
Sukiyaki
Finance

Smart Contract Security Audit

Prepared by ShellBoxes

Feb 13th, 2023 - Feb 14th, 2023

Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Sukiyaki Finance

Version 1.0

Classification Public

Scope

Contract Name Contact Address

Sukiyaki 0xD212046F89680aC9F106B9c63f314cc9808e18d5

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://etherscan.io/address/0xD212046F89680aC9F106B9c63f314cc9808e18d5#code
mailto:contact@shellboxes.com

Contents

1 Introduction 5

1.1 About Sukiyaki Finance . 5

1.2 Approach&Methodology . 5

1.2.1 RiskMethodology . 6

2 FindingsOverview 7

2.1 Disclaimer . 7

2.2 Summary . 7

2.3 Key Findings . 7

3 FindingDetails 9

SHB.1 Missing critical return value check . 9

SHB.2 The tokensForBurn is set to zerowithout burning tokens 10

SHB.3 Missing fee andmax transaction exclusion update in the transferOwnership 11

SHB.4 The owner has total control over the contract funds 12

SHB.5 Perfoming divisions beforemultiplications reduces precision 14

SHB.6 Missing fee limitation . 15

SHB.7 CentralizationRisk . 17

SHB.8 TransactionOrderDependency . 17

SHB.9 Centralized token allocation . 19

SHB.10 Approve race condition . 19

SHB.11 Using .transfer() to transfer Ether . 20

SHB.12 The early buy penalty is not documented . 21

SHB.13 The owner can renounce ownership . 22

4 Best Practices 24

BP.1 The functions and state variables lack documentation 24

BP.2 Remove unnecessary transferOwnership call 25

BP.3 Remove unnecessary initializations . 25

BP.4 Use revert statements instead of require . 26

BP.5 Use pre-increment instead of post-increment 26

BP.6 Emiting events should be done after statemodifications 27

BP.7 RemoveUnnecessary require statements 28

3

5 Tests 29

6 Conclusion 30

7 Scope Files 31

7.1 Audit . 31

8 Disclaimer 32

4

1 Introduction
SukiyakiFinanceengagedShellBoxes toconductasecurityassessmenton theSukiyakiFi-

nance beginning on Feb 13th, 2023 and ending Feb 14th, 2023. In this report, we detail our

methodical approach to evaluate potential security issues associated with the implemen-

tationof smart contracts, by exposingpossible semantic discrepanciesbetween thesmart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Sukiyaki Finance

Sukiyaki - The world’s first AI powered DEX aggregator, uses custom built AI to route for

best prices on chain and cross chain for users, thereby gaining points ahead of the

competition over 65% of the time on Ethereum, Binance Smart Chain, Arbitrum and

Polygon.

Issuer Sukiyaki Finance

Website https://sukiyaki.finance

Type Solidity Smart Contract

Whitepaper Sukiyaki OfficialWhite paper

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

5

https://sukiyaki.finance
https://drive.google.com/file/d/1llRU4e2QNZGnKarTbW8DvSS3VzPxSsAa/view

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6

2 FindingsOverview
2.1 Disclaimer

The Sukiyaki Finance team has decided to acknowledge our findings and not proceed with

the fixes due to the fact that the contract is renounced and the liquidity pool is locked. The

contract renouncing is based on their community’s demand post the Fair-launch with the

goal of building their community’s trust.

2.2 Summary

Thefollowing isasynopsisofourconclusionsfromouranalysisof theSukiyakiFinance im-

plementation. During the first part of ouraudit,weexamine thesmart contract sourcecode

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.3 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 2

high-severity, 7medium-severity, 4 low-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Missing critical return value check HIGH Acknowledged

SHB.2. The tokensForBurn isset to zerowithoutburn-

ing tokens

HIGH Acknowledged

SHB.3. Missing fee andmax transaction exclusionup-

date in the transferOwnership

MEDIUM Acknowledged

SHB.4. The owner has total control over the contract

funds

MEDIUM Acknowledged

7

SHB.5. Perfoming divisions beforemultiplications re-

duces precision

MEDIUM Acknowledged

SHB.6. Missing fee limitation MEDIUM Acknowledged

SHB.7. CentralizationRisk MEDIUM Acknowledged

SHB.8. TransactionOrderDependency MEDIUM Acknowledged

SHB.9. Centralized token allocation MEDIUM Acknowledged

SHB.10. Approve race condition LOW Acknowledged

SHB.11. Using .transfer() to transfer Ether LOW Acknowledged

SHB.12. The early buy penalty is not documented LOW Acknowledged

SHB.13. The owner can renounce ownership LOW Acknowledged

8

3 FindingDetails
SHB.1 Missing critical return value check

• Severity : HIGH

• Status : Acknowledged

• Likelihood : 2

• Impact : 3

Description:

