SHELLBOXE

Piston

Smart Contract Security Audit

Prepared by ShellBoxes
March 28, 2022 - April 15, 2022
Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Piston
Version 1.0
Classification Public

Scope

The Piston Contractin the Piston Repository

Repo

Commit Hash

https://github.com/mydiamondteam/immunefi

e74b794772ce5190851ce4449f80e3519¢86585¢

Re-Audit

Repo

Commit Hash

https://github.com/mydiamondteam/immunefi

d7a03d3a8a48d7a725a709b94695da8358b8e0a2

Contacts
COMPANY EMAIL
ShellBoxes contact@shellboxes.com

https://github.com/mydiamondteam/immunefi
https://github.com/mydiamondteam/immunefi
mailto:contact@shellboxes.com

Contents

1 Introduction

11

About Piston

1.2 Approach &Methodology

121 RiskMethodology

2 Findings Overview

2.1

SUMMaAry e e

2.2 Disclaimer
23 KeyFindings.

3 Finding Details

A

PistonToken.sol
Al Fees Can Be Bypassed -
A\ Wi Owner Can Disable Transfers-
A3 The Panbusdswap Pair Can Be Removed From

Automatedmarketmakerpairs-
AW Missing Value Verification-
A5 mintMaster Can Be Set to AnyAddress-
A6 Old Controllers Are Not Included Back In The Fees- C e
A7 Missing Address Verification-

A.8 Approve Race -

A9 For Loop Over Dynamic Array-
A10 Renounce Ownership -

A1l Floating Pragma-

PistonTokenControllersol.
B.1 The Owner Can Take The Race Contract And The Ecosystem

Fees-
B.2 Missing Verification In The Transfer Calls-
B.3 MissingAddressVerification-

B.4 Approve Race-

B.5 Renounce Ownership-

B.6 Floating Pragma-

PistonPriceFeed.sol

g1 o1 o1 o1

NN NN

C.1
C.2

Missing Address Verification -

Renounce Ownership-

D PistonRace.sol

D.1

D.2
D.3
D.4
D.5
D.6
D.7

The Owner Can Control The Price-
Race Condition-
Owner Can Deny The Users From deposits_BUSD -
Ref_Depth Should Be Lower Than 255 [[BOWE

Missing Value Verification -

Renounce Ownership-
Floating Pragma-

4 BestPractices

BP.4 Deploy ContractUsing Script

BP.5 Use Ownable fromopenzeppelin

BP.6 Declare The Ref_Balances ArrayInOneline

BP.7 Remove The Test Functions

BP.8 Move Interfaces To SeparateFiles

5 Static Analysis (Slither)

6 Conclusion

36
36
37
37
37
37
38
38
39

40

69

1 Introduction

Piston engaged ShellBoxes to conduct a security assessment on the Piston beginning on
March 28", 2022 and ending April 1%t, 2022. In this report, we detail our methodical ap-
proach to evaluate potential security issues associated with the implementation of smart
contracts, by exposing possible semantic discrepancies between the smart contract code
and desigh document, and by recommending additional ideas to optimize the existing code.
Our findings indicate that the current version of smart contracts can still be enhanced fur-
ther due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About Piston

Piston Token is a real deflationary token that allows you to gain 1% per day up to 365% of
your deposit. Just compounding you can 5x your investment and withdraw 365% of it.

Issuer Piston

Website https://piston-token.com/
Type Solidity Smart Contract

Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

5

https://piston-token.com/

work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.
— Severity indicates the risk’s overall criticality.
Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

o High
S Medium
€
= Low
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The followingis a synopsis of our conclusions from our analysis of the Piston implementa-
tion. During the first part of our audit, we examine the smart contract source code and run
the codebase via a static code analyzer. The objective here is to find known coding prob-
lems statically and then manually check (reject or confirm) issues highlighted by the tool.
Additionally, we check business logics, system processes, and DeFi-related components
manually to identify potential hazards and/or defects.

2.2 Disclaimer

Except for two issues Labeled (A1and B2), none of the issues raised in this report were re-
solved following the re-audit. Piston team labeled the issues as unlikely to cause harm; by
doing so, they accept full responsibilityin case that any of theissues described herein occur
in practice.

2.3 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include , 6
high-severity, 5 medium-severity, 15 low-severity vulnerabilities.

