
MonionStaking
Contracts

Smart Contract Security Audit

Prepared by ShellBoxes

August 30th, 2022 - September 12th, 2022

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client MonionGlobal

Version 1.0

Classification Public

Scope

TheMonionStaking Contracts Contract in theMonionStaking Contracts Repository

Repo Commit Hash

https://github.com/MonionGlobal/
stakingcontract

30223e5e03c7c5b1712f5cc5bf766373b629e8a3

Files MD5Hash

Admin.sol 46f1a8eab7d1b3b413ee5ac6d521ad05

Monion.sol f516a74a5f53b01536a697f0a389e1ea

RewardPool.sol 637b8c643cb05ff30003c7efef99b83a

Staking.sol 3c51f5d1f0693487fcc50a37256c47a0

2

https://github.com/MonionGlobal/stakingcontract
https://github.com/MonionGlobal/stakingcontract

Re-Audit Scope

Repo Commit Hash

https://github.com/MonionGlobal/
stakingcontract

b1ccba238d1fa7557d1957fae6e29aca8fa74887

Files MD5Hash

Admin.sol 336b51226c9bf4d93a78068785ed4624

Monion.sol e38c21fbfd8b9281f7a284221e38d033

RewardPool.sol af4cbc85dcc4f9756936c03696195571

Staking.sol 44db592953f2398f6ca0999e7820fd23

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

3

https://github.com/MonionGlobal/stakingcontract
https://github.com/MonionGlobal/stakingcontract
mailto:contact@shellboxes.com

Contents
1 Introduction 6

1.1 AboutMonionGlobal . 6

1.2 Approach&Methodology . 7

1.2.1 RiskMethodology . 7

2 FindingsOverview 8

2.1 Summary . 8

2.2 Key Findings . 8

3 FindingDetails 9

A Staking.sol . 9

A.1 TheOwner Can Take TheRewards of the Stakers [HIGH] 9

A.2 RewardsClaimingCan TakeUsersBalances [HIGH] 10

A.3 TheUsers CanGet Higher APY [MEDIUM] 11

A.4 APY Is 2% InsteadOf 20% [MEDIUM] 13

A.5 Possible Desynchronization Between The Pool Balance And The to-

talSupply [MEDIUM] . 14

A.6 Missing Transfer Verification [MEDIUM] 15

A.7 MissingAddress Verification [LOW] 17

A.8 Floating Pragma [LOW] . 18

B Monion.sol . 19

B.1 ApproveRaceCondition [LOW] . 19

B.2 Floating Pragma [LOW] . 20

C Admin.sol . 21

C.1 MissingAddress Verification [LOW] 21

C.2 Floating Pragma [LOW] . 22

D RewardPool.sol . 23

D.1 Missing Transfer Verification [LOW] 23

D.2 Floating Pragma [LOW] . 24

4 Best Practices 25

BP.1 Unnecessary Verifications . 25

BP.2 RemoveDeadCode . 25

4

BP.3 Remove TheHardhat Console In Production 26

5 Tests 27

6 Static Analysis (Slither) 29

7 Conclusion 36

5

1 Introduction
MonionGlobal engaged ShellBoxes to conduct a security assessment on theMonion Stak-

ing Contracts beginning on August 30th, 2022 and ending September 12th, 2022. In this re-

port, we detail our methodical approach to evaluate potential security issues associated

with the implementation of smart contracts, by exposing possible semantic discrepancies

between the smart contract code and design document, and by recommending additional

ideas to optimize the existing code. Our findings indicate that the current version of smart

contracts can still be enhanced further due to the presence of many security and perfor-

mance concerns.

This document summarizes the findings of our audit.

1.1 AboutMonionGlobal

A social NFT marketplace with a multitude of options, faster transactions, unlockable

content, socialwallet, venues, and exhibitions in themetaverse.

Issuer MonionGlobal

Website https://www.monion.io/

Type Solidity Smart Contract

AuditMethod Whitebox

6

https://www.monion.io/

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

7

2 FindingsOverview
2.1 Summary

The following isasynopsisofourconclusions fromouranalysisof theMonionStakingCon-

tracts implementation. During the first part of our audit, we examine the smart contract

source code and run the codebase via a static code analyzer. The objective here is to find

knowncodingproblemsstaticallyand thenmanually check (rejectorconfirm) issueshigh-

lighted by the tool. Additionally, we check business logics, system processes, and DeFi-

related componentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 2

high-severity, 3medium-severity, 7 low-severity vulnerabilities.