The swapBack function can be called either by the owner or by the transfer function if cer-

tain conditions are met. This function distributes the contract funds that were collected

from the transfer fees to the devAddress, the marketingAddress, and the liquidity pools.

This function ismissingacritical checkover the returnvalueof thecall function that isused

for transferring the eth value. Therefore, if the call fails the transaction will not revert and

both thevariables tokensForDevand tokensForMarketingwill beset tozero,which implies

that the devAddress and themarketingAddresswill permanently lose those funds.

Files Affected:

SHB.1.1: Sukiyaki.sol

688 tokensForLiquidity = 0;
689 tokensForMarketing = 0;
690 tokensForDev = 0;
691 tokensForBurn = 0;
692

693 if(liquidityTokens > 0 && ethForLiquidity > 0){
694 addLiquidity(liquidityTokens, ethForLiquidity);
695 }
696

697 (success,) = address(devAddress).call{value: ethForDev}("");
698

9

699 (success,) = address(marketingAddress).call{value: address(this).balance
,! }("");

Recommendation:

The trivial recommendation will be to use require statements to assure the success vari-

able is equal to true. However, this can introduce a new risk where the devAddress and

the marketingAddress can revert any call to the swapBack function, causing a DoS. Con-

sider using the _safeTransferETHWithFallback function for transferring ether to avoid all

the risks:

SHB.1.2: Sukiyaki.sol

function _safeTransferETHWithFallback(address to, uint256 amount)
,! internal {
if (!_safeTransferETH(to, amount)) {

WETH.deposit{value: amount}();
WETH.transfer(to, amount);

}
}
function _safeTransferETH(address to, uint256 amount)

internal
returns (bool)

{
(bool success,) = to.call{value: amount}(new bytes(0));
return success;

}

SHB.2 The tokensForBurn is set to zero without burning to-

kens

• Severity : HIGH

• Status : Acknowledged

• Likelihood : 3

• Impact : 2

10

Description:

In the swapBack function, the tokensForBurn are supposed to be burned whenever the

value is greater than zero. When the contract balance is lower than the tokensForBurn,

the variable is set to zero without burning any tokens, which represents a critical

innaccuracy in the contract logic.

Files Affected:

SHB.2.1: Sukiyaki.sol

659 if(tokensForBurn > 0 && balanceOf(address(this)) >= tokensForBurn) {
660 _burn(address(this), tokensForBurn);
661 }
662 tokensForBurn = 0;

Recommendation:

Consider setting the tokensForBurn to zero onlywhen there are enough tokens in the con-

tract. When thebalance is lower than the tokensForBurn, considereitherburning theavail-

able balance and decrementing the variable or skipping the burning stepwithout updating

the variable and the tokensForBurnwill be burned in the future callswhen there is enough

balance to fulfill the requirement.

SHB.3 Missing fee and max transaction exclusion update in

the transferOwnership

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 3

• Impact : 1

11

Description:

The Sukiyaki contract makes use of the Ownable contract to allow the owner to perform

privileged actions. By default, the Sukiyaki contract excludes the owner from the fees and

the restrictionover themax transactionamount. However, the transferOwnership function

isnotadapted to thisbehavior, changing theownerwill keep theoldownerexcludedand the

newownerwill not have these exclusions.

Files Affected:

SHB.3.1: Sukiyaki.sol

206 function transferOwnership(address newOwner) public virtual onlyOwner {
207 require(newOwner != address(0), "Ownable: new owner is the zero

,! address");
208 emit OwnershipTransferred(_owner, newOwner);
209 _owner = newOwner;
210 }

Recommendation:

Consider overriding the transferOwnership function and implementing the exclusion up-

dateby includingtheoldownerback in thefees ,themaxtransactionamountrestriction ,and

excluding the newowner from these restrictions.

