SHELLBOXES

Kambria GT
Sync

Smart Contract Security Audit

Prepared by ShellBoxes
March 14t 2023 - March 16", 2023
Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Kambria

Version 1.0

Classification Public
Scope

Contract Name Contract Address

SyncGTLPModule

0x039c13ae33895D41eAAfD6640F1379d3d42080C9

Re-Audit

Contract Name

Contract Address

SyncGTLPModule

Oxa9e23fae19a5c6b23be83369660b7369521b8f61

Contacts
COMPANY EMAIL
ShellBoxes contact@shellboxes.com

https://polygonscan.com/address/0x039c13ae33895D41eAAfD6640F1379d3d42080C9#code
https://polygonscan.com/address/0xa9e23fae19a5c6b23be83369660b7369521b8f61#code
mailto:contact@shellboxes.com

Contents

1 Introduction
11 AboutKambria
1.2 Approach &Methodology
121 RiskMethodology

2 Findings Overview
2.1 Disclaimer
2.2 SUMMaArY
23 KeyFindings

3 Finding Details
SHB.1 UninitializedTokenCanLeadToDOS
SHB.2 The ADMIN Can ManipulateThetokenAddress
SHB.3 Missing Address Verification
SHB.4 Missing Value Verification
SHB.5 Lack of Role Verification in Granting and Revoking Roles Functionality . . .

4 Best Practices
BP.1 Remove The Unused OwnableContract
BP.2 UsePre-incrementInstead Of Post-increment.
BP.3 UseThe DAO Interface ForExternalCalls
BP.4 Refactor Contract Functions for Improved Readability and Maintainability .
BP.5 RemoveUnusedImportedFiles

5 Tests
6 Conclusion

7 ScopeFiles
1.1 Audit . . .
7.2 Re-Audit

8 Disclaimer

o~ O O O a ~N &~ B~

O 00 g9 3

12

14
14
14
15

16

18

19

1 Introduction

Kambria engaged ShellBoxes to conduct a security assessment on the Kambria GT
Sync beginning on March 14!, 2023 and ending March 16!, 2023. In this report, we detail
our methodical approach to evaluate potential security issues associated with the
implementation of smart contracts, by exposing possible semantic discrepancies
between the smart contract code and design document, and by recommending additional
ideas to optimize the existing code. Our findings indicate that the current version of smart
contracts can still be enhanced further due to the presence of many security and
performance concerns.
This document summarizes the findings of our audit.

1.1 About Kambria

Kambria, an open innovation platform for Deep Tech.

Issuer Kambria

Website https://kambria.io

Type Solidity Smart Contract
Documentation Kambria GT Sync Module Document
Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

https://kambria.io
https://drive.google.com/file/d/1LkCLGx5TwLUKrP3rb5KfTzvKaKegQB2b/view

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-

pact and is categorized into four levels, namely Critical, High, Medium, and Low.

Impact

High
Medium

Critical

Low

High Medium Low

Likelihood

2 Findings Overview

2.1 Disclaimer

The SyncGTLPModule contract perform external callsto the XDAO contract. The Shellboxes
team treated this contract as a black box and assumed that it will always behave correctly
as it out of the audit scope.

2.2 Summary

The followingis a synopsis of our conclusions from our analysis of the Kambria GT Sync im-
plementation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.3 KeyFindings

In general, the SyncGTLPModule Smart Contract is well-designed and constructed, but
their implementation might be improved by addressing the discovered flaws, which
include, 2 medium-severity, 2 low-severity, | informational-severity vulnerabilities.

Vulnerabilities Severity Status
SHB.1. Uninitialized Token Can Lead To DOS Fixed
SHB.2. The ADMIN Can Manipulate The token Address Fixed
SHB.3. Missing Address Verification Fixed
SHB.4. Missing Value Verification Fixed

SHB.5. Lack of Role Verification in Granting and Re- | INFORMATIONAL | Fixed
voking Roles Functionality

3 Finding Details

SHB.1 Uninitialized Token Can Lead To DOS

- Severity: _ - Likelihood: 1

- Status: Fixed « Impact: 3

The token variable is supposed to be the address of the governance token, however, this
variableisnotinitializedinthe constructor. Therefore, allthe functionsthatrely onthisvari-

able will have a Denial of Service, as it will be equal to the address(0) before the admin sets
the token to the correct address.

SHB.1.1: SyncGTLPModule.sol

1 Dao public token;

Considerinitializing the token variable to the governance token address in the constructor.

The Kambriateam resolved the issue by initializing the token variable in the constructor.

SHB.1.2: SyncGTLPModule.sol

89 constructor(IDao _token) {

900 require(address(_token) != address(0x0),

s from address 0 ");

"Token must be different

901 token = _token;

SHB.2 The ADMIN Can Manipulate The token Address

- Severity: [HIEBIENI - Likelihood: 1

- Status: Fixed « Impact: 3

The setGT function allows the admin to modify the token address at any time. However, the
contract documentation already specifies one address related to the DAO token. this rep-
resents a significant centralization risk, as the admin can input any malicious token.