Vulnerabilities Severity Status

A.1. TheOwner Can Take TheRewards of the Stakers HIGH Acknowledged

A.2. RewardsClaimingCan TakeUsersBalances HIGH Fixed

A.3. TheUsers CanGet Higher APY MEDIUM Acknowledged

A.4. APY Is 2% InsteadOf 20% MEDIUM Fixed

A.5. Possible Desynchronization Between The Pool

BalanceAnd The totalSupply

MEDIUM Fixed

A.7. MissingAddress Verification LOW Fixed

A.8. Floating Pragma LOW Fixed

B.1. ApproveRaceCondition LOW Fixed

B.2. Floating Pragma LOW Fixed

C.1. MissingAddress Verification LOW Fixed

C.2. Floating Pragma LOW Fixed

D.1. Missing Transfer Verification LOW Fixed

8

3 FindingDetails

A Staking.sol

A.1 TheOwner Can Take TheRewards of the Stakers [HIGH]

Description:

The closePool pool function allows the owner to close the pool and withdraw the pool re-

wards. This represents a significant centralization risk, where the owner have all the con-

trol over the rewards of the stakers.

Code:

Listing 1: Staking.sol

200 function closePool() external whenPaused onlyOwner {
201 require(!isPoolClosed, "Pool Already Closed");

203 uint amount = rewardPool.poolBalance();
204 isPoolClosed = true;
205 rewardPool.transfer(owner, amount);

207 emit ClosedPool(msg.sender, amount);
208 }

Risk Level:

Likelihood – 4

Impact - 5

Recommendation:

It is recommended to remove this functionality as it represents a significant centralization

issue.

9

Status -Acknowledged

TheMonion team has acknowledged the issue, stating that the functionality will be used in

a situationwhere rewards have been left in the pool and unclaimedby users after a signifi-

cantly long time since the contract has closed staking. The teamare planning to use a DAO

asacaller to this function inorder toallowthecommunity tovoteonexecuting the function-

ality if needed.

A.2 RewardsClaimingCan TakeUsersBalances [HIGH]

Description:

The contract transfers the reward amount from its own balance of the stakingToken to the

user when he or she claims their benefits. Userswill have their staked amounts deducted

fromthemif thecontract isnot fundedwith thestakingToken,whichmayprohibit themfrom

withdrawing theirmoney.

Code:

Listing 2: Staking.sol

177 function claimRewards()
178 external
179 whenNotPaused
180 updateReward(msg.sender)
181 nonReentrant
182 {
183 // if(balanceOf[msg.sender] <= 0){
184 // revert Staking__NoStakeInPool();
185 // }

187 if (rewards[msg.sender] <= 0) {
188 revert Staking__NoRewardsAvailable();
189 }
190 require(!isPoolClosed, "Too late! Pool has been closed!");

10

192 uint amount = rewards[msg.sender];
193 rewards[msg.sender] = 0;
194 stakingToken.transfer(msg.sender, amount);

196 emit RewardsClaimed(msg.sender, amount);
197 }

Risk Level:

Likelihood – 3

Impact - 5

Recommendation:

Consider including a clause that prevents reward claims from bringing the contract’s bal-

ance below the totalSupply value, or use the rewardPool contract to distribute rewards. In

addition to that,makesure that thecontract haveenough funds topay thestakers’ rewards.

Status - Fixed

TheMonionteamhasfixedthe issuebyusingtherewardPoolcontract todistributerewards.

A.3 TheUsers CanGet Higher APY [MEDIUM]

Description:

The project states that the APY is set to 20%. However, the users can always add their re-

wards to the staked amount and therefore getting even more rewards, this will result in a

higher APY to the users, which can be estimated using the following formula: ((1 + 0.2/n)n̂ -

1) * 100. n: the number of periods per yearwhen the user restakes his rewards.