SHB.4 The owner has total control over the contract funds

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The transferForeignToken and thewithdrawStuckETH functions allows the owner to with-

drawanyamountof tokensoretherfromthecontract. Thisrepresentsasignificantcentral-

12

ization risk over the contract’s funds, where the owner have total control over the contract

balancewhich is a shared ressource between the dev,marketing, and the liquidity pools.

Files Affected:

SHB.4.1: Sukiyaki.sol

702 function transferForeignToken(address _token, address _to) external
,! onlyOwner returns (bool _sent) {

703 require(_token != address(0), "_token address cannot be 0");
704 require(_token != address(this), "Can't withdraw native tokens");
705 uint256 _contractBalance = IERC20(_token).balanceOf(address(this));
706 _sent = IERC20(_token).transfer(_to, _contractBalance);
707 emit TransferForeignToken(_token, _contractBalance);
708 }

SHB.4.2: Sukiyaki.sol

711 function withdrawStuckETH() external onlyOwner {
712 bool success;
713 (success,) = address(msg.sender).call{value: address(this).balance

,! }("");
714 }

Recommendation:

Consider removing the following functions or setting some limitation over them to reduce

the risk.

13

SHB.5 Perfoming divisions before multiplications reduces

precision

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 2

• Impact : 2

Description:

The result of integer division in solidity is an integer value. As a result, dividing beforemul-

tiplyingwill result in inaccurate results, and loss of precision.

Files Affected:

SHB.5.1: ContractName.sol

576 if(earlyBuyPenaltyInEffect() && automatedMarketMakerPairs[from] && !
,! automatedMarketMakerPairs[to] && buyTotalFees > 0){

577

578 if(!boughtEarly[to]){
579 boughtEarly[to] = true;
580 botsCaught += 1;
581 emit CaughtEarlyBuyer(to);
582 }
583

584 fees = amount * 99 / 100;
585 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;
586 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;
587 tokensForDev += fees * buyDevFee / buyTotalFees;
588 tokensForBurn += fees * buyBurnFee / buyTotalFees;
589 }
590

591 // on sell
592 else if (automatedMarketMakerPairs[to] && sellTotalFees > 0){

14

593 fees = amount * sellTotalFees / 100;
594 tokensForLiquidity += fees * sellLiquidityFee / sellTotalFees;
595 tokensForMarketing += fees * sellMarketingFee / sellTotalFees;
596 tokensForDev += fees * sellDevFee / sellTotalFees;
597 tokensForBurn += fees * sellBurnFee / sellTotalFees;
598 }
599

600 // on buy
601 else if(automatedMarketMakerPairs[from] && buyTotalFees > 0) {
602 fees = amount * buyTotalFees / 100;
603 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;
604 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;
605 tokensForDev += fees * buyDevFee / buyTotalFees;
606 tokensForBurn += fees * buyBurnFee / buyTotalFees;
607 }

Recommendation:

Considerperformingmultiplicationoperationsbeforedivisionsto improvethecalculation’s

precision.

SHB.6 Missing fee limitation

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The owner is the one responsible for modifying the buy and sell fees using the

updateBuyFees and the updateSellFees respectively. These functions lack a limitation

over the fee value, this allows the owner to specify any amount as a fee, which can break

the structure of the contract and result in unexpected results for the users.

15

Files Affected:

SHB.6.1: Sukiyaki.sol

474 function updateBuyFees(uint256 _marketingFee, uint256 _liquidityFee,
,! uint256 _DevFee, uint256 _burnFee) external onlyOwner {

475 buyMarketingFee = _marketingFee;
476 buyLiquidityFee = _liquidityFee;
477 buyDevFee = _DevFee;
478 buyBurnFee = _burnFee;
479 buyTotalFees = buyMarketingFee + buyLiquidityFee + buyDevFee +

,! buyBurnFee;
480 require(buyTotalFees <= 35, "Must keep fees at 35% or less");
481 }

SHB.6.2: Sukiyaki.sol

483 function updateSellFees(uint256 _marketingFee, uint256 _liquidityFee,
,! uint256 _DevFee, uint256 _burnFee) external onlyOwner {

484 sellMarketingFee = _marketingFee;
485 sellLiquidityFee = _liquidityFee;
486 sellDevFee = _DevFee;
487 sellBurnFee = _burnFee;
488 sellTotalFees = sellMarketingFee + sellLiquidityFee + sellDevFee +

,! sellBurnFee;
489 require(sellTotalFees <= 35, "Must keep fees at 35% or less");
490 }

Recommendation:

It is recommended to limit the fees to a reasonable amount in order to provide a guarantee

for the users and to prevent any unexpected outputs.