SHB.2.1: SyncGTLPModule.sol

2 function setGT(Dao _token) public onlyRole(ADMIN_ROLE) returns (bool) {

27 token = _token;
28 return true;
29 }

Astheaddressisknownbefore deployment,itisrecommendedtosettheaddressonlyonce
inthe constructor orto hard-codeitin the contract.

The Kambria team resolved the issue by removing the setGT function to prevent any modi-
fication.

SHB.3 Missing Address Verification

- Severity: [EOW - Likelihood: 1

- Status: Fixed « Impact: 2

Certain functions lack a safety check in the address, the address-type arguments should
include a zero-address test, otherwise, the contract’s functionality may become inacces-
sible. The setGT function should verify the _token argument to be different from the ad-
dress(0), Also, the mintList, burnList, and the sync functions should make sure that the ad-
dress value of the array arguments is different from the address(0).

SHB.3.1: SyncGTLPModule.sol
2 function setGT(Dao _token) public onlyRole(ADMIN_ROLE) returns (bool) {

27 token = _token;
28 return true;
29 }

SHB.3.2: SyncGTLPModule.sol

s function mintList(address[] memory holders, uint256[] memory amounts)

— external onlyRole(SYNC_ROLE){

SHB.3.3: SyncGTLPModule.sol

s function burnList(address[] memory holders, uint256[] memory amounts)

— external onlyRole(SYNC_ROLE){

SHB.3.4: SyncGTLPModule.sol

ss function sync(address[] memory minters, uint256[] memory mintAmounts,
< address[] memory burners, uint256[] memory burnAmounts) external

< onlyRole (SYNC_ROLE){

We recommend that you make sure the addresses provided in the arguments are different
from the address(0).

The Kambriateam resolved the issue by verifying the addresses provided in the arguments
to be different from the address(0).
SHB.3.5: SyncGTLPModule.sol

s for (uint256 i = 0; i < holders.length; ++i) {
920 require (amounts[i] > O, "All amount must be greater than 0");
921 require(holders[i] '= address(0x0), "Holder must be different from

5 address 0 ");

SHB.4 Missing Value Verification

- Severity: [EOW] - Likelihood: 1

- Status: Fixed « Impact: 2

Certain functions lack a value safety check, the values of the arguments should be verified
to allow only the ones that comply with the contract’s logic. In the mintList, burnList, and
sync functions, the contract must ensure that the values of the amounts array are differ-
entfrom zero, and that the holders and the amounts arrays have the same length, the same
goes for the minters with the mintAmounts array and the burners with burnAmounts array.

SHB.4.1: SyncGTLPModule.sol

10

s function mintList(address[] memory holders, uint256[] memory amounts)

— external onlyRole(SYNC_ROLE){

SHB.4.2: SyncGTLPModule.sol

s function burnList(address[] memory holders, uint256[] memory amounts)

— external onlyRole(SYNC_ROLE){

SHB.4.3: SyncGTLPModule.sol

ss function sync(address[] memory minters, uint256[] memory mintAmounts,
< address[] memory burners, uint256[] memory burnAmounts) external

— onlyRole (SYNC_ROLE){

We recommend that you verify the values provided in the arguments. The issue can be ad-
dressed by utilizing require statements.

The Kambria team resolved the issue by verifying the arguments’ values and lengths to
match the contract’s logic.

SHB.4.4: SyncGTLPModule.sol

ou function _mintOrBurn(string memory _selector, address[] memory holders,

< uint256[] memory amounts) private {

915 require(holders.length == amounts.length, "Arrays length mismatch");
916 require(holders.length != 0, "Holder array is empty");

917 require (amounts.length != 0, "Amount array is empty");

918 bytes memory selector = abi.encodeWithSignature(_selector);

) for (uint256 i = 0; i < holders.length; ++i) {

920 require(amounts[i] > O, "All amount must be greater than 0");

1

SHB.5 Lack of Role Verification in Granting and Revoking
Roles Functionality

. Severity: [INFORMATIONAL - Likelihood : 1

- Status: Fixed « Impact: 0

The contract’s current implementation of role-based access control does not include veri-
fication checks when granting or revoking roles using the grantRole and revokeRole func-

tions. This allows the ADMIN_ROLE to add any arbitrary role to the contract, which may not
be usedin the contract.

SHB.5.1: SyncGTLPModule.sol

2 function grantRole(bytes32 role, address account) public virtual
— override onlyRole(ADMIN_ROLE) {
2 _grantRole(role, account);

2 }

2z function revokeRole(bytes32 role, address account) public virtual
— override onlyRole(ADMIN_ROLE){
2% _revokeRole(role, account);

25 }

ConsideraddingavalidationchecktothegrantRoleandrevokeRole functionstoensure that
only predefined roles can be granted/revoked.

