SHELLBOXE

Sukiyaki
Finance

Smart Contract Security Audit

Prepared by ShellBoxes
Feb 13", 2023 - Feb 14", 2023
Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Sukiyaki Finance

Version 1.0

Classification Public
Scope

Contract Name Contact Address

Sukiyaki 0xD212046F89680aC9F106B9¢c63f314cc9808e18d5
Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

https://etherscan.io/address/0xD212046F89680aC9F106B9c63f314cc9808e18d5#code
mailto:contact@shellboxes.com

Contents

1

Introduction 5
11 About SukiyakiFinance 5
1.2 Approach &Methodology 5
121 RiskMethodology 6
2 Findings Overview 7
2.1 Disclaimer e 7
2.2 SUMMaArY 7
23 KeyFindings 7
3 Finding Details
SHB.1 Missingcriticalreturnvaluecheck
SHB.2 ThetokensForBurnis settozerowithoutburningtokens 10

SHB.3 Missing fee and max transaction exclusion update in the transferOwnership 11

SHB.4 The owner has total control overthe contractfunds 12
SHB.5 Perfomingdivisions before multiplications reduces precision 14
SHB.6 Missingfeelimitation 15
SHB.7 CentralizationRisk 17
SHB.8 TransactionOrderDependency 17
SHB.9 Centralizedtokenallocation 19
SHB.10 Approveracecondition 19
SHB.11 Using.transfer() totransferEther 20
SHB.12 The early buy penaltyis notdocumented 21
SHB.13 Theownercanrenounceownership 22

Best Practices 24
BP.1 Thefunctions and state variables lack documentation 24
BP.2 RemoveunnecessarytransferOwnershipecall 25
BP.3 Removeunnecessaryinitializations 25
BP.4 Userevertstatementsinsteadofrequire 26
BP.5 Usepre-incrementinstead of post-increment 26
BP.6 Emiting events should be done after state modifications 27
BP.7 Remove Unnecessaryrequirestatements 28

5 Tests
6 Conclusion

7 ScopeFiles
1.1 Audit

8 Disclaimer

29

30

31
31

Ky

1 Introduction

SukiyakiFinance engaged ShellBoxesto conductasecurity assessment on the SukiyakiFi-
nance beginning on Feb 13t", 2023 and ending Feb 14", 2023. In this report, we detail our
methodical approach to evaluate potential security issues associated with the implemen-
tation of smart contracts, by exposing possible semantic discrepancies between the smart
contract code and design document, and by recommending additionalideas to optimize the
existing code. Our findings indicate that the current version of smart contracts can still be
enhanced further due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About Sukiyaki Finance

Sukiyaki - The world’s first Al powered DEX aggregator, uses custom built Al to route for
best prices on chain and cross chain for users, thereby gaining points ahead of the
competition over 65% of the time on Ethereum, Binance Smart Chain, Arbitrum and

Polygon.
Issuer Sukiyaki Finance
Website https://sukiyaki.finance
Type Solidity Smart Contract
Whitepaper Sukiyaki Official White paper
Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

https://sukiyaki.finance
https://drive.google.com/file/d/1llRU4e2QNZGnKarTbW8DvSS3VzPxSsAa/view

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-

pact and is categorized into four levels, namely Critical, High, Medium, and Low.

Impact

High
Medium

Critical

Low

High Medium Low

Likelihood

2 Findings Overview

2.1 Disclaimer

The Sukiyaki Finance team has decided to acknowledge our findings and not proceed with
the fixes due to the fact that the contract is renounced and the liquidity pool is locked. The
contract renouncing is based on their community’s demand post the Fair-launch with the
goal of building their community’s trust.

2.2 Summary

Thefollowingis asynopsis of our conclusions from our analysis of the Sukiyaki Finance im-
plementation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.3 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include , 2
high-severity, 7 medium-severity, 4 low-severity vulnerabilities.