Code:

Listing 3: Staking.sol

177 function claimRewards()

11

178 external
179 whenNotPaused
180 updateReward(msg.sender)
181 nonReentrant
182 {
183 // if(balanceOf[msg.sender] <= 0){
184 // revert Staking__NoStakeInPool();
185 // }

187 if (rewards[msg.sender] <= 0) {
188 revert Staking__NoRewardsAvailable();
189 }
190 require(!isPoolClosed, "Too late! Pool has been closed!");

192 uint amount = rewards[msg.sender];
193 rewards[msg.sender] = 0;
194 stakingToken.transfer(msg.sender, amount);

196 emit RewardsClaimed(msg.sender, amount);
197 }

Risk Level:

Likelihood – 4

Impact - 3

Recommendation:

Consider verifying if this behavior is allowed by the business logic or using another token

as a reward token for the stakers.

Status - Acknowledged

TheMonion teamhasacknowledged the issue, stating that this is part of the business logic.

12

A.4 APY Is 2% InsteadOf 20% [MEDIUM]

Description:

The project states that the APY is set to 20%. However, for a diff of one year the staked

amount getsmultiplied by 0,02, therefore, theAPY is 2%.

Code:

Listing 4: Staking.sol

218 function _calcReward() public view returns (uint256) {
219 uint prevBalance = balanceOf[msg.sender];
220 uint diff = _lastTimeRewardApplicable() -
221 userLastUpdateTime[msg.sender];
222 uint numerator = prevBalance * totalReward * diff;
223 uint denominator = maximumPoolMonions * validityPeriod;
224 return numerator / denominator;
225 }

Risk Level:

Likelihood – 2

Impact - 5

Recommendation:

Consider adjusting the numbers to assure the 20% APY, this can be achieved by changing

the totalReward to 1000000 * 1e18.

Status - Fixed

TheMonion teamhas fixed the issue by adjusting the values to offer 20%APY as claimed.

13

A.5 Possible Desynchronization Between The Pool Balance

And The totalSupply [MEDIUM]

Description:

The overall balance of the staking contract and the variable totalSupply will become out of

sync if a user sendsMonion tokensdirectly to the contractwithout using thestake function.

Tokens belonging to the usermay end up being locked in the pool as a result of this.

Code:

Listing 5: Staking.sol

49 uint public totalSupply; //Total amount of ERC20 tokens currently staked
,! in the contract.

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

Todeterminetheexact totalsupplyof thecontractandavoid lockinganyfunds, consider uti-

lizing the balanceOf function.

Status - Fixed

TheMonion teamhas fixed the issue by using the balanceOf function inside the getStaked-

Balance function in order to get the balance of the contract.

14

A.6 Missing Transfer Verification [MEDIUM]

Description:

The ERC20 standard token implementation functions return the transaction status as a

boolean. It is a good practice to check for the return status of the function call to ensure

that the transaction was executed successfully. It is advised to enclose these function

calls with require() to ensure that, when the intended ERC20 function call returns false,

the caller transaction also fails.

Code:

Listing 6: Staking.sol

141 function _unstake(uint amount)
142 internal
143 whenNotPaused
144 updateReward(msg.sender)
145 {
146 if (balanceOf[msg.sender] - amount < 0) {
147 revert Staking__WithdrawLessThanYourBalance();
148 }
149 balanceOf[msg.sender] -= amount;
150 totalSupply -= amount;

152 stakingToken.transfer(msg.sender, amount);

154 emit Unstaked(
155 msg.sender,
156 amount,
157 balanceOf[msg.sender],
158 rewards[msg.sender],
159 totalSupply
160);
161 }

15

Listing 7: Staking.sol

177 function claimRewards()
178 external
179 whenNotPaused
180 updateReward(msg.sender)
181 nonReentrant
182 {
183 // if(balanceOf[msg.sender] <= 0){
184 // revert Staking__NoStakeInPool();
185 // }

187 if (rewards[msg.sender] <= 0) {
188 revert Staking__NoRewardsAvailable();
189 }
190 require(!isPoolClosed, "Too late! Pool has been closed!");

192 uint amount = rewards[msg.sender];
193 rewards[msg.sender] = 0;
194 stakingToken.transfer(msg.sender, amount);

196 emit RewardsClaimed(msg.sender, amount);
197 }

Listing 8: Staking.sol

200 function closePool() external whenPaused onlyOwner {
201 require(!isPoolClosed, "Pool Already Closed");

203 uint amount = rewardPool.poolBalance();
204 isPoolClosed = true;
205 rewardPool.transfer(owner, amount);

207 emit ClosedPool(msg.sender, amount);
208 }

16

Risk Level:

Likelihood – 1

Impact - 4

Recommendation:

Use the safeTransfer function from the safeERC20 implementation, or put the transfer call

inside an assert or require verifying that it returned true.

