
Kambria
Smart Contract Security Audit

Prepared by ShellBoxes

Nov 21st, 2022 -Nov 24th, 2022

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com


Document Properties

Client Kambria

Version 1.0

Classification Public

Scope

Token Contract Address

Kambria Token (KAT) 0xeF4656d34BDBF49d30078B5ed856681b45414817

Re-Audit

Token Contract Address

Kambria Token (KAT) 0x378C907b04f3D41f96d821318B96CFe1c0f9ddAD

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://testnet.bscscan.com/address/0xeF4656d34BDBF49d30078B5ed856681b45414817#code
https://testnet.bscscan.com/address/0x378C907b04f3D41f96d821318B96CFe1c0f9ddAD#code
mailto:contact@shellboxes.com


Contents

1 Introduction 4

1.1 About Kambria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Approach&Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 RiskMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 FindingsOverview 6

2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 FindingDetails 7

SHB.1 Power Centralization For TheMINTER_ROLEUser . . . . . . . . . . . . . . . 7

SHB.2 ApproveRaceCondition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

SHB.3 TheOwner CanRenounceOwnership . . . . . . . . . . . . . . . . . . . . . . 10

SHB.4 Floating Pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Best Practices 12

BP.1 RemoveSafeMath Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

BP.2 Initialize State TokenAttributes In TheContract Declaration . . . . . . . . . 12

BP.3 Set TheAdminRole In TheConstructor . . . . . . . . . . . . . . . . . . . . . 13

BP.4 RemoveUnnecessary Functions . . . . . . . . . . . . . . . . . . . . . . . . . 14

BP.5 Remove Zero Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Tests 15

6 Conclusion 17

7 Disclaimer 18

3



1 Introduction
Kambria engagedShellBoxes to conduct a security assessment on theKambria beginning

on Nov 21st, 2022 and ending Nov 24th, 2022. In this report, we detail our methodical ap-

proach to evaluate potential security issues associated with the implementation of smart

contracts, by exposing possible semantic discrepancies between the smart contract code

and design document, and by recommending additional ideas to optimize the existing code.

Our findings indicate that the current version of smart contracts can still be enhanced fur-

ther due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Kambria

Kambria, an open innovation platform for Deep Tech.

Issuer Kambria

Website https://kambria.io

Type Solidity Smart Contract

Documentation KATBEP20Smart contract Documentation

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

https://kambria.io
https://drive.google.com/file/d/16WkV83cc9beddC1ecKyfZ3kDKUHLBce_/view


1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5



2 FindingsOverview
2.1 Summary

The following isasynopsisofourconclusions fromouranalysisof theKambria implemen-

tation. During the firstpartofouraudit,weexamine thesmartcontractsourcecodeandrun

the codebase via a static code analyzer. The objective here is to find known coding prob-

lems statically and thenmanually check (reject or confirm) issues highlighted by the tool.

Additionally, we check business logics, system processes, and DeFi-related components

manually to identify potential hazards and/or defects.

2.2 Key Findings

In general, this token contract is well-designed and constructed, but its implementation

might be improved by addressing the discovered flaws, which include , 1 medium-severity,

3 low-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Power Centralization For The MINTER_ROLE

User

MEDIUM Fixed

SHB.2. ApproveRaceCondition LOW Fixed

SHB.3. TheOwner CanRenounceOwnership LOW Fixed

SHB.4. Floating Pragma LOW Fixed

6



3 FindingDetails
SHB.1 Power Centralization For TheMINTER_ROLEUser

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 2

• Impact : 2

Description:

ThemintTo function allows anyMINTER_ROLEuser tomint any amount of tokens to any re-

ceiver address. This represents a significant centralization where the MINTER_ROLE has

toomuch power in the contract. Having this logic, the minter can increase the totalSupply

of the token thereforedecreasing its value. Thesame issuewas found in themint function.

