SHELLBOXE

Unicrypt's
ILO V7

Smart Contract Security Audit

Prepared by ShellBoxes
Dec 24", 2022 - Jan 9", 2023
Shellboxes.com
contact@shellboxes.com


https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Unicrypt

Version 10

Classification Public
Scope

Repository Commit Hash

https://github.com/chainsulting/

ilov7-audit

4571798816bda734fab0edde65c047f09d691762

Re-Audit

Repository

Commit Hash

https://github.com/chainsulting/
ilo7-audit

4083b43f823a3b226f03e27e5achd40cb1d4885b

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com



https://github.com/chainsulting/ilov7-audit
https://github.com/chainsulting/ilov7-audit
https://github.com/chainsulting/ilo7-audit
https://github.com/chainsulting/ilo7-audit
mailto:contact@shellboxes.com

Contents

1 Introduction
11 About Unicrypt . . . . . . . . e
1.2 Approach &Methodology . . . . ... . ... ... ... ... ...
121 RiskMethodology . ... ... ... ... ... . ... ...

2 Findings Overview
2.1 Disclaimer . . . . . . . . .
2.2 SUMMaArY . . . .
23 KeyFindings . . . . . . . . . . ..

3 Finding Details
SHB.1 AnAdminCanBecomeaManager . ... ... ... ... .. ... ......
SHB.2 Admin Can Disable Presale Creation by Setting High Eth Creation Fee . . .
SHB.3 Potential Loss of Functionality in setFacetCuts Function . . . . . ... ...
SHB.4 Denial Of Service Vulnerability Through Owner Finalization Time Frame . .
SHB.5 CentralizationRisk . . . . . . . ... ... .. ..
SHB.6 LockedEther . .. ... ... . . . . ...
SHB.7 WETH addresscanbemanipulated . . . . . ... ... ... ... .......

4 Best Practices
BP.1 Merkle Tree InThe WhitelistContract . . . . . ... ... ... ........
BP.2 Remove Unnecessary Check for Address Zero in _removeAdmin Function
BP.3 Remove Unnecessary Initialization of totalSplitPercentage . . .. ... ..

5 Tests
6 Conclusion

7 ScopeFiles
1.1 Audit . . .
7.2 Re-Audit . . . . . . . .

8 Disclaimer

o~ O O O a ~ &~ B~

oo 0o

24
24
24
25

27

44



1 Introduction

Unicrypt engaged ShellBoxes to conduct a security assessment on the ILO V7 Presale
Smart Contracts beginning on Dec 24", 2022 and ending Jan 9'", 2023. In this report, we
detail our methodical approach to evaluate potential security issues associated with the
implementation of smart contracts, by exposing possible semantic discrepancies
between the smart contract code and design document, and by recommending additional
ideas to optimize the existing code. Our findings indicate that the current version of smart
contracts can still be enhanced further due to the presence of many security and
performance concerns.
This document summarizes the findings of our audit.

1.1 About Unicrypt

Started in June 2020, Unicrypt provides an ever-growing suite of decentralized services.
The objective isto bring value to the DeFi space as a whole by delivering disruptive, flexible
and audited technology.

Issuer Unicrypt

Website https://unicrypt.network/
Type Solidity Smart Contract
Documentation https://docs.unicrypt.network
Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.


https://unicrypt.network/
https://docs.unicrypt.network

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-

pact and is categorized into four levels, namely Critical, High, Medium, and Low.

Impact

High
Medium

Critical

Low

High Medium Low

Likelihood



2 Findings Overview

2.1 Disclaimer

This audit report highlights security issues that were identified within the scope of the au-
dit, which includes all smart contracts in the Ilov7 repository. Despite the client’s develop-
ers having performed unit tests with 100% coverage of the audited contracts, the client has
not taken any action to address or mitigate the risks associated with most of the identified
issues in this report. Therefore, we advise the client to take the necessary action to fix as
many issues as possible in their next version of the project to ensure the security and in-
tegrity of their smart contracts.

2.2 Summary

Thefollowingis a synopsis of our conclusions from our analysis of the Unicrypt'sILOV7 im-
plementation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.3 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include, 1
high-severity, 4 medium-severity, 2 low-severity vulnerabilities.

Vulnerabilities Severity | Status

SHB.1. An Admin Can Become a Manager Acknowledged
SHB.2. Admin Can Disable Presale Creation by Setting Acknowledged
High Eth Creation Fee

SHB.3. Potential Loss of Functionality in setFacetCuts Acknowledged

Function




SHB.4. Denial Of Service Vulnerability Through Owner Acknowledged
Finalization Time Frame

SHB.5. Centralization Risk Acknowledged
SHB.6. Locked Ether Acknowledged

SHB.7. WETH address can be manipulated Acknowledged




3 Finding Details

SHB.1 An Admin Can Become a Manager

- Severity: [HIGH - Likelihood: 2

- Status: Acknowledged - Impact: 3

The AdminRegistry contract manages the admins by adding and removing to an
EnumerableSet. This contract can be implemented using the AdminRegistrylmplementer
.However, any admin <can call the setAdminRegistry function in the

AdminRegistrylmplementer,and set a contract where they are the manager since they are
the deployer, and take full control over the contract.

SHB.1.1: AdminRegistrylmplenter.sol

s function setAdminRegistry(

46 IAdminRegistry _adminRegistry

4 ) external onlyAdmin {

48 require(address(_adminRegistry).code.length > O, "ARI:
<% NO_CONTRACT") ;

49 adminRegistry = _adminRegistry;

) }

Consider implementing the setAdminRegistry with an access control allowing only the
managers to upgrade the AdminRegistry contract. Additionally, it would be better if the
AdminRegistry is not updated until the majority of admins approve it.



The Unicrypt team acknowledged the risk, stating that they are planning to put in place
Multi-signature wallets for management activities, to mitigate the risk.

SHB.2 Admin Can Disable Presale Creation by Setting High
Eth Creation Fee

- Severity: [HIEBIEN - Likelihood: 1

- Status: Acknowledged - Impact:3

The _chargeCreationFee function is responsible for charging the eth creation fee for a new
presale. This fee is set by the admin using the setFees function, which allows the admin to
specify the value of the eth creation fee. However, there is no check in place to ensure that
the fee is set to a reasonable amount. An attacker with admin privileges could exploit this
vulnerability by setting the _ethCreationFee to a very high value, effectively making it im-
possible for users to create new presales and disabling this functionality for the contract.