16

SHB.7 CentralizationRisk

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

Using the onlyOwner modifier on almost all functions creates a centralization problem by

allowingtheownertohavecompletecontrolover thefunctionalityof thecontractwhichcan

potentially lead tomisuse or abuse of power.

Recommendation:

To address this issue, it’s important to implement more decentralized and democratic ap-

proaches to decision-making, such as multi-signature control or community governance

models that distribute powermore evenly.

SHB.8 TransactionOrderDependency

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

A race condition vulnerability occurs when code depends on the order of the transactions

submitted to it. The project contains somemodifiable variables that might be impacted by

the execution order of the transaction.

Files Affected:

17

SHB.8.1: Sukiyaki.sol

474 function updateBuyFees(uint256 _marketingFee, uint256 _liquidityFee,
,! uint256 _DevFee, uint256 _burnFee) external onlyOwner {

475 buyMarketingFee = _marketingFee;
476 buyLiquidityFee = _liquidityFee;
477 buyDevFee = _DevFee;
478 buyBurnFee = _burnFee;
479 buyTotalFees = buyMarketingFee + buyLiquidityFee + buyDevFee +

,! buyBurnFee;
480 require(buyTotalFees <= 35, "Must keep fees at 35% or less");
481 }

SHB.8.2: Sukiyaki.sol

483 function updateSellFees(uint256 _marketingFee, uint256 _liquidityFee,
,! uint256 _DevFee, uint256 _burnFee) external onlyOwner {

484 sellMarketingFee = _marketingFee;
485 sellLiquidityFee = _liquidityFee;
486 sellDevFee = _DevFee;
487 sellBurnFee = _burnFee;
488 sellTotalFees = sellMarketingFee + sellLiquidityFee + sellDevFee +

,! sellBurnFee;
489 require(sellTotalFees <= 35, "Must keep fees at 35% or less");
490 }

Recommendation:

Consider adding the fees as arguments then adding a require statement to verify the argu-

ments to be equal to the fees stored in the contract, or consider notifying the community

with any change in terms of the fees tomitigate the risk.

18

SHB.9 Centralized token allocation

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

In the constructor, the owner of the contract mints all the total supply to his address. This

represents a significant centralization risk where the deployer has too much power over

the total supply of the token.

Files Affected:

SHB.9.1: Sukiyaki.sol

384 _createInitialSupply(newOwner, totalSupply);

Recommendation:

It is recommended touseaDAOoramultisig as thedeployerof the contract to includemul-

tiple parties in the supply allocation.

SHB.10 Approve race condition

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

Description:

The standard ERC20 implementation contains a widely known racing condition in its ap-

prove function.

19

Exploit Scenario:

Aspendercanwitness the tokenownerbroadcast a transactionaltering their approval and

quickly signandbroadcast a transactionusing transferFrom tomove the current approved

amount from the owner’s balance to the spender. If the spender’s transaction is validated

before the owner’s, the spenderwill be able to get both approval amounts of both transac-

tions.

Files Affected:

SHB.10.1: Sukiyaki.sol

93 function approve(address spender, uint256 amount) public virtual
,! override returns (bool) {

94 _approve(_msgSender(), spender, amount);
95 return true;
96 }

Recommendation:

We recommend using increaseAllowance and decreaseAllowance functions tomodify the

approval amount instead of using the approve function tomodify it.

SHB.11 Using .transfer() to transfer Ether

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

Description:

Although transfer() and send() are recommended as a security best-practice to prevent

reentrancy attacks because they only forward 2300 gas, the gas repricing of opcodesmay

break deployed contracts.

20

Files Affected:

SHB.11.1: Sukiyaki.sol

702 function transferForeignToken(address _token, address _to) external
,! onlyOwner returns (bool _sent) {

703 require(_token != address(0), "_token address cannot be 0");
704 require(_token != address(this), "Can't withdraw native tokens");
705 uint256 _contractBalance = IERC20(_token).balanceOf(address(this)

,!);
706 _sent = IERC20(_token).transfer(_to, _contractBalance);
707 emit TransferForeignToken(_token, _contractBalance);
708 }

Recommendation:

Consider using .call value: ... (””) instead, without hardcoded gas limits alongwith checks-

effects-interactions pattern or reentrancy guards for reentrancy protection.