Vulnerabilities Severity | Status

SHB.1. Missing critical return value check Acknowledged
SHB.2. The tokensForBurnis setto zero without burn- Acknowledged
ing tokens

SHB.3. Missing fee and max transaction exclusion up- Acknowledged
date in the transferOwnership

SHB.4. The owner has total control over the contract Acknowledged
funds

SHB.5. Perfoming divisions before multiplications re- Acknowledged
duces precision

SHB.6. Missing fee limitation Acknowledged
SHB.7. Centralization Risk Acknowledged
SHB.8. Transaction Order Dependency Acknowledged
SHB.9. Centralized token allocation Acknowledged
SHB.10. Approve race condition Acknowledged
SHB.11. Using .transfer() to transfer Ether Acknowledged
SHB.12. The early buy penalty is not documented Acknowledged
SHB.13. The owner can renounce ownership Acknowledged

3 Finding Details

SHB.1 Missing critical return value check

- Severity: [HIGH - Likelihood: 2

- Status: Acknowledged - Impact: 3

The swapBack function can be called either by the owner or by the transfer function if cer-
tain conditions are met. This function distributes the contract funds that were collected
from the transfer fees to the devAddress, the marketingAddress, and the liquidity pools.
This functionis missing a critical check over the return value of the call function thatis used
for transferring the eth value. Therefore, if the call fails the transaction will not revert and
both the variablestokensForDevand tokensForMarketing willbe set to zero, which implies
that the devAddress and the marketingAddress will permanently lose those funds.

SHB.1.1: Sukiyaki.sol

I
o

ss8 tokensForLiquidity

89 tokensForMarketing

I
(@}

0 tokensForDev = O;

¢1 tokensForBurn = O;

692

3 1f (liquidityTokens > O && ethForLiquidity > 0){

694 addLiquidity(liquidityTokens, ethForLiquidity);

65}

6%

¢97 (success,) = address(devAddress).call{value: ethForDev}("");

698

¢ (success,) = address(marketingAddress).call{value: address(this).balance

s }(nn);

The trivial recommendation will be to use require statements to assure the success vari-
able is equal to true. However, this can introduce a new risk where the devAddress and
the marketingAddress can revert any call to the swapBack function, causing a DoS. Con-
sider using the _safeTransferETHWithFallback function for transferring ether to avoid all
the risks:

SHB.1.2: Sukiyaki.sol

function _safeTransferETHWithFallback(address to, uint256 amount)
— internal {
if (! _safeTransferETH(to, amount)) {
WETH.deposit{value: amountl}();
WETH. transfer(to, amount);

3

function _safeTransferETH(address to, uint256 amount)
internal

returns (bool)

(bool success,) = to.call{value: amount}(new bytes(0));

return success;

SHB.2 The tokensForBurn is set to zero without burning to-

kens
- Severity: [HIGH - Likelihood: 3
- Status: Acknowledged - Impact: 2

10

In the swapBack function, the tokensForBurn are supposed to be burned whenever the
value is greater than zero. When the contract balance is lower than the tokensForBurn,
the variable is set to zero without burning any tokens, which represents a critical

innaccuracy in the contract logic.

SHB.2.1: Sukiyaki.sol

¢s9 if (tokensForBurn > 0 && balanceOf (address(this)) >= tokensForBurn) {
660 _burn(address(this), tokensForBurn);

661 }

¢62 tokensForBurn = 0;

oy

Consider setting the tokensForBurn to zero only when there are enough tokens in the con-
tract. Whenthe balanceis lowerthanthe tokensForBurn, consider either burning the avail-
able balance and decrementing the variable or skipping the burning step without updating
the variable and the tokensForBurn will be burned in the future calls when there is enough

balance to fulfill the requirement.

SHB.3 Missing fee and max transaction exclusion update in

the transferOwnership

- Severity: [HIEDIEN - Likelihood: 3

- Status: Acknowledged - Impact:1

1

The Sukiyaki contract makes use of the Ownable contract to allow the owner to perform
privileged actions. By default, the Sukiyaki contract excludes the owner from the fees and
the restriction over the maxtransaction amount. However, the transferOwnership function
isnot adaptedto this behavior, changing the owner willkeep the old owner excluded and the
new owner will not have these exclusions.

SHB.3.1: Sukiyaki.sol

26 function transferOwnership(address newOwner) public virtual onlyOwner {
207 require (newOwner != address(0), "Ownable: new owner is the zero

s address");

208 emit OwnershipTransferred(_owner, newOwner) ;
209 _owner = newlwner;
210 }

Consider overriding the transferOwnership function and implementing the exclusion up-
datebyincludingthe oldownerbackinthe fees ,the maxtransactionamountrestriction,and
excluding the new owner from these restrictions.