SHB.2.1: PresaleFactory.sol

g9 function _chargeCreationFee(uint256 _feeProfile) private returns (bool)

— A

620 uint256 creationFee = presaleSettings.getEthCreationFee(
— _feeProfile);

621 require(msg.value == creationFee, "PF: INVALID FEE AMOUNT");
622 (bool sentFee, ) = presaleSettings.getEthFeeReceiver().callq{
623 value: creationFee
624 FC"M);
625 return sentFee;



To mitigate this issue, it is recommended to add a check in the setFees function to ensure
that the _ethCreationFee is set to a reasonable amount. This could be done by adding are-
quire statement to limit the maximum value that can be set for the fee.

The Unicrypt team acknowledged the risk, stating that the likelihood of an admin causing a
denial of service is low.

SHB.3 Potential Loss of Functionality in setFacetCuts Func-

tion

- Severity: [HIEBIEN - Likelihood: 1

- Status: Acknowledged - Impact:3

The setFacetCutsfunctionallowsanadmintosetthe available facet cuts foraDiamondcon-
tract. However, there is currently no check to ensure that the array of facet cuts passed as
an argument, _facetCuts, is not empty. If an empty array is passed, all previous facetCuts
will be deleted and no new ones will be added, effectively disabling the functionality for any
deployed presales that depend on the availability of facet cuts.

SHB.3.1: PresaleGenerator.sol

73 function setFacetCuts(

7 IDiamond.FacetCut[] calldata _facetCuts
75 ) external onlyAdmin {

7% require(canSetFacets, "PG: DISABLED");

10



77

78 // remove all old facets

79 delete facetCuts;

80

8l // add new facets

82 for (uint256 i = 0; i < _facetCuts.length; i++) {
83 facetCuts.push(_facetCuts[i]);

84 }

85 }

Consider addingachecktoensurethatthe _facetCutsarrayisnotemptybeforeallowingthe
deletion of previous facetCuts ,and the addition of new ones. This could be done by adding a
require statement at the beginning of the function to check the length of the array:

SHB.3.2: PresaleGenerator.sol

require(_facetCuts.length > O, "FC: NO_FACET_CUTS_PROVIDED");

Thiswould preventthe loss of functionality by ensuring that at least one facet cutis provided
before allowing the update to proceed.

The Unicrypt Team acknowledged this issue, stating that it is unlikely for an admin to cause
aDoS.

SHB.4 Denial Of Service Vulnerability Through Owner Final-

ization Time Frame

- Severity: [HIEBIEN - Likelihood: 1

- Status: Acknowledged - Impact: 3

1



The function adminSetOwnerFinalizationFrame allows the contract administrator to set
the owner finalization time frame, but does not include any checks to ensure that the
specifiedtime frame is reasonable. If the presale owner is not available and the time frame
is set to a large value, this could potentially cause a denial of service for the contract, as
the owner would not be able to finalize the presale within the allotted time frame.

SHB.4.1: PresaleRestictedFacet.sol

215 function adminSetOwnerFinalizationFrame(uint64 _time) external
— onlyAdmin {

276 LibPresaleInfo.setOwnerFinalization(_time);

277 }

SHB.4.2: PresaleParticipantFacet.sol

155 function finalizePresale() external override nonReentrant {

156 LibPresaleStatus.enforcelsSuccessful ();

157 LibPresaleStatus.enforceLpNotGenerated() ;

158

169 // get storage variables

160 IPresaleSettings settings = IPresaleSettings(LibPresalelInfo.
— settings());

161 LibPresaleInfo.Numbers memory numbers = LibPresaleInfo.numbers();

162

163 // check for owner exclusive finalization timeframe

164 require(

165 numbers.endTime + numbers.ownerFinalizationFrame <

166 block.timestamp

167 msg.sender == LibDiamond.contractOwner (),

168 "PPF: ONLY OWNER TIMEFRAME"

169 )

12



The function should include checks to ensure that the specified ownerFinalizationFrame is
reasonable and does not exceed a certain threshold (e.g. a few days or weeks). This can

help prevent adenial of service attack by ensuring that the presale owner has areasonable
amount of time to finalize the presale.

The Unicrypt team acknowledged this issue, stating it is unlikely to happen.

SHB.5 Centralization Risk

- Severity: [HIEBIEN - Likelihood: 1

- Status: Acknowledged - Impact: 3

The PresaleSettings contract allows updating fees, tokens, and some contracts addresses.
However, asingle admin hastoo much access to update some critical state variables. Addi-

tionally, an admin can force fail any presale at any point, which is a huge centralization risk.

As an example:

- An admin can call the setFeeAddresses with their address in the arguments and re-
ceive all the fees.

SHB.5.1: PresaleLockForwarder.sol

164 function replaceLockerContract (

165 address _locker,

13



166 bool _active

167 ) external onlyAdmin {

168 require(_locker.code.length > 0, "PLF: NO_CONTRACT");

169 address ammFactory = ILPLocker(_locker) .uniswapFactory() ;
10 require(isListedAmm(ammFactory), "PLF: AMM NOT_LISTED");
1 ammInfo [ammFactory] = AmmInfo(_locker, _active);

172 emit ReplacedLocker (ammFactory, _locker, _active);

3 }

SHB.5.2: PresaleSettings.sol

127 function setFeeAddresses/(

128 address payable _ethAddress,

129 address payable _nonEthAddress,

130 address _saleTokenFeeAddress

131 ) external onlyAdmin {

132 require(

133 _ethAddress != address(0) &&

134 _nonEthAddress != address(0) &&

135 _saleTokenFeeAddress != address(0),

136 "PS: Zero address"

137 )4

138 feeSettings.ethFeeReceiver = _ethAddress;

139 feeSettings.nonEthFeeReceiver = _nonEthAddress;
140 feeSettings.saleTokenFeeReceiver = _saleTokenFeeAddress;
10 }