Status - Fixed

TheMonion teamhas fixed the issuebyusing thesafeTransfer function fromthesafeERC20

implementation.

A.7 MissingAddress Verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type arguments should

include a zero-address test, otherwise, the contract’s functionality may become inacces-

sible. In the constructor, the contractmust ensure that the _stakingTokenand the _reward-

Pool arguments are different from the address(0).

Code:

Listing 9: Staking.sol

63 constructor(address _stakingToken, address _rewardPool) ReentrancyGuard
,! () {

64 owner = msg.sender;
65 stakingToken = IERC20(_stakingToken);
66 rewardPool = Distributor(_rewardPool);
67 finishAt = block.timestamp + validityPeriod; //Time after which

,! staking is no longer permitted.
68 }

17

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that youmake sure the addresses provided in the arguments are different

from the address(0).

Status - Fixed

TheMonion team has fixed the issue by verifying the addresses provided in the arguments

to be different from the address(0).

A.8 Floating Pragma [LOW]

Description:

Thecontractmakesuseof the floating-point pragma0.8. Contractsshouldbedeployedus-

ing thesamecompilerversion. Locking thepragmahelpsensure thatcontractswillnotun-

intentionally be deployed using another pragma, which in some casesmay be an obsolete

version, thatmay introduce issues to the contract system.

Code:

Listing 10: Staking.sol

2 pragma solidity ^0.8;

Risk Level:

Likelihood – 1

Impact - 2

18

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

Status - Fixed

TheMonion teamhas fixed the issue by locking the pragma version to 0.8.7.

B Monion.sol

B.1 ApproveRaceCondition [LOW]

Description:

The standard ERC20 implementation contains a widely known racing condition in its

approve function,wherein a spender canwitness the token owner broadcast a transaction

altering their approval and quickly sign and broadcast a transaction using transferFrom to

move the current approved amount from the owner’s balance to the spender. If the

spender’s transaction is validated before the owner’s, the spender will be able to get both

approval amounts of both transactions.

Code:

Listing 11: Monion.sol

7 contract Monion is ERC20 {

Risk Level:

Likelihood – 1

Impact - 2

19

Recommendation:

We recommend using increaseAllowance and decreaseAllowance functions tomodify the

approval amount instead of using the approve function tomodify it.

Status - Fixed

TheMonion teamhasfixed the issueby implementing theuseof increaseAllowanceandde-

creaseAllowance functions tomodify the approval amount.

B.2 Floating Pragma [LOW]

Description:

The contract makes use of the floating-point pragma 0.8.4. Contracts should be deployed

using the same compiler version. Locking the pragma helps ensure that contractswill not

unintentionallybedeployedusinganotherpragma,which insomecasesmaybeanobsolete

version, thatmay introduce issues to the contract system.

Code:

Listing 12: Monion.sol

2 pragma solidity ^0.8.4;

Risk Level:

Likelihood – 1

Impact - 2

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

20

Status - Fixed

TheMonion teamhas fixed the issue by locking the pragma version to 0.8.7.

C Admin.sol

C.1 MissingAddress Verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type arguments should

include a zero-address test, otherwise, the contract’s functionality may become inacces-

sible. In the setStakingAddress, the contract must ensure that the _account argument is

different from the address(0).

Code:

Listing 13: Admin.sol

17 function setStakingAddress(address _account) external {
18 require(msg.sender == owner, "You cannot call this function");
19 staking = _account;
20 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that youmake sure the addresses provided in the arguments are different

from the address(0).

21

Status - Fixed

TheMonion team has fixed the issue by verifying the addresses provided in the arguments

to be different from the address(0).

C.2 Floating Pragma [LOW]

Description:

The contract makes use of the floating-point pragma 0.8.0. Contracts should be deployed

using the same compiler version. Locking the pragma helps ensure that contractswill not

unintentionallybedeployedusinganotherpragma,which insomecasesmaybeanobsolete

version, thatmay introduce issues to the contract system.

Code:

Listing 14: Admin.sol

4 pragma solidity ^0.8.0;

Risk Level:

Likelihood – 1

Impact - 2

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

Status - Fixed

TheMonion teamhas fixed the issue by locking the pragma version to 0.8.7.