SHB.12 The early buy penalty is not documented

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

Description:

The contract implements a penalty for the bots/snipers where it takes 99% of their trans-

ferred amount as a fee if they performa transfer before a certain blockForPenaltyEnd. This

behavior is not documented, this can result in a loss to legitimate users.

Files Affected:

21

SHB.12.1: Sukiyaki.sol

576 if(earlyBuyPenaltyInEffect() && automatedMarketMakerPairs[from] && !
,! automatedMarketMakerPairs[to] && buyTotalFees > 0){

577

578 if(!boughtEarly[to]){
579 boughtEarly[to] = true;
580 botsCaught += 1;
581 emit CaughtEarlyBuyer(to);
582 }
583

584 fees = amount * 99 / 100;
585 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;
586 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;
587 tokensForDev += fees * buyDevFee / buyTotalFees;
588 tokensForBurn += fees * buyBurnFee / buyTotalFees;
589 }

Recommendation:

It is recommend to document this behavior to notify the community and inform them about

this risk.

SHB.13 The owner can renounce ownership

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

Description:

Typically, the account that deploys the contract is also its owner. Consequently, the owner

is able to engage in certain privileged activities in his own name. In the Ownable contract,

the renounceOwnership function is used to renounce ownership, which means that if the

22

contract’s ownership has never been transferred, it will never have an Owner, rendering

someowner-exclusive functionality unavailable.

Files Affected:

SHB.13.1: Sukiyaki.sol

201 function renounceOwnership() external virtual onlyOwner {
202 emit OwnershipTransferred(_owner, address(0));
203 _owner = address(0);
204 }

Recommendation:

We recommend that you prevent the owner from calling renounceOwnership without first

transferring ownership to a different address. Additionally, if you decide to use a multi-

signaturewallet, then the execution of the renounceOwnershipwill require for at least two

or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-

tionality by overriding it.

23

4 Best Practices

BP.1 The functions and state variables lack

documentation

Description:

Thecontract’sstatevariables lackdocumentationwhichmakes itharder forareader toun-

derstand the logic and leaves the room for multiple false assumptions about the intended

behaviors. It isrecommendedto improvethecode’sdocumentationtohaveamorereadable

andwell structured code.

Files Affected:

BP.1.1: Sukiyaki.sol

283 uint256 public buyTotalFees;
284 uint256 public buyMarketingFee;
285 uint256 public buyLiquidityFee;
286 uint256 public buyDevFee;
287 uint256 public buyBurnFee;
288

289 uint256 public sellTotalFees;
290 uint256 public sellMarketingFee;
291 uint256 public sellLiquidityFee;
292 uint256 public sellDevFee;
293 uint256 public sellBurnFee;
294

295 uint256 public tokensForMarketing;
296 uint256 public tokensForLiquidity;
297 uint256 public tokensForDev;
298 uint256 public tokensForBurn;

24

Status - Acknowledged

BP.2 Remove unnecessary transferOwnership

call

Description:

In the constructor, theOwnable contract alreadysets theowneras thedeployer of the con-

tract, therefore transferring theownership to thedeployer isredundant. It isrecommended

to remove this redundant call.

Files Affected:

BP.2.1: Sukiyaki.sol

385 transferOwnership(newOwner);

Status - Acknowledged

BP.3 Remove unnecessary initializations

Description:

Insolidity, there isnoneed to initializeavariablewith itsdefault value, this isdoneautomat-

ically after the variable declaration.

Files Affected:

BP.3.1: Sukiyaki.sol

270 uint256 public tradingActiveBlock = 0; // 0 means trading is not active
271 uint256 public blockForPenaltyEnd = 0;

BP.3.2: Sukiyaki.sol

276 bool public tradingActive = false;
277 bool public swapEnabled = false;

25

BP.3.3: Sukiyaki.sol

362 buyLiquidityFee = 0;

BP.3.4: Sukiyaki.sol

364 buyBurnFee = 0;

BP.3.5: Sukiyaki.sol

572 uint256 fees = 0;

Status - Acknowledged

BP.4 Use revert statements instead of require

Description:

It is recommended to use revert statements to throw errors when there are invalid condi-

tions as it costs less gas than the require statements.