SHB.5.3: PresaleSettings.sol

157 function setFees(

158 uintl6 baseTokenFee,

159 uintl6 _saleTokenFee,

160 uintl6 _referralFee,

161 uintl6 _referralFeeSplit,
162 uint256 ethCreationFee
163 ) external onlyAdmin {

14



164 require(_ethCreationFee >= DENOMINATOR, "PS: Fee too low");

165 require(

166 _baseTokenFee <= DENOMINATOR &&

167 _saleTokenFee <= DENOMINATOR &&

168 _referralFee <= DENOMINATOR &&

169 _referralFeeSplit <= DENOMINATOR,

170 "PS: Fee too high"

1 )4

172 feeSettings.baseTokenFee = _baseTokenFee;
173 feeSettings.saleTokenFee = _saleTokenFee;
174 feeSettings.ethCreationFee = _ethCreationFee;
175 feeSettings.referralFee = _referralFee;

176 feeSettings.referralFeeSplit = _referralFeeSplit;
m }

SHB.5.4: PresaleSettings.sol

w7 function setEmergencyFees/(

188 uintl6 _none,

189 uintl6 _entry,

190 uintl6 mid,

191 uintl6 _high

192 ) external onlyAdmin {

193 // check fee values

194 require(

195 _none <= DENOMINATOR &&

196 _entry <= DENOMINATOR &&

197 _mid <= DENOMINATOR &&

198 _high <= DENOMINATOR,

199 "PS: FEE_TOO_HIGH"

200 )

20 require(_entry <= _none, "PS: ENTRY_TOO_LOW");
202 require(_mid <= _entry, "PS: MID_TOO_LOW");
203 require(_high <= _mid, "PS: HIGH_TOO_LOW");

204 // set emergency fee values



205 emergencyWithdrawlFees[IStaking.Tier.None] = _none;

206 emergencyWithdrawlFees[IStaking.Tier.Entry] = _entry;
207 emergencyWithdrawlFees[IStaking.Tier.Mid] = _mid;

208 emergencyWithdrawlFees[IStaking.Tier.High] = _high;
209 }

SHB.5.5: PresaleSettings.sol

26 function setDefaultReferrer(

an address payable _defaultReferrer

218 ) external onlyAdmin {

219 require(_defaultReferrer !'= address(0), "PS: Zero address");
220 defaultReferrer = _defaultReferrer;

221 }

SHB.5.6: PresaleSettings.sol

20 function setMinLockingliquidity(uint64 minlLiquidity) external onlyAdmin

— {
231 require(_minLiquidity <= DENOMINATOR, "PS: Liquidity too high");
232 generalSettings.minliquidityPercentage = minlLiquidity;
233 }

SHB.5.7: PresaleSettings.sol

29 function setMinLockingDuration(uint64 _minDuration) external onlyAdmin {

240 generalSettings.minliquidityLockingDuration = minDuration;

241 }

SHB.5.8: PresaleSettings.sol

252 function setOwnerFinalizeDuration(uint64 _duration) external onlyAdmin {

253 require(_duration <= 3 days, "PS: Duration too long");
254 generalSettings.ownerFinalizeDuration = _duration;
255 }

SHB.5.9: PresaleSettings.sol

2 function setWhitelist(IWhitelist _whitelist) external onlyAdmin {

[



265 require(address(_whitelist).code.length > 0, "PS: NO_CONTRACT");
266 whitelist = whitelist;

267 }

s function setWeth(IWETH _weth) external onlyAdmin {

27 require (address(_weth) .code.length > 0, "PS: NO_CONTRACT");
278 weth = _weth;
279 }

28 function setTokenVesting(ITokenVesting _tokenVesting) external onlyAdmin

— A
289 require(address(_tokenVesting) .code.length > 0, "PS: NO_CONTRACT
— ");
290 tokenVesting = _tokenVesting;

291 }

300 function setLockForwarder (

301 IPresalelockForwarder lockForwarder

302 ) external onlyAdmin {

303 require(address(_lockForwarder).code.length > 0, "PS: NO_CONTRACT
= ");

304 lockForwarder = lockForwarder;

305 }

314 function setStaking(IStaking _staking) external onlyAdmin {

315 require(address(_staking).code.length > 0, "PS: NO_CONTRACT");
316 staking = _staking;

an }

1

~J



335 function addFeeProfile(

335 bool _activate,

336 uintl6 _baseTokenFeeDiscount,

337 uintl6 _saleTokenFeeDiscount,

338 uintl6 _creationFeeDiscount,

339 uint64 _whitelistSlots

340 ) external onlyAdmin {

3 require(

342 _baseTokenFeeDiscount <= DENOMINATOR &&
343 _saleTokenFeeDiscount <= DENOMINATOR &&
344 _creationFeeDiscount <= DENOMINATOR,
345 "PS: Fee too high"

346 )

347 totalFeeProfiles++;

348 feeProfiles[totalFeeProfiles] = FeeProfile(
349 _activate,

350 _baseTokenFeeDiscount,

351 _saleTokenFeeDiscount,

352 _creationFeeDiscount,

353 _whitelistSlots

354 )

355 }

SHB.5.15: PresaleSettings.sol

s function toggleFeeProfile(

366 bool _activate,

367 uint256 _index

a8 ) external onlyAdmin {

369 require(

370 _index > 0 && _index <= totalFeeProfiles,
371 "PS: PROFILE NOT FQOUND"

372 s

373 feeProfiles[ index].active = _activate;

374 }



SHB.5.16: PresaleRestrictedFacet.sol

¢ function adminForceFail() external onlyAdmin {

267 LibPresaleStatus.enforcelLpNotGenerated() ;
268 _forceFailure();
269 }

To help ensure that changes to the PresaleSettings contract are made with the consensus
of the admins, consider implementing a voting system where the majority of admins must
accept the change in order for it to be applied. This can help prevent a single admin from
making changes to the settings without the agreement of the rest of the group, which could
potentially be harmful to the contract or its users.

The Unicrypt team acknowledged this issue for the following reason, it is unlikely for the
settings to be compromised by an owner.

SHB.6 Locked Ether

- Severity: - - Likelihood: 1

- Status: Acknowledged - Impact: 2

The userDeposit function allows users to deposit either a special ERC20 token (baseToken)
oranativetokenintoapresale,dependingonthe preference ofthe presale owner. However,
if a user deposits both the baseToken and ETH, the same amount of ETH is not refunded to
the user and remains locked inside the contract.