22

D RewardPool.sol

D.1 Missing Transfer Verification [LOW]

Description:

The ERC20 standard token implementation functions return the transaction status as a

boolean. It is a good practice to check for the return status of the function call to ensure

that the transaction was executed successfully. It is the developer’s responsibility to

enclose these function calls with require() to ensure that, when the intended ERC20

function call returns false, the caller transaction also fails.

Code:

Listing 15: RewardPool.sol

29 function transfer(address to, uint256 amount) public nonReentrant() {
30 //confirm address
31 //confirm reward balance
32 require(msg.sender == admin.isStakingAddress(), "You cannot call

,! this function");
33 monion.transfer(to, amount);
34 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

Use the safeTransfer function from the safeERC20 Implementation, or put the transfer call

inside an assert or require verifying that it returned true.

23

Status - Fixed

TheMonion teamhas fixed the issuebyusing thesafeTransfer function fromthesafeERC20

implementation.

D.2 Floating Pragma [LOW]

Description:

The contract makes use of the floating-point pragma 0.8.0. Contracts should be deployed

using the same compiler version. Locking the pragma helps ensure that contractswill not

unintentionallybedeployedusinganotherpragma,which insomecasesmaybeanobsolete

version, thatmay introduce issues to the contract system.

Code:

Listing 16: RewardPool.sol

2 pragma solidity ^0.8.0;

Risk Level:

Likelihood – 1

Impact - 2

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

Status - Fixed

TheMonion teamhas fixed the issue by locking the pragma version to 0.8.7.

24

4 Best Practices

BP.1 Unnecessary Verifications

Description:

There is no need to check that amount > stakingToken.balanceOf(msg.sender) because the

transferFrom will revert if this is the case. The same goes for balanceOf[msg.sender] -

amount < 0, the overflowprotection in the solidity version 0.8will revert the transaction.

Code:

Listing 17: Staking.sol

107 if (amount > stakingToken.balanceOf(msg.sender)) {
108 revert Staking__StakeExceedsYourBalance();
109 }

Listing 18: Staking.sol

135 if (balanceOf[msg.sender] - amount < 0) {
136 revert Staking__WithdrawLessThanYourBalance();
137 }

BP.2 RemoveDeadCode

Description:

There is a commented code in the contract, it is recommended to either utilize this code or

removing the commented code.

Code:

Listing 19: Staking.sol

183 // if(balanceOf[msg.sender] <= 0){

25

184 // revert Staking__NoStakeInPool();
185 // }

Listing 20: Staking.sol

259 // function _timeChecker() internal view returns(bool){
260

261 // }

BP.3 Remove TheHardhat Console In Production

Description:

Remove the hardhat console import before deploying the contract in production.

Code:

Listing 21: Staking.sol

8 import "hardhat/console.sol";

26

5 Tests
Results:

Setup of Architecture
Deployed Processes�

should confirm the staking period of 1 year�
should confirm maximum staked tokens of 500000�
should confirm that the size of the pool is 100000

Test staking operations�
should confirm that the reward pool is funded (49ms)�
the deployer should fund alice, bob and charlie (145ms)

Alice staked at 2022-09-17 11:20:01�
should allow Alice stake at the start of day 3 (92ms)

Bob staked at 2022-10-09 11:20:03�
should allow Bob stake at the start of day 25 (22 days after Alice

,!) (85ms)
Charlie staked at 2023-03-13 11:20:05�

should allow Charlie stake at the start of day 180 (178 days after
,! Alice) (93ms)

Bob initiated unstaking at 2023-04-03 11:20:07
Bob unstaked 21000 at 2023-04-04 11:20:08
Bob's balance before withdrawal was 4000, balance after withdrawal is

,! 25000�
should allow Bob to unstake by day 201 (90ms)

Pool balance is: BigNumber { value: "100000" }
Rewards balance due to Bob: BigNumber { value: "2909" }
Bob's balance before claiming reward was 25000, balance after claiming

,! is 27909�
should allow Bob to claim rewards from the pool (81ms)

VM Exception while processing transaction: reverted with custom error '
,! Staking__UnbondingIncomplete(86399)'�

27

should enforce unbonding time error for Charlie's unstaking at day
,! 201 (63ms)