SHB.4 The owner hastotal control over the contract funds

- Severity: _ - Likelihood: 1

- Status: Acknowledged - Impact: 3

The transferForeignToken and the withdrawStuckETH functions allows the owner to with-
draw anyamount oftokens or ether fromthe contract. Thisrepresents asignificant central-

12

ization risk over the contract’s funds, where the owner have total control over the contract

balance which is a shared ressource between the dev, marketing, and the liquidity pools.

SHB.4.1: Sukiyaki.sol

2 function transferForeignToken(address _token, address _to) external

703

704

705

706

707

708

— onlyOwner returns (bool _sent) {

require(_token != address(0), "_token address cannot be 0");
require(_token != address(this), "Can't withdraw native tokens");
uint256 _contractBalance = IERC20(_token) .balanceOf (address(this));
_sent = IERC20(_token).transfer(_to, _contractBalance);

emit TransferForeignToken(_ token, _contractBalance);

SHB.4.2: Sukiyaki.sol

m function withdrawStuckETH() external onlyOwner {

N2

713

N4

bool success;

(success,) = address(msg.sender).call{value: address(this).balance

=}

Consider removing the following functions or setting some limitation over them to reduce

therisk.

13

SHB.5 Perfoming divisions before multiplications reduces

precision

- Severity: _ - Likelihood: 2

- Status: Acknowledged - Impact: 2

The result of integer division in solidity is an integer value. As aresult, dividing before mul-
tiplying will result in inaccurate results, and loss of precision.

SHB.5.1: ContractName.sol

s.e. if (earlyBuyPenaltyInEffect() && automatedMarketMakerPairs[from] && !
— automatedMarketMakerPairs[to] && buyTotalFees > 0){

577

578 if ('boughtEarly[to]){

579 boughtEarly[to] = true;

580 botsCaught += 1;

581 emit CaughtEarlyBuyer(to);

562 }

583

584 fees = amount * 99 / 100;

585 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;
586 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;
587 tokensForDev += fees * buyDevFee / buyTotalFees;

588 tokensForBurn += fees * buyBurnFee / buyTotalFees;

589

590

sn // on sell
52 else if (automatedMarketMakerPairs[to] && sellTotalFees > 0){

14

593 fees = amount * sellTotalFees / 100;

594 tokensForLiquidity += fees * selllLiquidityFee / sellTotalFees;
595 tokensForMarketing += fees * sellMarketingFee / sellTotalFees;
596 tokensForDev += fees * sellDevFee / sellTotalFees;

597 tokensForBurn += fees * sellBurnFee / sellTotalFees;

59}

599
s0 // on buy
s else if (automatedMarketMakerPairs([from] && buyTotalFees > 0) {

602 fees = amount * buyTotalFees / 100;

603 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;
604 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;
605 tokensForDev += fees * buyDevFee / buyTotalFees;

606 tokensForBurn += fees * buyBurnFee / buyTotalFees;

07 }

Consider performing multiplication operations before divisionstoimprove the calculation’s
precision.

SHB.6 Missing fee limitation

- Severity: [HIEBIENI » Likelihood: 1

- Status: Acknowledged - Impact: 3

The owner is the one responsible for modifying the buy and sell fees using the
updateBuyFees and the updateSellFees respectively. These functions lack a limitation
over the fee value, this allows the owner to specify any amount as a fee, which can break
the structure of the contract and result in unexpected results for the users.

15

SHB.6.1: Sukiyaki.sol

s function updateBuyFees(uint256 _marketingFee, uint256 _liquidityFee,

475

476

471

478

479

480

481

— uint256 _DevFee, uint256 _burnFee) external onlyOwner {

buyMarketingFee = _marketingFee;

buyLiquidityFee = _liquidityFee;

buyDevFee = DevFee;

buyBurnFee = _burnFee;

buyTotalFees = buyMarketingFee + buyLiquidityFee + buyDevFee +
— buyBurnFee;

require (buyTotalFees <= 35, "Must keep fees at 35% or less");

SHB.6.2: Sukiyaki.sol

w3 function updateSellFees(uint256 _marketingFee, uint256 _liquidityFee,

484

485

486

487

488

489

490

— uint256 _DevFee, uint256 _burnFee) external onlyOwner {

sellMarketingFee = _marketingFee;

selllLiquidityFee = _liquidityFee;

sellDevFee = DevFee;

sellBurnFee = _burnFee;

sellTotalFees = sellMarketingFee + selllLiquidityFee + sellDevFee +
<~ sellBurnFee;

require(sellTotalFees <= 35, "Must keep fees at 35} or less");

Itis recommended to limit the fees to a reasonable amount in order to provide a guarantee

for the users and to prevent any unexpected outputs.