Files Affected:

SHB.1.1: BEP20Token

884 function mint(uint256 amount) public onlyRole(MINTER_ROLE) returns (
,! bool) {

885 _mint(_msgSender(), amount);
886 return true;
887 }
888

889 function mintTo(address receiver,uint256 amount) public onlyRole(
,! MINTER_ROLE) returns (bool) {

890 _mint(receiver, amount);
891 return true;
892 }

7



Recommendation:

Considerhavinga limitedmaximumsupply, or theMINTER_ROLEshouldbeaDAOoramul-

tisigwallet.

Updates

TheKambria teamhas resolved the issue by limiting the supply to 5 billion (5*1e9).

SHB.1.2: BEP20Token

706 function mint(uint256 amount) public onlyRole(MINTER_ROLE) returns (
,! bool) {

707 require(_totalSupply+amount<=5*1e9, "Max total supply is 5
bilion");

708 _mint(_msgSender(), amount);
709 return true;
710 }
711

712 function mintTo(address receiver,uint256 amount) public onlyRole(
,! MINTER_ROLE) returns (bool) {

713 require(_totalSupply+amount<=5*1e9, "Max total supply is 5
bilion");

714 _mint(receiver, amount);
715 return true;
716 }

SHB.2 ApproveRaceCondition

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

8



Description:

The standardERC20 implementation contains awidely known race condition in its approve

function.

Exploit Scenario:

Aspendercanwitness the tokenownerbroadcast a transactionaltering their approval and

quickly signandbroadcast a transactionusing transferFrom tomove the current approved

amount from the owner’s balance to the spender. If the spender’s transaction is validated

before the owner’s, the spenderwill be able to get both approval amounts of both transac-

tions.

Files Affected:

SHB.2.1: BEP20Token

817 function approve(address spender, uint256 amount) external returns (bool
,! ) {

818 _approve(_msgSender(), spender, amount);
819 return true;
820 }

Recommendation:

We recommend using increaseAllowance and decreaseAllowance functions tomodify the

approval amount instead of using the approve function to do so.

Updates

The Kambria team resolved the issue by disabling the approve function and using the in-

creaseAllowance and the decreaseAllowance functions.

SHB.2.2: BEP20Token

639 function approve(address spender, uint256 amount) external {
640 revert("The approve function is disabled, use the increaseAllowance and

,! decreaseAllowance");

9



641 }

SHB.3 TheOwner CanRenounceOwnership

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

Typically, the account that deploys the contract is also its owner. Consequently, the owner

is able to engage in certain privileged activities in his own name. In smart contracts, the

renounceOwnership function is used to renounce ownership, whichmeans that if the con-

tract’s ownership has never been transferred, it will never have an owner, rendering some

owner-exclusive functionality unavailable.

Files Affected:

SHB.3.1: BEP20Token

698 contract BEP20Token is Context, IBEP20, Ownable, AccessControl {

Recommendation:

We recommend that you prevent the owner from calling renounceOwnership without first

transferring ownership to a different address. Additionally, if you decide to use a multi-

signaturewallet, then the execution of the renounceOwnership will require at least two or

more users to be confirmed. Alternatively, you can disable the Renounce Ownership func-

tionality by overriding it.

Updates

TheKambria team resolved the issue by removing the renounceOwnership function.

10



SHB.4 Floating Pragma

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 1

Description:

The contract makes use of the floating-point pragma 0.8.0. Contracts should be deployed

using the same compiler version. Locking the pragma helps ensure that contractswill not

beunintentionallydeployedusinganotherpragma,which insomecasesmaybeanobsolete

version thatmay introduce issues to the contract system.

Files Affected:

SHB.4.1: BEP20Token

5 // SPDX-License-Identifier: MIT
6 pragma solidity ^0.8.13;

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

Updates

TheKambria team resolved the issue by locking the pragma version to 0.8.13.

11



4 Best Practices

BP.1 RemoveSafeMath Library

Description:

The SafeMath library validates if an arithmetic operation would result in an integer over-

flow/underflow. If it would, the library throws an exception, effectively reverting the trans-

action.