VM Exception while processing transaction: reverted with custom error '
,! Staking__PoolLimitReached(500000, 500001, 29001)'�

should attempt to stake more than the pool limit (51ms)
Test Pause and Unpause features�

should allow the admin to pause the contract and limit staking
,! features (38ms)�

should allow the admin to pause the contract and limit unstaking
,! features�

should allow the admin to pause the contract and limit claiming
,! features�

should unpause
Post Validity test

Current time period is 2023-09-16 11:20:20
VM Exception while processing transaction: reverted with custom error '

,! Staking__PoolExceededValidityPeriod()'�
should not allow for staking (43ms)�
should allow for unstaking of tokens (64ms)

Alice's balance before claiming rewards was 3000
Alice's balance after claiming rewards was 3396�

should allow for claiming of rewards (62ms)
Tests after owner has closed Pool

VM Exception while processing transaction: reverted with reason string '
,! Pausable: paused'�

should NOT allow any withdrawals of rewards

20 passing (3s)

28

6 Static Analysis (Slither)
Description:

ShellBoxes expanded the coverage of the specific contract areas using automated test-

ingmethodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be

usedto testmathematical relationshipsbetweenSolidity instancesstaticallyandvariables

thatallowfor thedetectionoferrorsor inconsistentusageof thecontracts’APIs throughout

the entire codebase.

Results:

'npx hardhat compile --force' running
Compiled 11 Solidity files successfully
Distributor.transfer(address,uint256) (contracts/RewardPool.sol#29-34)

,! ignores return value by monion.transfer(to,amount) (contracts/
,! RewardPool.sol#33)

StakingRewards.stake(uint256) (contracts/Staking.sol#93-123) ignores
,! return value by stakingToken.transferFrom(msg.sender,address(this
,!),amount) (contracts/Staking.sol#111)

StakingRewards._unstake(uint256) (contracts/Staking.sol#130-150) ignores
,! return value by stakingToken.transfer(msg.sender,amount) (
,! contracts/Staking.sol#141)

StakingRewards.claimRewards() (contracts/Staking.sol#177-197) ignores
,! return value by stakingToken.transfer(msg.sender,amount) (
,! contracts/Staking.sol#194)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #unchecked-transfer

Distributor (contracts/RewardPool.sol#13-42) has incorrect ERC20
,! function interface:Distributor.transfer(address,uint256) (
,! contracts/RewardPool.sol#29-34)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #incorrect-erc20-interface

29

Reentrancy in StakingRewards.initiateUnstake(uint256) (contracts/Staking
,! .sol#154-174):

External calls:
- _unstake(amount) (contracts/Staking.sol#166)
- stakingToken.transfer(msg.sender,amount) (contracts/Staking.sol#141)
State variables written after the call(s):
- unstakingFlagPerUser[msg.sender] = false (contracts/Staking.sol#167)
Reentrancy in StakingRewards.stake(uint256) (contracts/Staking.sol

,! #93-123):
External calls:
- stakingToken.transferFrom(msg.sender,address(this),amount) (contracts

,! /Staking.sol#111)
State variables written after the call(s):
- balanceOf[msg.sender] += amount (contracts/Staking.sol#113)
- totalSupply += amount (contracts/Staking.sol#114)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #reentrancy-vulnerabilities-1
StakingRewards._unstake(uint256) (contracts/Staking.sol#130-150)

,! contains a tautology or contradiction:
- balanceOf[msg.sender] - amount < 0 (contracts/Staking.sol#135)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #tautology-or-contradiction
Admin.setStakingAddress(address)._account (contracts/Admin.sol#17) lacks

,! a zero-check on :
- staking = _account (contracts/Admin.sol#19)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #missing-zero-address-validation

Reentrancy in StakingRewards._unstake(uint256) (contracts/Staking.sol
,! #130-150):

External calls:
- stakingToken.transfer(msg.sender,amount) (contracts/Staking.sol#141)
Event emitted after the call(s):
- Unstaked(msg.sender,amount,balanceOf[msg.sender],rewards[msg.sender],

,! totalSupply) (contracts/Staking.sol#143-149)

30

Reentrancy in StakingRewards.claimRewards() (contracts/Staking.sol
,! #177-197):

External calls:
- stakingToken.transfer(msg.sender,amount) (contracts/Staking.sol#194)
Event emitted after the call(s):
- RewardsClaimed(msg.sender,amount) (contracts/Staking.sol#196)
Reentrancy in StakingRewards.closePool() (contracts/Staking.sol#200-208)

