function and disabling it using a revert.

8

https://optionblitz.co/static/media/optionblitz_whitepaper.ce295a0d387dd3ce94b9.pdf
https://optionblitz.co/static/media/optionblitz_whitepaper.ce295a0d387dd3ce94b9.pdf

Updates

The OptionBlitz team has acknowledged the potential race condition present in the stan-

dard ERC20 implementation’s approve function and decided to retain the function for com-

patibility reasons. The team is aware that this function is widely expected to be present in

ERC20 contracts and that disabling it could result in compatibility issueswith other DApps

andcontracts. Theapprove racecondition iswidely known in the industry, and the teambe-

lieves that it is theresponsibilityof theusers tobeawareof theassociatedrisksandchoose

alternativemethods if they so choose.

SHB.3 Usage of block.timestamp

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 1

Description:

block.timestamp is used in the contract. The variable block is a set of variables. The times-

tamp does not always reflect the current time andmay be inaccurate. The value of a block

can be influenced byminers. Maximal Extractable Value attacks require a timestamp of up

to 900seconds. There is noguarantee that the value is right, allwhat is guaranteed is that it

is higher than the timestampof the previous block.

Files Affected:

SHB.3.1: BlxToken.sol

1444 function permit(
1445 address owner,
1446 address spender,
1447 uint256 value,
1448 uint256 deadline,
1449 uint8 v,

9

1450 bytes32 r,
1451 bytes32 s
1452) public virtual override {
1453 require(block.timestamp <= deadline, "ERC20Permit: expired deadline

,! ");

Recommendation:

Verify that a delay of 900 secondswill not harm the logic of the contract.

Updates

The OptionBlitz team has taken the issue of using block.timestamp in their contract into

consideration. They have acknowledged this issue, stating that the permit call is only in-

tended to have a short duration, and therefore any potential inaccuracies in block.times-

tampwould not pose a significant risk to the overall business logic.

SHB.4 Floating pragma

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 1

Description:

The contract makes use of the floating-point pragma 0.8.0. Contracts should be deployed

using the same compiler version. Locking the pragma helps ensure that contractswill not

unintentionallybedeployedusinganotherpragma,which insomecasesmaybeanobsolete

version, thatmay introduce issues to the contract system.

Files Affected:

10

SHB.4.1: BlxToken.sol

1509 pragma solidity ^0.8.0;

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

Updates

The OptionBlitz team resolved the issue by fixing the pragma version to 0.8.16 in the hard-

hat.config.js file.

SHB.4.2: hardhat.config.js

{
version: "0.8.16",
settings: {

// viaIR: false,
optimizer: {

enabled: true,
runs: 1000000,
details: {

yul: true,
yulDetails: {
stackAllocation: true,

// optimizerSteps: "dhfoDgvulfnTUtnIf"
}

}
},

},
}

11

4 Best Practices

BP.1 Remove unnecessary function

Description:

The verifyingContract function returns the contract’s address; however, this function is re-

dundantbecause thecalleralreadyneeds thecontract’saddress to invoke it. Therefore, the

userwill not find this function useful and it is recommended to remove it.

Files Affected:

BP.1.1: BlxToken.sol

1537 function verifyingContract() public view returns(address) { return
,! address(this); }

Status - Acknowledged

TheOptionBlitz teamacknowledged the best-practice, stating that verifyingContract func-

tion is implemented forclarityandto informtheusers that theverifyingcontract is thesame

as the token contract.

BP.2 Public functions can be declared external

Description:

The functionswith a public scope that are not called inside the contract should be declared

external to accurately express the visibility of the function.

Files Affected:

BP.2.1: BlxToken.sol

1530 function burn(uint256 amount)
1531 public override

12

1532 {
1533 _burn(_msgSender(), amount);
1534 }

BP.2.2: BlxToken.sol

1537 function verifyingContract() public view returns(address) { return
,! address(this); }

Status - Acknowledged

The OptionBlitz team acknowledged the best-practice, stating that these functions do not

containmemory/calldataparameters,which implies thatchanging thevisibilitywillnot im-

pact the gas cost.

BP.3 Eliminate Unnecessary Code

Description:

The IBlxToken interface includes commented code that serves no functional or documen-

tationpurposes. Tomaintain codeclarity andefficiency, it is recommended toeliminate this

unused code.

Files Affected:

BP.3.1: BlxToken.sol

1497 interface IBlxToken is IERC20 {
1498 // function update_blxusd(uint256 _blxusd) external returns (uint256);
1499 //
1500 // function get_blxusd() external view returns (uint256);
1501 function burn(uint256 amount) external;
1502 // function burnFor(address holder, uint256 amount) external;
1503 }

13

Status - Acknowledged

The OptionBlitz team acknowledged the best-practice, stating that removing comments

from this contract will not impact the generated byte-code. The Solidity compiler only

includes the necessary instructions for the execution of the contract and does not include

any comments in the generated byte-code.

14

5 Conclusion
In this audit, we examined the design and implementation of OptionBlitz contract and dis-

coveredseveral issuesof varyingseverity. OptionBlitz teamaddressed 1 issue raised in the

initial report and implemented the necessary fixes, while classifying the rest as a riskwith

low-probability of occurrence. Shellboxes’ auditors advised OptionBlitz Team to maintain

a high level of vigilance and to keep those findings inmind in order to avoid any future com-

plications.

15

6 Scope Files

6.1 Audit

Files MD5Hash

BlxToken.sol 7f97e2ea8e770adf1cdae92ca8f2cd54

6.2 Re-Audit

Files MD5Hash

BlxToken.sol 7f97e2ea8e770adf1cdae92ca8f2cd54

16

7 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject that engagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

17

For a Contract Audit, contact us at contact@shellboxes.com

18

mailto:contact@shellboxes.com

	Introduction
	About OptionBlitz
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Potential Imbalance in Token Distribution
	Approve Race Condition
	Usage of block.timestamp
	Floating pragma

	Best Practices
	Remove unnecessary function
	Public functions can be declared external
	Eliminate Unnecessary Code

	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