19



SHB.6.1: PresaleParticipantFacet.sol

2z function _userDeposit(uint256 _amount) internal {

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

29

292

293

294

295

296

297

298

299

300

// check if base token is native token
uint256 amountIn = LibPresaleInfo.generallnfo().baselIsNative
? msg.value

_amount;

// get storage variables

LibPresaleBuyers.BuyerInfo storage buyer = LibPresaleBuyers
.getBuyerInfo(msg.sender) ;

LibPresaleInfo.Numbers memory numbers = LibPresalelInfo.numbers();

LibPresaleInfo.GeneralInfo memory info = LibPresalelnfo.
— generallnfo();

LibPresaleStatus.PresaleStatus storage status = LibPresaleStatus
.diamondStorage () ;

bool noHardcap = info.presaleType ==
LibPresalelnfo.PresaleType.NO_HARDCAP;

// get base token allowance for deposit
uint256 allowance = numbers.maxSpendPerBuyer - buyer.
— baseDeposited;
uint256 remainingBaseToken = noHardcap
? type(uint256) .max - status.totalBaseTokensCollected
: numbers.hardcap - status.totalBaseTokensCollected;
allowance = allowance > remainingBaseToken
? remainingBaseToken

: allowance;
// check if amount is greater than deposit allowance

if (amountIn > allowance) {

amountIn = allowance;

20



301

302

303

304

305

306

307

308

309

310

3n

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

// check sale token amount

uint256 saleTokenAmount = noHardcap

?

0

_calculateSaleTokenAmount (amountIn, numbers.tokenPrice);

// update storage variables

if (buyer.baseDeposited == 0) {

status.totalBuyers++;

3
buyer
buyer

.baseDeposited += amountln;

.saleTokensOwed += saleTokenAmount;

status.totalBaseTokensCollected += amountlIn;

status.totalSaleTokensSold += saleTokenAmount;

// return unused native tokens

if (info.baseIsNative && amountIn < msg.value) {

(bool sent, ) = msg.sender.call{value: msg.value - amountIn

(SN }(llll);

require(sent, "PPF: REFUND FAILED");

// send non native base tokens to Presale

if (!info.baseIsNative) {

TransferHelper.safeTransferFrom(

);

info.baseToken,
msg.sender,
address(this),

amountIn

21



Consider requiring the msg.value to be equal to zero when the base token is a non-native
token.

The Unicrypt team acknowledged the risk, stating it is unlikely to happen.

SHB.7 WETH address can be manipulated

- Severity: - - Likelihood: 1

- Status: Acknowledged - Impact: 2

The WETH addressin the contract is not checked for validity, which means that the contract
deployer could potentially manipulate the contract by specifying a malicious WETH contract
address instead of the expected contract. This could have serious consequences for the
contract’s users.

SHB.7.1: PresaleSettings.sol

63 constructor(

84 address payable _defaultReferrer,

65 address _whitelist,

66 address _adminRegistry,

61 address _weth,

68 address _tokenVesting,

69 address _lockForwarder,

70 address _staking

7 ) AdminRegistryImplementer (_adminRegistry) {

22



72 require(_defaultReferrer != address(0), "PS: Zero address");

73 require(

74 _whitelist.code.length > 0 &&

75 _weth.code.length > 0 &&

7% _tokenVesting.code.length > 0 &&
7 _lockForwarder.code.length > 0 &&
78 _staking.code.length > O,

79 "PS: NO_CONTRACT"

80 )

81

82 defaultReferrer = defaultReferrer;

83

84 // set references to other contracts

85 whitelist = IWhitelist( whitelist);

86 weth = IWETH( weth);

Consider initializing the WETH address as a constant in the contract declaration. This will
ensure thatthe WETH address cannot be manipulated by the deployer,and willmake it clear
to the users of the contract what the intended WETH address is.

The Unicrypt team acknowledged the risk, stating that the address is initialized in the con-
structor to enable deploying the contract in different chains.

23



4 Best Practices

BP.1 Merkle Tree In The Whitelist Contract

Using a Merkle tree to implement a whitelist could potentially have some benefits com-
pared to other approaches, such as reducing the gas cost of querying the whitelist and al-
lowing for efficient updates to the whitelist.

To implement a whitelist using a Merkle tree, you would first need to store the hashes
of the whitelisted addresses in the tree offchain ,and store the merkle root in the contract.
You could then use the isWhitelisted function to check if a given address is on the whitelist
by calculating the hash of the address and verifying that it is included in the tree.

To add or remove an address from the whitelist, you would need to update the tree by
inserting or deleting the hash of the address. This would require recalculating the hashes
of the affected nodes in the tree,and changing the Merkle root in the contract.

Overall, using a Merkle tree for a whitelist may be a good solution if you need to effi-
ciently check if a number of addresses are on the whitelist.

The Unicrypt team acknowledged this best practice, and they are planning to implement it.

BP.2 Remove Unnecessary Check for Address

Zeroin _removeAdmin Function

The _removeAdmin function currently containsacheckto ensure thatthe addressbeingre-
moved is not equal to address zero. However, this check is unnecessary, as the _addAd-
min function already enforces the requirement that new admins must not be address zero.
Therefore, the check can be safely removed without affecting the functionality of the con-
tract.

24



Removing this unnecessary check can help simplify the code and make it easier to un-
derstand and maintain. It can also potentially reduce the gas cost of executing the function,
as the checkis an extra step that is not needed.

BP.2.1: AdminRegistry.sol

187 function _removeAdmin(address _oldAdmin) internal {
188 require(_oldAdmin !'= address(0), "AR: ZERO_ADDRESS");
189 require(isAdmin(_oldAdmin), "AR: NOT_REGISTERED");

The Unicrypt team acknowledged this best practice.

BP.3 Remove Unnecessary Initialization of
totalSplitPercentage

The variable totalSplitPercentage is initialized to zero at the beginning of the
_validateAmmParams function. However, this initialization is unnecessary, as the value of
totalSplitPercentage is immediately overwritten in the following line of code. Therefore, it
is recommended to remove the unnecessary initialization of totalSplitPercentage to zero.
This will help simplify the code and reduce the gas cost of executing the function.