[

SHB.7 Centralization Risk

- Severity: [IEDIEN - Likelihood: 1

- Status: Acknowledged - Impact:3

Using the onlyOwner modifier on almost all functions creates a centralization problem by

allowingthe ownertohave complete control overthe functionality of the contract which can
potentially lead to misuse or abuse of power.

To address this issue, it's important to implement more decentralized and democratic ap-

proaches to decision-making, such as multi-signature control or community governance
models that distribute power more evenly.

SHB.8 Transaction Order Dependency

- Severity: [HIEBIENI - Likelihood:1

- Status: Acknowledged - Impact:3

A race condition vulnerability occurs when code depends on the order of the transactions

submitted to it. The project contains some modifiable variables that might be impacted by
the execution order of the transaction.

17

SHB.8.1: Sukiyaki.sol

s function updateBuyFees(uint256 _marketingFee, uint256 _liquidityFee,

475

476

477

478

479

480

481

< uint256 _DevFee, uint256 _burnFee) external onlyOwner {

buyMarketingFee = _marketingFee;

buyLiquidityFee = _liquidityFee;

buyDevFee = DevFee;

buyBurnFee = _burnFee;

buyTotalFees = buyMarketingFee + buyLiquidityFee + buyDevFee +
— buyBurnFee;

require(buyTotalFees <= 35, "Must keep fees at 35% or less");

SHB.8.2: Sukiyaki.sol

w3 function updateSellFees(uint256 _marketingFee, uint256 _liquidityFee,

484

485

486

487

488

489

490

— uint256 _DevFee, uint256 _burnFee) external onlyOwner {

sellMarketingFee = _marketingFee;

selllLiquidityFee = _liquidityFee;

sellDevFee = DevFee;

sellBurnFee = _burnFee;

sellTotalFees = sellMarketingFee + sellliquidityFee + sellDevFee +
<~ sellBurnFee;

require(sellTotalFees <= 35, "Must keep fees at 35} or less");

Consider adding the fees as arguments then adding a require statement to verify the argu-
ments to be equal to the fees stored in the contract, or consider notifying the community
with any change in terms of the fees to mitigate the risk.

18

SHB.9 Centralized token allocation

- Severity: [HIEBIEN - Likelihood: 1

- Status: Acknowledged - Impact: 3

In the constructor, the owner of the contract mints all the total supply to his address. This
represents a significant centralization risk where the deployer has too much power over
the total supply of the token.

SHB.9.1: Sukiyaki.sol

4 _createInitialSupply(newOwner, totalSupply);

Itisrecommended to use a DAO or amultisig as the deployer of the contract to include mul-
tiple parties in the supply allocation.

SHB.10 Approve race condition

- Severity: - - Likelihood: 1

- Status: Acknowledged - Impact: 2

The standard ERC20 implementation contains a widely known racing condition in its ap-

prove function.

19

A spender can withess the token owner broadcast atransaction altering their approvaland
quickly sign and broadcast atransaction using transferFrom to move the current approved
amount from the owner’s balance to the spender. If the spender’s transaction is validated

before the owner’s, the spender will be able to get both approval amounts of both transac-
tions.

SHB.10.1: Sukiyaki.sol

53 function approve(address spender, uint256 amount) public virtual

< override returns (bool) {

94 _approve(_msgSender (), spender, amount);
95 return true;
96 }

We recommend using increaseAllowance and decreaseAllowance functions to modify the
approval amount instead of using the approve function to modify it.

SHB.11 Using.transfer() to transfer Ether

. Severity: [EOW] - Likelihood: 1

- Status: Acknowledged - Impact: 2

Although transfer() and send() are recommended as a security best-practice to prevent

reentrancy attacks because they only forward 2300 gas, the gas repricing of opcodes may
break deployed contracts.