,! :
External calls:
- rewardPool.transfer(owner,amount) (contracts/Staking.sol#205)
Event emitted after the call(s):
- ClosedPool(msg.sender,amount) (contracts/Staking.sol#207)
Reentrancy in StakingRewards.stake(uint256) (contracts/Staking.sol

,! #93-123):
External calls:
- stakingToken.transferFrom(msg.sender,address(this),amount) (contracts

,! /Staking.sol#111)
Event emitted after the call(s):
- Staked(msg.sender,amount,balanceOf[msg.sender],rewards[msg.sender],

,! totalSupply) (contracts/Staking.sol#116-122)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #reentrancy-vulnerabilities-3
StakingRewards.stake(uint256) (contracts/Staking.sol#93-123) uses

,! timestamp for comparisons
Dangerous comparisons:
- block.timestamp > finishAt (contracts/Staking.sol#103)
StakingRewards.initiateUnstake(uint256) (contracts/Staking.sol#154-174)

,! uses timestamp for comparisons
Dangerous comparisons:
- block.timestamp > finishAt (contracts/Staking.sol#155)
- block.timestamp > userToUnstakingTime[msg.sender] (contracts/Staking.

,! sol#165)
StakingRewards._min(uint256,uint256) (contracts/Staking.sol#263-265)

,! uses timestamp for comparisons

31

Dangerous comparisons:
- x <= y (contracts/Staking.sol#264)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #block-timestamp
console._sendLogPayload(bytes) (node_modules/hardhat/console.sol#7-14)

,! uses assembly
- INLINE ASM (node_modules/hardhat/console.sol#10-13)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #assembly-usage
Different versions of Solidity is used:
- Version used: ['>=0.4.22<0.9.0', '^0.8', '^0.8.0', '^0.8.4']
- ^0.8.0 (node_modules/@openzeppelin/contracts/security/Pausable.sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/security/ReentrancyGuard

,! .sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/ERC20.sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/IERC20.sol

,! #4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/extensions/

,! IERC20Metadata.sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context.sol#4)
- ^0.8.0 (contracts/Admin.sol#4)
- ^0.8.4 (contracts/Monion.sol#2)
- ^0.8.0 (contracts/RewardPool.sol#4)
- ^0.8 (contracts/Staking.sol#2)
- >=0.4.22<0.9.0 (node_modules/hardhat/console.sol#2)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #different-pragma-directives-are-used
Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/security/

,! Pausable.sol#4) allows old versions
Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/security/

,! ReentrancyGuard.sol#4) allows old versions
Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/

,! ERC20.sol#4) allows old versions

32

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
,! IERC20.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
,! extensions/IERC20Metadata.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context
,! .sol#4) allows old versions

Pragma version^0.8.0 (contracts/Admin.sol#4) allows old versions
Pragma version^0.8.0 (contracts/RewardPool.sol#4) allows old versions
Pragma version^0.8 (contracts/Staking.sol#2) is too complex
Pragma version>=0.4.22<0.9.0 (node_modules/hardhat/console.sol#2) is too

,! complex
solc-0.8.9 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #incorrect-versions-of-solidity
Parameter Admin.setStakingAddress(address)._account (contracts/Admin.sol

,! #17) is not in mixedCase
Function StakingRewards._calcReward() (contracts/Staking.sol#218-225) is

,! not in mixedCase
Constant StakingRewards.validityPeriod (contracts/Staking.sol#45) is not

,! in UPPER_CASE_WITH_UNDERSCORES
Constant StakingRewards.maximumPoolMonions (contracts/Staking.sol#46) is

,! not in UPPER_CASE_WITH_UNDERSCORES
Constant StakingRewards.totalReward (contracts/Staking.sol#47) is not in

,! UPPER_CASE_WITH_UNDERSCORES
Contract console (node_modules/hardhat/console.sol#4-1532) is not in

,! CapWords
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #conformance-to-solidity-naming-conventions

StakingRewards.slitherConstructorConstantVariables() (contracts/Staking.
,! sol#23-266) uses literals with too many digits:

- maximumPoolMonions = 5000000 * 1e18 (contracts/Staking.sol#46)
StakingRewards.slitherConstructorConstantVariables() (contracts/Staking.