BP.3.1: PresaleFactory.sol

485 function _validateAmmParams (

486 LibPresaleInfo.AmmParams memory _ammParams
487 ) private view {

488 require(

25



489 _ammParams.ammIndexes.length == _ammParams.splitPercentages.

— length,
490 "PF: INVALID_ AMM_PARAMS"
s )
492
493 // define variables to check amm parameters for duplicates and
— total split percentage
494 uint256 totalSplitPercentage = O;

The Unicrypt team acknowledged this best practice for the reason being their utmost care
for the code readability.

26



5 Tests

_>

v Should initialize contract correctly

Should add single admin as non-manager by manager
Should add single admin as manager by manager
Should fail adding single admin by not-manager

Should fail adding zero address as admin

N N NN

Should fail adding already registered admin again

Should remove single manager by manager

Should remove single admin by manager

Should fail removing single admin by not-manager
Should fail removing single admin with zero address
Should fail removing single not registered admin

Should fail removing single last admin

N N N N N N

Should fail removing single last manager

Should add multiple admins by manager

Should add multiple managers by manager

NI N

Should add multiple admins and managers by manager



%

SN NN

N N N

N N N

Should fail adding multiple admin by not-manager
Should fail adding multiple admins with different array sizes
Should fail adding zero address as admin

Should fail adding already registered admin again

Should remove multiple admins by manager

Should fail removing multiple admins by not-manager
Should fail removing multiple admin swith zero address
Should fail removing multiple not registered admins

Should fail removing single last admin

Should initialize admin registry implementer correctly

Should set admin registry address by admin

Should fail setting admin registry address by non-admin
Should fail setting admin registry address with invalid address

Should use correct admin list

v~ should have five facets - call to facetAddresses function

v should have the right function selectors - call to facetFunctionSelec-

tors function

v should associate selectors to facets correctly - multiple calls to fac-

etAddress function

28



Should failinitializing Numbers by non factory
Should revert on calling unknown function
Should store facets correctly

Should return correct settings contract address

v

v

v

v

v Should return correct factory contract address
v Should fail adding facet with zero address

v Should fail adding facet with invalid address

v Should fail adding facet no selector

v Should fail adding facet invalid action type

v

Should return supported interfaces correctly

v Should initialize owner correctly
v Should transfer ownership by owner
v~ Should fail transferring ownership by non-owner

%

_>

v~ Should withdraw sale tokens on failure

v~ Should send sale tokens back to owner on withdrawl

v Should fail withdrawing sale token if presale is not failed

v~ Should fail withdrawing sale token by non owner

29



N
v
v
v
v
v
N
v
v
v
v
v
v
v
N
v
v
v
v
N
v
v
v
v

Should set token holding requirement
Should fail setting holding requirement with invalid token

Should fail setting holding requirement with invalid amount

Should fail setting holding requirement if presaleis not queued

Should fail setting holding requirement by non owner

Should postpone presale

Should fail postponing with invalid start time
Should fail postponing with invalid end time

Should fail postponing with invalid round1 start time
Should set free emergency withdraw on postponing
Should fail postponing if presale is failed

Should fail postponing by non owner

Should force presale to fail
Should fail forcing failed presale to fail
Should fail forcing presale to fail by non owner

Should fail forcing failed if lp was created

Should set vesting params
Should fail setting vesting params with invalid percentage
Should fail forcing presale to fail by non owner

Should set free emergency withdraw

30



N
v Should force presale to fail

v Should fail forcing failed presale to fail

v~ Should fail forcing presale to fail by non owner

v Should fail forcing failed if lp was created

_>
v Should set owner finalization frame

v~ Should fail setting owner finalization frame by non owner

_>
v~ Should set custom whitelist
v~ Should fail setting custom whitelist by non owner

v~ Should fail setting custom whitelist with invalid contract

address

v~ Should fail setting custom whitelist for non discounted presale
N
v~ Should initialize factory correctly
v Should fail creating factory with invalid addresses

N
v~ Should calculate scenario 0
v~ Should calculate scenario 1
v~ Should calculate scenario 2
v~ Should calculate scenario 3

v~ Should calculate scenario 4

31



v~ Should fail calculating amount required with invalid liquidity per-

cent

v~ Should fail calculating amount required with invalid sale token fee

%

%

v
v

v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

Should create presale

Should create presale with native base token
Should charge creation fee

Should calculate hardcap correctly

Should transfer sale token amount to presale
Should fail with invalid fee profile

Should fail with invalid sale token

Should fail with invalid base token

Should fail with invalid country code

Should fail with invalid min-max buyer value
Should fail with start time too low

Should fail with invalid round1 start time
Should fail with end time too low

Should fail with invalid liquidity percent
Should fail with locking period too low

Should fail with invalid creation fee

Should fail with invalid listing parameters
Should fail without approving sale token amount
Should fail with invalid softcap <> hardcap ratio

Should fail with invalid amm parameters length

kY.



v Should fail with invalid amm index
v~ Should fail with dublicated amms on splitting
v~ Should fail with invalid splitting percentage

%
v" Should create presale

v Should charge lower creation fee

%
v~ Should create presale
v Should fail with invalid price increase

v~ Should fail with invalid creation fee

_>
v~ Should create presale
v~ Should fail creation by non admin

v~ Should fail creation with invalid fee values
N
v Should set presale registry by admin
v Should set presale settings by admin
v~ Should set country list by admin
v Should fail setting presale registry by non-admin
v Should fail setting presale settings by non-admin

v~ Should fail setting country list by non-admin

%
v~ Should initialize generator correctly

v Should set PresaleFactory by admin
33



S N NS NN

D N N N N N N N

Should fail setting PresaleFactory by not-admin

Should fail setting invalid PresaleFactory

Should set diamond facets by admin

Should fail setting diamond facets by non-admin

Should disable setting diamond facets

Should fail disabling setting diamond facets by not-admin

Should fail creating presale by not-factory

Should create contract

Should fail contract creation with invalid registry address

Should initialize contract correctly

Should fail locking liquidity with not registered presale

Should set presale registry by admin

Should fail setting presale registry by not-admin

Should fail setting invalid presale registry

Should state poolinitialization on existing pool with funds

Should not state poolinitialization on existing pool without funds
—

v Should add amm by admin
v~ Should fail adding amm by not-admin

34



Should fail adding amm with invalid locker contract
Should fail adding amm dublicates