Vulnerabilities Severity | Status

Fees Can Be Bypassed Fixed

Owner Can Disable Transfers Acknowledged
The Panbusdswap Pair Can Be Removed From Auto- Acknowledged
matedmarketmakerpairs

The Owner Can Take The Race Contract And The Acknowledged
Ecosystem Fees

Missing Verification In The Transfer Calls Fixed

The Owner Can Control The Price Acknowledged

Missing Value Verification

mintMaster Can Be Set to Any Address

Acknowledged

Old Controllers Are Not Included Back In The Fees

Acknowledged

Race Condition

Acknowledged

Owner Can Deny The Users From deposits_BUSD

Acknowledged

Missing Address Verification

Acknowledged

Approve Race

Acknowledged

For Loop Over Dynamic Array

Acknowledged

Renounce Ownership

Acknowledged

Floating Pragma

Acknowledged

Missing Address Verification

Acknowledged

Approve Race

Acknowledged

Renounce Ownership

Acknowledged

Floating Pragma

Acknowledged

Missing Address Verification

Acknowledged

Renounce Ownership

Acknowledged

Ref_Depth Should Be Lower Than 255

Acknowledged

Missing Value Verification

Acknowledged

Renounce Ownership

Acknowledged

Floating Pragma

Acknowledged

Acknowledged

3

A

Finding Details

PistonToken.sol

A1 FeesCanBeBypassed -

When the fees are enabled, in every transfer, the contract takes a portion of the transferred

amount as fees. Sending an amount that is lower than the totalFees and extraSellfee vari-

ables will generate a type conversion which makes the fees value equal to 0. Therefore the

users can bypass the fees.

Listing 1: PistonToken.sol

139

140

141

142

143

144

145

146

if (takeFee) {
uint256 fees = amount.mul (totalFees).div(100);
if (automatedMarketMakerPairs[to]){
fees += amount.mul (extraSellFee) .div(100);
}
amount = amount.sub(fees);

super._transfer(from, address(this), fees);

Likelihood - 4
Impact-5

It is recommended to require the transferred amount to be higher than both the totalFees

and extraSellfee variables.

- Fixed

The Piston team has fixed the issue by adding a require statement to make sure the amount
is higher than the sum of the fees.

A.2 Owner CanDisable Transfers -

The owner hasthe ability to disable the transfers of the users that are not excluded fromthe
fees through the variable tradingEnabled. This represents a centralization risk where the
owner have too much power over the contract.

Listing 2: PistonToken.sol

wy function _transfer(

150 address from,

11 address to,

152 uint256 amount

53) internal override {

s require(from != address(0), "ERC20: transfer from the zero address");
w5 require(to != address(0), "ERC20: transfer to the zero address");

w6 require(! _isBlacklisted[from] && ! _isBlacklisted[to], 'Blacklisted

— address');

w8 if (! _isExcludedFromFees[from] && ! isExcludedFromFees[to]){

9~ require(tradingEnabled, "Trading not enabled");

160 }

Listing 3: PistonToken.sol

m function setTradingEnabled(bool _enabled) external onlyOwnerf{
m tradingEnabled = _enabled;
12 swapEnabled = _enabled;

E

10

Likelihood - 3
Impact-5

Itis recommended to only allow the transition of the tradingEnabled variable from false to
true and prevent the other way around.

- Acknowledged

The Piston team has acknowledged the risk.

A.3 The Panbusdswap Pair Can Be Removed From Automat-
edmarketmakerpairs-

The setAutomatedMarketMakerPair() function contains a restriction that issupposed to
prevent the owner from removing the panbusdswap pair. Therestriction can be bypassed

by modifying the uniswapV2Pair to another address, then the owner can remove the
panbusdswap pair.

Listing 4: PistonToken.sol

wo function setAutomatedMarketMakerPair(address pair, bool value) public
— onlyOwner {

w require(pair != uniswapV2Pair, "PISTON: The PanBUSDSwap pair cannot be
s removed from automatedMarketMakerPairs");

w2 _setAutomatedMarketMakerPair (pair, value);

103 }

1

Listing 5: PistonToken.sol

s function setUniswapV2PairAndController (address _uniswapV2Pair, address
— _controller) external onlyOwner{

26 uniswapV2Pair=address(_uniswapV2Pair) ;

27 controller=address(_controller);

128 excludeFromFees(controller, true);

129 }

Likelihood -3
Impact - 4

Itis recommended to get the address of the pair in uniswap using create2 function and re-
move the setter as the value will not change over time.

- Acknowledged

The Piston team has acknowledged the risk.
A.4 Missing Value Verification _

Certain functions lack a safety check in the values, the values of the arguments should be
verified to allow only the ones that go with the contract’s logic. ThemaxBuyAmount,
maxWalletBalance and maxSellAmount variables should be different from zero,
otherwise users will not be able to transfer tokens.