,! sol#23-266) uses literals with too many digits:

33

- totalReward = 100000 * 1e18 (contracts/Staking.sol#47)
console.slitherConstructorConstantVariables() (node_modules/hardhat/

,! console.sol#4-1532) uses literals with too many digits:
- CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67)

,! (node_modules/hardhat/console.sol#5)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #too-many-digits

StakingRewards.contractHasExpired (contracts/Staking.sol#53) should be
,! constant

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #state-variables-that-could-be-declared-constant

name() should be declared external:
- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/ERC20.

,! sol#62-64)
symbol() should be declared external:
- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/ERC20/

,! ERC20.sol#70-72)
decimals() should be declared external:
- ERC20.decimals() (node_modules/@openzeppelin/contracts/token/ERC20/

,! ERC20.sol#87-89)
totalSupply() should be declared external:
- ERC20.totalSupply() (node_modules/@openzeppelin/contracts/token/ERC20

,! /ERC20.sol#94-96)
balanceOf(address) should be declared external:
- ERC20.balanceOf(address) (node_modules/@openzeppelin/contracts/token/

,! ERC20/ERC20.sol#101-103)
transfer(address,uint256) should be declared external:
- ERC20.transfer(address,uint256) (node_modules/@openzeppelin/contracts

,! /token/ERC20/ERC20.sol#113-117)
approve(address,uint256) should be declared external:
- ERC20.approve(address,uint256) (node_modules/@openzeppelin/contracts/

,! token/ERC20/ERC20.sol#136-140)
transferFrom(address,address,uint256) should be declared external:

34

- ERC20.transferFrom(address,address,uint256) (node_modules/
,! @openzeppelin/contracts/token/ERC20/ERC20.sol#158-167)

increaseAllowance(address,uint256) should be declared external:
- ERC20.increaseAllowance(address,uint256) (node_modules/@openzeppelin/

,! contracts/token/ERC20/ERC20.sol#181-185)
decreaseAllowance(address,uint256) should be declared external:
- ERC20.decreaseAllowance(address,uint256) (node_modules/@openzeppelin/

,! contracts/token/ERC20/ERC20.sol#201-210)
isStakingAddress() should be declared external:
- Admin.isStakingAddress() (contracts/Admin.sol#24-26)
transfer(address,uint256) should be declared external:
- Distributor.transfer(address,uint256) (contracts/RewardPool.sol

,! #29-34)
poolBalance() should be declared external:
- Distributor.poolBalance() (contracts/RewardPool.sol#38-40)
getCalcRewardVariables() should be declared external:
- StakingRewards.getCalcRewardVariables() (contracts/Staking.sol

,! #228-241)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #public-function-that-could-be-declared-external
. analyzed (11 contracts with 77 detectors), 53 result(s) found

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

35

7 Conclusion
Inthisaudit,weexamined thedesignand implementationofMonionStakingContractscon-

tract and discovered several issues of varying severity. Monion Global team addressed 12

issues raised in the initial report and implemented the necessary fixes, while classifying

the rest as a riskwith low-probability of occurrence. Shellboxes’ auditors advisedMonion

Global Team tomaintain a high level of vigilance and to keep those findings inmind in order

to avoid any future complications.

36

For a Contract Audit, contact us at contact@shellboxes.com

37

mailto:contact@shellboxes.com

	Introduction
	About Monion Global
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Staking.sol
	The Owner Can Take The Rewards of the Stakers [HIGH]
	Rewards Claiming Can Take Users Balances [HIGH]
	The Users Can Get Higher APY [MEDIUM]
	APY Is 2% Instead Of 20% [MEDIUM]
	Possible Desynchronization Between The Pool Balance And The totalSupply [MEDIUM]
	Missing Transfer Verification [MEDIUM]
	Missing Address Verification [LOW]
	Floating Pragma [LOW]

	Monion.sol
	Approve Race Condition [LOW]
	Floating Pragma [LOW]

	Admin.sol
	Missing Address Verification [LOW]
	Floating Pragma [LOW]

	RewardPool.sol
	Missing Transfer Verification [LOW]
	Floating Pragma [LOW]

	Best Practices
	Unnecessary Verifications
	Remove Dead Code
	Remove The Hardhat Console In Production

	Tests
	Static Analysis (Slither)
	Conclusion