Since Solidity 0.8, the overflow/underflow check is implemented.

You don’t need the SafeMath library for a solidity compiler version 0.8.13, it’s

recommended to change all arithmetic operations in the contract :

• x.add(y) to x + y

• x.sub(y) to x - y

• x.mul(y) to x * y

• …

Files Affected:

BP.1.1: BEP20Token

699 using SafeMath for uint256;

Status - Fixed

BP.2 Initialize State Token Attributes In The

Contract Declaration

Description:

Try initializing the tokens ”_name,” ”_symbol,” and ”_decimals” directly in the contract dec-

laration as constant variables instead of initializing them in the constructor().

12



Files Affected:

BP.2.1: BEP20Token

711 constructor() {
712 _name = 'Kambria Token';
713 _symbol = 'KAT';
714 _decimals =18;

Status - Fixed

BP.3 Set TheAdminRole In TheConstructor

Description:

To set the ADMIN_ROLE as an admin role of MINTER_ROLE, you don’t need to override the

getRoleAdmin function;instead, use the admin role setter function

setRoleAdmin(MINTER_ROLE,ADMIN_ROLE) in the constructor.

Files Affected:

BP.3.1: BEP20Token

737 function getRoleAdmin(bytes32 role) public view virtual override
,! returns (bytes32) {

738 if(role == MINTER_ROLE){
739 return ADMIN_ROLE;
740 }
741 else{
742 return 0;
743 }
744 }

13



Status - Fixed

BP.4 RemoveUnnecessary Functions

Description:

Use the grantRole function from AccessControl to assign a role to a specific account, and

removethegrantMinterRoleandgrantAdminRolefunctionsfromtheBEP20Tokencontract.

Files Affected:

BP.4.1: BEP20Token

722 function grantMinterRole(address account) public onlyRole(ADMIN_ROLE)
,! returns (bool) {

723 _grantRole(MINTER_ROLE, account);
724 return true;
725 }
726 function grantAdminRole( address account) public virtual onlyOwner {
727 _grantRole(ADMIN_ROLE, account);
728 }

Status - Fixed

BP.5 Remove Zero Initialization

Files Affected:

BP.5.1: BEP20Token

715 _totalSupply = 0;
716 _balances[msg.sender] = _totalSupply;

Status - Fixed

14



5 Tests
Results:

-> Contract: BEP20Token (20 passing)

X Should return owner address

X Should returnADMIN_ROLE address

X Should returnMINTER_ROLE address

X Should return allowance

X Should return decimals

X Should return token name

X Should return symbol

X Should return boolean

X Should return totalSupply

X Should returnBoolean

X Should return balanceOf an account

X testmint 10000 amount

X testmintTo 10000 amount

X test decreaseAllowance

X test grantRole

X test renounceRole

X test revokeRole

15



X test increaseAllowance

X test transfer

X test burn

16



6 Conclusion
In this audit, we examined the design and implementation of Kambria contract and discov-

ered several issues of varying severity. Kambria team addressed all the issues raised in

the initial report and implemented the necessary fixes.

However Shellboxes’ auditors advised Kambria Team to maintain a high level of vigi-

lance and participate in bounty programs in order to avoid any future complications.

17



7 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject that engagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

18



For a Contract Audit, contact us at contact@shellboxes.com

19

mailto:contact@shellboxes.com

	Introduction
	About Kambria
	Approach & Methodology
	Risk Methodology


	Findings Overview
	Summary
	Key Findings

	Finding Details
	Power Centralization For The MINTER_ROLE User
	Approve Race Condition
	The Owner Can Renounce Ownership
	Floating Pragma

	Best Practices
	Remove SafeMath Library
	Initialize State Token Attributes In The Contract Declaration
	Set The Admin Role In The Constructor
	Remove Unnecessary Functions 
	Remove Zero Initialization

	Tests
	Conclusion
	Disclaimer