Status - Acknowledged

BP.5 Use pre-increment instead of

post-increment

Description:

i++ is generally more expensive because it must increment a value and ”return” the old

value, so it may require holding two numbers inmemory. ++i only ever uses one number in

memory. Therfore, ++i consumes lessGas than i++.

Files Affected:

BP.5.1: Sukiyaki.sol

26

411 function massManageBoughtEarly(address[] calldata wallets, bool flag)
,! external onlyOwner {

412 for(uint256 i = 0; i < wallets.length; i++){
413 boughtEarly[wallets[i]] = flag;
414 }
415 }

Status - Acknowledged

BP.6 Emiting events should be done after state

modifications

Description:

In the renounceOwnership and transferOwnership functions, the OwnershipTransferred

event is emmited before the _owner variable is initialized.

Files Affected:

BP.6.1: Sukiyaki.sol

201 function renounceOwnership() external virtual onlyOwner {
202 emit OwnershipTransferred(_owner, address(0));
203 _owner = address(0);
204 }
205

206 function transferOwnership(address newOwner) public virtual onlyOwner {
207 require(newOwner != address(0), "Ownable: new owner is the zero

,! address");
208 emit OwnershipTransferred(_owner, newOwner);
209 _owner = newOwner;
210 }

27

Status - Acknowledged

BP.7 RemoveUnnecessary require statements

Description:

The require statements in the returnToNormalTax function are redundant knowing that the

sellTotalFeesand thebuyTotalFeeswill beequal to5anyway ,since the feevaluesarehard-

coded, therefore; the verification of the values is not necessary.

Files Affected:

BP.7.1: Sukiyaki.sol

492 function returnToNormalTax() external onlyOwner {
493 sellMarketingFee = 4;
494 sellLiquidityFee = 0;
495 sellDevFee = 1;
496 sellBurnFee = 0;
497 sellTotalFees = sellMarketingFee + sellLiquidityFee + sellDevFee +

,! sellBurnFee;
498 require(sellTotalFees <= 10, "Must keep fees at 10% or less");
499

500 buyMarketingFee = 4;
501 buyLiquidityFee = 0;
502 buyDevFee = 1;
503 buyBurnFee = 0;
504 buyTotalFees = buyMarketingFee + buyLiquidityFee + buyDevFee +

,! buyBurnFee;
505 require(buyTotalFees <= 10, "Must keep fees at 10% or less");
506 }

Status - Acknowledged

28

5 Tests
Because the project lacks unit, integration, and end-to-end tests, we recommend estab-

lishing numerous testing methods covering multiple scenarios for all features in order to

ensure the correctness of the smart contracts.

29

6 Conclusion
In this audit, we examined the design and implementation of Sukiyaki Finance contract and

discovered several issues of varying severity. Sukiyaki Finance team addressed 0 issues

raised in the initial report and implemented the necessary fixes, while classifying the rest

asariskwith low-probabilityofoccurrence. Shellboxes’auditorsadvisedSukiyakiFinance

Teamtomaintainahigh levelof vigilanceand tokeep those findings inmind inorder toavoid

any future complications.

30

7 Scope Files

7.1 Audit

Files MD5Hash

Sukiyaki.sol 7a2bfe13dff3386b3071c6c1f880411c

31

8 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject that engagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

32

For a Contract Audit, contact us at contact@shellboxes.com

33

mailto:contact@shellboxes.com

	Introduction
	About Sukiyaki Finance
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Disclaimer
	Summary
	Key Findings

	Finding Details
	Missing critical return value check
	The tokensForBurn is set to zero without burning tokens
	Missing fee and max transaction exclusion update in the transferOwnership
	The owner has total control over the contract funds
	Perfoming divisions before multiplications reduces precision
	Missing fee limitation
	Centralization Risk
	Transaction Order Dependency
	Centralized token allocation
	Approve race condition
	Using .transfer() to transfer Ether
	The early buy penalty is not documented
	The owner can renounce ownership

	Best Practices
	The functions and state variables lack documentation
	Remove unnecessary transferOwnership call
	Remove unnecessary initializations
	Use revert statements instead of require
	Use pre-increment instead of post-increment
	Emiting events should be done after state modifications
	Remove Unnecessary require statements

	Tests
	Conclusion
	Scope Files
	Audit

	Disclaimer