20

SHB.11.1: Sukiyaki.sol
2 function transferForeignToken(address _token, address _to) external

— onlyOwner returns (bool _sent) {

703 require(_token != address(0), " _token address cannot be 0");

require(_token != address(this), "Can't withdraw native tokens");

uint256 _contractBalance = IERC20(_token) .balanceOf (address(this)

704

705
—);

706 _sent = IERC20(_token).transfer(_to, _contractBalance);

707 emit TransferForeignToken(_ token, _contractBalance);

708 }

Consider using .call value: ... (") instead, without hardcoded gas limits along with checks-

effects-interactions pattern or reentrancy guards for reentrancy protection.

SHB.12 The early buy penalty is not documented

- Severity: [EOW] - Likelihood: 1

- Status: Acknowledged - Impact: 2

The contract implements a penalty for the bots/snipers where it takes 99% of their trans-
ferred amount as afee if they perform a transfer before a certain blockForPenaltyEnd. This

behavioris not documented, this can resultin a loss to legitimate users.

21

SHB.12.1: Sukiyaki.sol

ste. if (earlyBuyPenaltyInEffect() && automatedMarketMakerPairs[from] && !
— automatedMarketMakerPairs[to] && buyTotalFees > 0){

577

578 if (!boughtEarly[to]){

579 boughtEarly[to] = true;

580 botsCaught += 1;

581 emit CaughtEarlyBuyer(to);

582 }

583

584 fees = amount * 99 / 100;

585 tokensForLiquidity += fees * buyLiquidityFee / buyTotalFees;
586 tokensForMarketing += fees * buyMarketingFee / buyTotalFees;
587 tokensForDev += fees * buyDevFee / buyTotalFees;

588 tokensForBurn += fees * buyBurnFee / buyTotalFees;

589)

Itis recommend to document this behavior to notify the community and inform them about
this risk.

SHB.13 The owner canrenounce ownership

- Severity: [EOW - Likelihood: 1

- Status: Acknowledged - Impact: 2

Typically, the account that deploys the contract is also its owner. Consequently, the owner
is able to engage in certain privileged activities in his own name. In the Ownable contract,
the renounceOwnership function is used to renounce ownership, which means that if the

22

contract’s ownership has never been transferred, it will never have an Owner, rendering
some owner-exclusive functionality unavailable.

SHB.13.1: Sukiyaki.sol

20 function renounceOwnership() external virtual onlyOwner {

202 emit OwnershipTransferred(_owner, address(0));
203 _owner = address(0);
204 }

We recommend that you prevent the owner from calling renounceOwnership without first
transferring ownership to a different address. Additionally, if you decide to use a multi-
signature wallet, then the execution of the renounceOwnership will require for at least two
or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-

tionality by overriding it.

23

4 Best Practices

BP.1

The functions and state variables

documentation

lack

The contract’s state variables lack documentation which makes it harder for areadertoun-

derstand the logic and leaves the room for multiple false assumptions about the intended

behaviors. Itisrecommendedtoimprove the code’'sdocumentationto have amorereadable

and well structured code.

BP.1.1: Sukiyaki.sol

283

284

285

286

287

288

289

290

29

292

293

294

295

296

297

298

uint256
uint256
uint256
uint256
uint256

uint256
uint256
uint256
uint256
uint256

uint256
uint256
uint256
uint256

public
public
public
public
public

public
public
public
public
public

public
public
public
public

buyTotalFees;
buyMarketingFee;
buyLiquidityFee;
buyDevFee;

buyBurnFee;

sellTotalFees;
sellMarketingFee;
selllLiquidityFee;
sellDevFee;

sellBurnFee;

tokensForMarketing;
tokensForLiquidity;
tokensForDev;

tokensForBurn;

24

BP.2 Remove unnecessary transferOwnership

call

Inthe constructor,the Ownable contract already sets the owner as the deployer of the con-
tract, thereforetransferringthe ownershiptothe deployerisredundant. Itisrecommended

to remove this redundant call.

BP.2.1: Sukiyaki.sol

35 transferOwnership(newOwner) ;

BP.3 Remove unnecessary initializations

In solidity, thereis no needtoinitialize a variable with its default value, thisis done automat-

ically after the variable declaration.

BP.3.1: Sukiyaki.sol

20 uint2566 public tradingActiveBlock = 0; // O means trading is not active

0;

an uint256 public blockForPenaltyEnd

BP.3.2: Sukiyaki.sol

2 bool public tradingActive = false;

am bool public swapEnabled = false;

25

BP.3.3: Sukiyaki.sol

32 buyLiquidityFee = O;

BP.3.4: Sukiyaki.sol

34 buyBurnFee = 0;

BP.3.5: Sukiyaki.sol

sz uint256 fees = 0;

BP.4 Userevert statementsinstead of require

Itis recommended to use revert statements to throw errors when there are invalid condi-
tions as it costs less gas than the require statements.