Should activate/deactivate amm by admin

Should fail activating/deactivating amm by not-admin
Should fail toggle unlisted amm

Should fail toggle with invalid status

Should replace locker contract by admin

Should fail replacing locker contract by not-admin

Should fail replacing locker contract with invalid contract

SN N N N N NN

Should fail replacing locker contract with unlisted amm factory

N
v~ Should initialize presale correctly

v~ Should charge custom fees on finalization

N

v Should create discounted presale

v Should initialize discounted presale correctly

v~ Should fail if custom whitelist is not set

v Should charge discounted sale token fee on finalization
v Should charge discounted base token fee on finalization
N

v Should initialize presale correctly

35



N
v
v
v

N
v
v
v
v

_>

Should not calculate sale token amount on deposit
Should track deposited base token amount on deposit

Should allow unlimited base token amount deposit

Should set correct token price on finalization
Should init lp with correct amounts on finalization
Should send correct base token amount to owner on finalization

Should withdraw correct owed sale token amounts

v~ Should initialize regular presale correctly

N N N

NN NN

Should deposit in public round

Should fail depositing while queued

Should fail depositing while private round if not whitelisted
Should deposit in private round if whitelisted

Should fail depositing in public round with insufficient access to-
kens

Should deposit in public round with sufficient access tokens
Should deposit with native token

Should not deposit more than max allowance

Should fail depositing more than max allowance

Should not deposit more than hardcap

36



S N N N N N e N N

D N N NI N3

Should fail depositing if hardcap is already reached
Should refund dust ether
Should send custom base token to presale

Should send native base token to presale

Should withdraw total deposited base token on presale failure
Should fail withdrawing before presale failed

Should fail withdrawing without depositing

Should fail withdrawing twice

Should transfer base token back to user

Should transfer native base token back to user

Should withdraw deposited base token when presale is active
Should not charge fee on postponed presale

Should not charge fee on presale fail

Should failemergency withdraw if presale ended successfully

_>

v Should charge tier type NONE fee
v~ Should charge tier type ENTRY fee
v Should charge tier type MID fee

v~ Should charge tier type HIGH fee

37



SN N N N N N N N N NN

< s s

N N

4

Should finalize presale by owner in owner only time frame
Should fail finalizing presale by anyone in owner only time frame
Should fail finalizing failed presale

Should finalize presale by anyone after owner only time frame
Should set status to failed if pools have been initialized before
Should charge base token fee on presale finalization

Should charge sale token fee on presale finalization

Should charge referrer fee amounts

Should charge referral split fee amounts

Should burn unsold sale tokens

Should create new liquidity pool

Should initialize liquidity pool with correct amounts

Should send owner remaining base token amount on finalization

Should finalize presale with native base tokens
Should initialize pool with weth

Should send owner remaining base token amount

Should emit withdraw event
Should withdraw owed sale tokens
Should fail withdrawing sale tokens if presale is not finalized

Should fail withdrawing sale tokens if nothing deposited

38



Should be in queued status after creation

Should be in round 0 after start time if round 0 duration is set
Should be in round 1 after start time if round 0 duration is not set
Should be in round 1 after round 0

Should be successful if hardcap is met

Should be successful if softcap and end time is met

Should be active if softcap is met but end time is not met

Should be in failed state if softcap is not met but end time is met

Should be in failed state if admin forced failure

SN N N N N NN

Should be finalized if presale was finalized (lp created)

Should initialize registry correctly
Should set factory by owner

Should fail setting factory by non-owner

N
v
v
v
v Should fail setting factory with invalid address
v Should fail registering presale by non factory
v Should emit register event

v Should register created presale correctly

v Should register correct presale type

%

v~ Should initialize settings correctly

39



v Should fail creating contract with invalid addresses

N N N N N N N N N S N N N N N N N N N A

Should set fee addresses

Should fail setting invalid fee addresses

Should set fees

Should fail setting creation fee too low

Should fail setting fees too high

Should set emergency withdrawl fee for different tier levels
Should fail setting emergency withdrawl fees too high
Should fail setting invalid emergency withdrawl fees
Should set staking contract

Should fail setting staking contract with invalid address
Should set default referrer

Should fail setting zero address as default referrer

Should set min locking liquidity percentage

Should fail setting min locking liquidity percentage too high
Should set min locking duration

Should set owner finalize duration

Should fail setting finalize owner duration too long

Should set whitelist address

Should fail setting invalid whitelist address

Should set weth address

Should fail setting invalid weth address

40



SN N N N N NN

D N N N N N U N N N A

—

v

Should set token vesting address

Should fail setting invalid token vesting address
Should set lock forwarder address

Should fail setting invalid lock forwarder address
Should add a custom fee profile

Should fail adding invalid fee profile

Should deactivate/activate existing fee profile

Should fail deactivating invalid fee profile

Should fail setting fee addresses

Should fail setting fees

Should fail setting default referrer

Should fail setting min locking liquidity percentage
Should fail setting min locking duration
Should fail setting owner finalization duration
Should fail setting whitelist address

Should fail setting weth address

Should fail setting token vesting address
Should setting lock forwarder address
Should fail adding a custom fee profile

Should fail activating/deactivating a custom fee profile

Should return default fee for no fee profile

41



v Should returnrelative fee for defined fee profiles

v~ Should fail getting fees for invalid fee profiles

%

v Should initialize whitelist correctly

Should add single user to whitelist by admin
Should fail adding single user by not-admin

Should fail adding zero address

N N

Should fail adding already whitelisted user again

Should remove single user by admin
Should fail removing single user by not-admin

Should fail removing single user with zero address

N NN

Should fail removing single not registered user

Should add multiple users by admin
Should fail adding multiple users by not-admin

Should fail adding zero address as user

DN N N

Should fail adding already registered user again

%
v Should remove multiple users by admin

v~ Should fail removing multiple users by not-admin



v~ Should fail removing multiple users with zero address

v~ Should fail removing multiple not registered users

301 passing (Im)

The code coverage results were obtained by running npx hardhat coverage in the
ilov7-audit-main project. We found the following results :

- Statements Coverage: 98.69%
- Branches Coverage: 92.79%
« Functions Coverage: 100%

- Lines Coverage: 98.62%

43



6 Conclusion

In this audit, we examined the design and implementation of Unicrypt’'s ILO V7 and discov-
ered severalissues of varying severity. Unicrypt team addressed 0 issues raised in the ini-
tial report and implemented the necessary fixes, while classifying the rest as a risk with
low-probability of occurrence. Shellboxes” auditors advised Unicrypt Team to maintain a
high level of vigilance and to keep those findings in mind in order to avoid any future com-
plications.