12

The Kambria team resolved the issue by verifying the role argument to be either the AD-
MIN_ROLE or the SYNC_ROLE.

SHB.5.2: SyncGTLPModule.sol

96 function grantRole(bytes32 role, address account) public virtual
— override onlyRole(ADMIN ROLE) {
907 require((role == ADMIN ROLE) (role == SYNC_ROLE), "Role is not
— predefined");

13

4 Best Practices

BP.1 Remove The Unused Ownable Contract

The Ownable contractisamodule which provides abasicaccess controlmechanism, where
there is an account (an owner) that can be granted exclusive access to specific functions.
However, the contract does not make use of the onlyOwner modifier, it is recommended to
remove this contract asitis not usedin the contract’s logic.

BP.1.1: SyncGTLPModule.sol

s contract SyncGTLPModule is Ownable, AccessControl{

The Kambria team implemented the best practice by removing the unused Ownable con-
tract.

BP.2 Use Pre-increment Instead Of
Post-increment

i++ is generally more expensive because it must increment a value and “return” the old
value, so it may require holding two numbers in memory. ++i only ever uses one numberin
memory, therefore, ++i consumes less gas than i++. Make sure to replace i++ with ++iin all
for loops.

14

The Kambria team implemented the best practice by using the pre-increment instead of
post-increment.

BP.3 UseThe DAO Interface For External Calls

The contract imports the Dao.sol contract in order to perform an external call to the exe-
cutePermitted function. Itisrecommended to make use of an interface of the XDao contract
to perform external calls instead of importing all the contract’s code.

BP.3.1: SyncGTLPModule.sol

3 import "./Dao.sol";

The Kambria team implemented the best practice by only importing the interface of the
XDao contract instead of importing all the contract code.

BP.4 Refactor Contract Functions for Improved
Readability and Maintainability

The contract has three functions that perform similar operations, namely, mintList, burn-
List, and sync. Each function iterates over two arrays of addresses and amounts and calls

15

the executePermitted function on the governance token contract, which mints or burns to-
kens. However, the codeinside eachiterationis almostidentical, except for the function se-
lector used. This leads to code duplication, which makes the code harder to read and main-
tain.

Abetter approachisto create anotherfunctionthattakes asinputanarray of addresses
and amounts and a string indicating whether the operationis a mint or a burn. This function
should perform the iteration and the call to executePermitted, with the appropriate signa-
ture. Then, the three existing functions can call this internal function with the appropriate
arguments. This approach reduces code duplication and makes the code easier to read and
maintain.

The Kambriateam followed the best practice by implementing the use of the recommended
code.

BP.5 Remove UnusedImported Files

The contract imports the IERC20, SafeERC20, and ERC20 contracts from the openzeppelin
repository. However, these contracts are not inherited or used anywhere in the
SyncGTLPModule contract, consider removing those imports as they do not provide an
additional value to the contract.

BP.5.1: SyncGTLPModule.sol

s import "Qopenzeppelin/contracts/token/ERC20/IERC20.sol";
7 import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.s0l1";
s import "@openzeppelin/contracts/token/ERC20/ERC20.s0l";

[

The Kambria team implemented the best practice by removing the unused imported file.

17

5 Tests

_
v Setthe GTtoken Smartcontract Address

N

v View the GT address and see if the address is contract ...
N

v Add the sync module to the permited list on XDAO ...

N

v Enter the list of to be mint address and to be mint amount and execute

the Mint function ...

%

v~ Enter the list of to be burn address and to be burn amount and execute

the Mint function ...
%

v~ Do both Mint list and Burn list function ...

18

6 Conclusion

In this audit, we examined the design and implementation of Kambria GT Sync contract and
discovered several issues of varying severity. Kambria team addressed all the issues
raised in the initial report and implemented the necessary fixes.

However Shellboxes’ auditors advised Kambria Team to maintain a high level of vigi-
lance and participate in bounty programs in order to avoid any future complications.

19

7 ScopecFiles

7.1 Audit

Files

MD5 Hash

SyncGTLPModule.sol

166238f6eec00a29a671a23e8e131a05

7.2 Re-Audit

Files

MD5 Hash

SyncGTLPModule2.sol

b80855ef7938bff3d5fcd4d58abé3a8d

20

8 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

21

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

22

mailto:contact@shellboxes.com

	Introduction
	About Kambria
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Disclaimer
	Summary
	Key Findings

	Finding Details
	Uninitialized Token Can Lead To DOS
	The ADMIN Can Manipulate The token Address
	Missing Address Verification
	Missing Value Verification
	Lack of Role Verification in Granting and Revoking Roles Functionality

	Best Practices
	Remove The Unused Ownable Contract
	Use Pre-increment Instead Of Post-increment
	Use The DAO Interface For External Calls
	Refactor Contract Functions for Improved Readability and Maintainability
	Remove Unused Imported Files

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