BP.5 Use pre-increment Instead of

post-increment

i++ is generally more expensive because it must increment a value and "return” the old
value, so it may require holding two numbers in memory. ++i only ever uses one number in

memory. Therfore, ++i consumes less Gas than i++.

BP.5.1: Sukiyaki.sol

26

m function massManageBoughtEarly(address[] calldata wallets, bool flag)

< external onlyOwner {

a2 for(uint256 i = 0; i < wallets.length; i++){
413 boughtEarly[wallets[i]] = flag;

414 }

ws }

BP.6 Emiting events should be done after state
modifications

In the renounceOwnership and transferOwnership functions, the OwnershipTransferred

eventis emmited before the _owner variableis initialized.

BP.6.1: Sukiyaki.sol

20 function renounceOwnership() external virtual onlyOwner {

202 emit OwnershipTransferred(_owner, address(0));
203 _owner = address(0);
204 }

205
26 function transferOwnership(address newOwner) public virtual onlyOwner {
207 require (newOwner != address(0), "Ownable: new owner is the zero

— address");

208 emit OwnershipTransferred(_owner, newOwner) ;
209 _owner = newOwner;
yali] }

27

BP.7 Remove Unnecessaryrequire statements

The require statementsin the returnToNormalTax function are redundant knowing that the

sellTotalFees and the buyTotalFees will be equalto 5 anyway,since the fee values are hard-

coded, therefore; the verification of the values is not necessary.

BP.7.1: Sukiyaki.sol

w2 function returnToNormalTax() external onlyOwner {

493

494

495

496

4917

498

499

500

501

502

503

504

505

506

sellMarketingFee = 4;

sellLiquidityFee = O;

sellDevFee = 1;

sellBurnFee = 0;

sellTotalFees = sellMarketingFee + selllLiquidityFee + sellDevFee +
<~ sellBurnFee;

require(sellTotalFees <= 10, "Must keep fees at 10% or less");

buyMarketingFee = 4;

buyLiquidityFee = O;

buyDevFee = 1;

buyBurnFee = O;

buyTotalFees = buyMarketingFee + buyLiquidityFee + buyDevFee +
— buyBurnFee;

require(buyTotalFees <= 10, "Must keep fees at 10% or less");

28

5 Tests

Because the project lacks unit, integration, and end-to-end tests, we recommend estab-
lishing numerous testing methods covering multiple scenarios for all features in order to

ensure the correctness of the smart contracts.

29

6 Conclusion

In this audit, we examined the design and implementation of Sukiyaki Finance contract and
discovered several issues of varying severity. Sukiyaki Finance team addressed 0 issues
raised in the initial report and implemented the necessary fixes, while classifying the rest
asariskwith low-probability of occurrence. Shellboxes’auditors advised SukiyakiFinance
Teamto maintain a high level of vigilance and to keep those findings in mind in order to avoid

any future complications.

30

7 ScopecFiles

7.1 Audit
Files MD5 Hash
Sukiyaki.sol T7a2bfe13dff3386b3071c6c1f880411c

31

8 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

kY.

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

33

mailto:contact@shellboxes.com

	Introduction
	About Sukiyaki Finance
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Disclaimer
	Summary
	Key Findings

	Finding Details
	Missing critical return value check
	The tokensForBurn is set to zero without burning tokens
	Missing fee and max transaction exclusion update in the transferOwnership
	The owner has total control over the contract funds
	Perfoming divisions before multiplications reduces precision
	Missing fee limitation
	Centralization Risk
	Transaction Order Dependency
	Centralized token allocation
	Approve race condition
	Using .transfer() to transfer Ether
	The early buy penalty is not documented
	The owner can renounce ownership

	Best Practices
	The functions and state variables lack documentation
	Remove unnecessary transferOwnership call
	Remove unnecessary initializations
	Use revert statements instead of require
	Use pre-increment instead of post-increment
	Emiting events should be done after state modifications
	Remove Unnecessary require statements

	Tests
	Conclusion
	Scope Files
	Audit

	Disclaimer