44



7 ScopecFiles

7.1 Audit

Files

MD5 Hash

ilov7-audit-main/contracts/AdminRegistry.sol

ceab501034f449c0de8992c16f772b17

ilov7-audit-main/contracts/PresaleSettings.sol

6e887398776696aaf55936019b0e858c

ilov7-audit-main/contracts/PresaleRegistry.sol

0eb9653071ea5h8aeebellf01d4a38bb

ilov7-audit-main/contracts/AdminRegistrylmpl
ementer.sol

a50c9ad8259f43e2f7ea838194cb4cal

ilov7-audit-main/contracts/PresaleFactory.sol

c371cc55fd004eecabd7d9ddf7edf7ec

ilov7-audit-main/contracts/PresaleGenerator.s
(o]

c37d1ec8f9f432ce750322c48alf1ff7

ilov7-audit-main/contracts/Whitelist.sol

4b450a5fe9fc11639f7d284bab8acé38

ilov7-audit-main/contracts/PresaleLockForwar
der.sol

9e38cedd9a04884508ea5898dd010695

ilov7-audit-main/contracts/presale/PresaleDia
mond.sol

9f5af6c47425a27d100fd7d34105ec36

ilov7-audit-main/contracts/presale/facets/Dia
mondLoupeFacet.sol

ecle4a84b12a86faa7afa872689b80aéb

ilov7-audit-main/contracts/presale/facets/Pre
saleLoupeFacet.sol

d3bb158338642ff43a537415744e8d2f

ilov7-audit-main/contracts/presale/facets/Pre
saleRestictedFacet.sol

cf64c09ad5537b43cdedd8409ed43f54

ilov7-audit-main/contracts/presale/facets/Pre
saleParticipantFacet.sol

11d1b037714a6184bb37825a32f00889

43




ilov7-audit-main/contracts/presale/facets/Own
ershipFacet.sol

24a5d81d53605ddbe0d0fcchfc03b491

ilov7-audit-main/contracts/presale/interfaces/
IPresaleDiamond.sol

2b407f0283a55ad734682affae76d220

ilov7-audit-main/contracts/presale/interfaces/
IERC173.sol

01d6453755edd41elca03282a3fd9dé6c

ilov7-audit-main/contracts/presale/interfaces/
IDiamond.sol

8e17f7274793b9192b62de2995105%ed

ilov7-audit-main/contracts/presale/interfaces/
IPresaleLoupe.sol

12670d21091e79d8510c9820c8277573

ilov7-audit-main/contracts/presale/interfaces/
IDiamondLoupe.sol

cb84fec62c9738d06639bcb5e9ee333a

ilov7-audit-main/contracts/presale/interfaces/
IPresaleRestrictedFacet.sol

d929dbd182b55583031e9ff62ef5f410

ilov7-audit-main/contracts/presale/interfaces/
IPresaleParticipantFacet.sol

fdb2904642cbad4ffb373164635ee77e

ilov7-audit-main/contracts/presale/libraries/Li
bPresaleStatus.sol

2b966b2eb3aebals9414400644e9ff4Ta

ilov7-audit-main/contracts/presale/libraries/Li
bPresaleVesting.sol

e4350c74a28d07a6e82020c4481acabf

ilov7-audit-main/contracts/presale/libraries/Li
bPresaleBuyers.sol

b460852d4fcd90b70d119854d438ceab

ilov7-audit-main/contracts/presale/libraries/Li
bDiamond.sol

05a999f5fc844a7b4Teb6f485d25d64f

ilov7-audit-main/contracts/presale/libraries/Li
bPresalelnfo.sol

0293c6d23b48b137c4b29b01430ba8ch

ilov7-audit-main/contracts/interfaces/IPresale
Generator.sol

226c5618ddbdbb3a57%afcddaa80e77d

46




ilov7-audit-main/contracts/interfaces/IPresale
LockForwarder.sol

a31b35e4f1695021181755¢715795c29

ilov7-audit-main/contracts/interfaces/IWhitelis
t.sol

11d4de500695f5a86ebbcbce249b00e0

ilov7-audit-main/contracts/interfaces/IAdminR
egistry.sol

2c24161ef45eeffcb73b9ed3141caff4

ilov7-audit-main/contracts/interfaces/IPresale
Factory.sol

ee42130062108a0de2444e89880f56e1

ilov7-audit-main/contracts/interfaces/IPresale
Settings.sol

80aacaelf9a2e614d99685bf09c1841e

ilov7-audit-main/contracts/interfaces/IWETH.s
(o]

4c49fcT788e6e2fbd8b25c1668573d1cl

ilov7-audit-main/contracts/interfaces/ITokenV
esting.sol

e208e353fc117f5c77a156a7250ce2ef

ilov7-audit-main/contracts/interfaces/IPresale
Registry.sol

fd1fe556480ab0288731a764e4bcf497

ilov7-audit-main/contracts/interfaces/ICountry
List.sol

d3a16b2224304344a88eec2913247df3

ilov7-audit-main/contracts/interfaces/AMM/IL
PLocker.sol

45eefdf29b33d90bdfc9692dbb6b20e3b

ilov7-audit-main/contracts/interfaces/AMM/IA
MMFactory.sol

fObfOdbef43963127e2418e49b%bb4le

ilov7-audit-main/contracts/interfaces/AMM/ILi
quidityPool.sol

17b7f21f87dccc460719df89b37b3b03

ilov7-audit-main/contracts/libraries/FullMath.s
(o]}

20819ad28cfd4d57bf2bd2e13985b85f

ilov7-audit-main/contracts/libraries/TransferH
elper.sol

98837f658a121cc8196056425b5b2483

47




7.2 Re-Audit

Files

MD5 Hash

ilo7-audit/contracts/Whitelist.sol

4b450a5fe9fc11639f7d284bab8ac638

ilo7-audit/contracts/PresaleFactory.sol

b5ae673ffbalf2f491af767c3e6d10d0

ilo7-audit/contracts/AdminRegistrylmplemente
r.sol

a50c%ad8259f43e2f7ea838194cb4cal

ilo7-audit/contracts/PresaleGenerator.sol

c37d1ec8f9f432ce750322c48alf1ff7

ilo7-audit/contracts/PresaleRegistry.sol

0eb9653071ea5h8aeebellf01d4a38bb

ilo7-audit/contracts/AdminRegistry.sol

ceab501034f449c0de8992c16f772b17

ilo7-audit/contracts/PresaleLockForwarder.sol

9e38cedd9a04884508ea5898dd010695

ilo7-audit/contracts/PresaleSettings.sol

b62681ab3201a7530f465875dcc8882e

ilo7-audit/contracts/interfaces/IPresaleFactory
.sol

ee42130062108a0de2444e89880f56el

ilo7-audit/contracts/interfaces/IWETH.sol

4¢c49fc788e6e2fbd8b25¢1668573d1cl

ilo7-audit/contracts/interfaces/IWhitelist.sol

11d4de500695f5a86ebbcbce249b00e0

ilo7-audit/contracts/interfaces/IPresaleRegistr
y.sol

fd1fe556480ab0288731a764e4bcf497

ilo7-audit/contracts/interfaces/ICountryList.sol

d3al6b2224304344a88eec2913247df3

ilo7-audit/contracts/interfaces/IPresaleSetting
s.sol

5fa870f0f2dd57café688aaaf7ffefblé

ilo7-audit/contracts/interfaces/IAdminRegistry.
sol

2c24161ef45eeffcb73b9ed3141caff4

ilo7-audit/contracts/interfaces/IPresaleLockFo
rwarder.sol

a31b35e4f1695021181755¢715795c29

48




ilo7-audit/contracts/interfaces/ITokenVesting.s
ol

e208e353fc117f5c77a156a7250ce2ef

ilo7-audit/contracts/interfaces/IPresaleGenera
tor.sol

226c5618ddbdbb3a579afcddaa80e77d

ilo7-audit/contracts/interfaces/AMM/IAMMFact
ory.sol

fObfOdbef43963127e2418e49b%bb4le

ilo7-audit/contracts/interfaces/AMM/ILiquidity
Pool.sol

17b7f21f87dccc460719df89b37b3b03

ilo7-audit/contracts/interfaces/AMM/ILPLocker
.sol

45eefdf29b33d90bdfc9692dbéb20e3b

ilo7-audit/contracts/libraries/TransferHelper.s
(o]

98837f658a121cc8196056425b5b2483

ilo7-audit/contracts/libraries/FullMath.sol

20819ad28cfd4d57bf2bd2e13985b85f

ilo7-audit/contracts/presale/PresaleDiamond.s
(o]

9f5af6c47425a27d100fd7d34105ec36

ilo7-audit/contracts/presale/interfaces/IDiamo
ndLoupe.sol

cb84fec62c9738d06639bch5e9ee333a

ilo7-audit/contracts/presale/interfaces/IPresal
eLoupe.sol

12670d21091e79d8510c9820c8277573

ilo7-audit/contracts/presale/interfaces/IERC17
3.sol

01d6453755edd41elca03282a3fd9dé6c

ilo7-audit/contracts/presale/interfaces/IPresal
eDiamond.sol

2b407f0283a55ad734682affae76d220

ilo7-audit/contracts/presale/interfaces/IPresal
eParticipantFacet.sol

fdb2904642cbad4ffb373164635ee77e

ilo7-audit/contracts/presale/interfaces/IPresal
eRestrictedFacet.sol

d929dbd182b55583031e9ff62ef5f410

49




ilo7-audit/contracts/presale/interfaces/IDiamo
nd.sol

8e17f7274793b9192b62de29951059ed

ilo7-audit/contracts/presale/libraries/LibPresa
leVesting.sol

e4350c74a28d07a6e82020c4481acabf

ilo7-audit/contracts/presale/libraries/LibPresa
leBuyers.sol

b460852d4fcd90b70d119854d438ceab

ilo7-audit/contracts/presale/libraries/LibPresa
leStatus.sol

2b966b2eb3ae4ab9414400644e9ff4Ta

ilo7-audit/contracts/presale/libraries/LibPresa
leInfo.sol

0293c6d23b48b137c4b29b01430ba8¢ch

ilo7-audit/contracts/presale/libraries/LibDiam
ond.sol

05a999f5fc844a7b4Teb6f485d25d64f

ilo7-audit/contracts/presale/facets/Ownership
Facet.sol

24a5d81d53605ddbe0d0fcchfc03b491

ilo7-audit/contracts/presale/facets/PresaleRes
tictedFacet.sol

eeb6847f2c6cbcae8lbcbaebchllc28

ilo7-audit/contracts/presale/facets/PresalePar
ticipantFacet.sol

11d1b037714a6184bb37825a32f00889

ilo7-audit/contracts/presale/facets/DiamondLo
upeFacet.sol

ecle4a84b12a86faa7afa872689b80aéb

ilo7-audit/contracts/presale/facets/PresaleLou
peFacet.sol

d3bb158338642ff43a537415744e8d2f

50




8 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

91



SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

92


mailto:contact@shellboxes.com

	Introduction
	About Unicrypt
	Approach & Methodology
	Risk Methodology


	Findings Overview
	Disclaimer
	Summary
	Key Findings

	Finding Details
	An Admin Can Become a Manager
	Admin Can Disable Presale Creation by Setting High Eth Creation Fee
	Potential Loss of Functionality in setFacetCuts Function
	Denial Of Service Vulnerability Through Owner Finalization Time Frame
	Centralization Risk
	Locked Ether
	WETH address can be manipulated

	Best Practices
	Merkle Tree In The Whitelist Contract
	Remove Unnecessary Check for Address Zero in _removeAdmin Function
	Remove Unnecessary Initialization of totalSplitPercentage

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