Listing 6: PistonToken.sol

12

2 function setMaxBuyAmount(uint256 amount) external onlyOwnerf{
125 maxBuyAmount = amount * 10**18;

126 }

N

e function setMaxWalletBalance(uint256 amount) external onlyOwner{

129 maxWalletBalance = amount * 10%*x18;

130 }

N

w2 function setMaxSellAmount(uint256 amount) external onlyOwnerf{
133 maxSellAmount = amount * 10%*18;

86}

=

Likelihood -2
Impact - 4

Itisrecommended to verify the values provided in the arguments. The concerns can be re-

solved by utilizing a require statement.

- Acknowledged

The Piston team has acknowledged the risk.

A5 mintMaster Can Be Setto Any Address_

Itis mentionedinthe spec thatthe mintAddress will be initialized with the owner’s address,
and later it will be modified to the piston race contract. The code does not match the spec,
the code only covers the modification of the mintAddress and nothing ensure that the ad-
dress will be the address of the race contract.

13

Listing 7: PistonToken.sol

us function setMintMasterAddress(address _value) external {
uws require(msg.sender == mintMaster, "only the current mint master is

< allowed to do this");

us mintMaster = _value;
147 }

Likelihood -3

Impact - 3

Itisrecommendedto ensure thatthe mintAddress can only be modified to the race contract
address.

- Acknowledged

The Piston team has acknowledged the risk.

A.6 Old Controllers Are Not Included Back In The

Fees INEHNE

When modifying the controller address the new controller address is excluded from the
fees, but the previous controller is still excluded from the fees.

14

Listing 8: PistonToken.sol

s function setUniswapV2PairAndController (address _uniswapV2Pair, address
— _controller) external onlyOwner{

7 uniswapV2Pair=address(_uniswapV2Pair);

s8 controller=address(_controller);

89 excludeFromFees(controller, true);

90 }

Likelihood -3
Impact -3

Itisrecommended to include the previous controller backin the fees.

- Acknowledged

The Piston team has acknowledged the risk

A.7 Missing Address Verification -

Certain functions lack a safety check in the address, the address-type argument should in-
clude a zero-address test, otherwise, some of the contract’s functionality may become in-
accessible.

Listing 9: PistonToken.sol

ss function setUniswapV2PairAndController (address _uniswapV2Pair, address

— _controller) external onlyOwner{

15

s uniswapV2Pair=address(_uniswapV2Pair);
g8 controller=address(_controller);

g9 excludeFromFees(controller, true);

90 }

Listing 10: PistonToken.sol

us function setMintMasterAddress(address _value) external {
us require(msg.sender == mintMaster, "only the current mint master is

< allowed to do this");

us mintMaster = _value;
147 }

Likelihood -1

Impact - 3

It is recommended to make sure the addresses provided in the arguments are different
from the address(0).

- Acknowledged

The Piston team has acknowledged the risk.
A.8 Approve Race -

The standard ERC20 implementation contains a widely-known racing condition in its ap-
prove function, wherein a spender is able to witness the token owner broadcast a trans-
action altering their approval and quickly sign and broadcast a transaction using transfer-
From to move the current approved amount from the owner’s balance to the spender. If the

[

spender’s transaction is validated before the owner’s, the spender will be able to get both
approval amounts of both transactions.

Listing 11: PistonToken.sol

9 contract PistonToken is Initializable, ERC20Upgradeable,
— OwnableUpgradeable {

Likelihood -1
Impact - 3

It is recommended to use the increaseAllowance() and decreaseAllowance() function to
override the approval amount instead of the approve() function.

- Acknowledged

The Piston team has acknowledged the risk.

A.9 ForLoop Over Dynamic Array-

When smart contracts are deployed ortheir associated functions are invoked, the execution
of these operations always consumes a certain quantity of gas, according to the amount of
computation required to accomplish them. Modifying an unknown-size array that grows
in size over time can result in a Denial of Service attack. Simply by having an excessively
huge array, users can exceed the gas limit, therefore preventing the transaction from ever
succeeding.

17

Listing 12: PistonToken.sol

79 function excludeMultipleAccountsFromFees(address[] calldata accounts,
— bool excluded) public onlyOwner {

o for(uint256 i = 0; i < accounts.length; i++) {

8l _isExcludedFromFees[accounts[i]] = excluded;

22)

83 emit ExcludeMultipleAccountsFromFees(accounts, excluded);

84 }

Likelihood -2
Impact - 2

Avoid actions that involve looping across the entire data structure. If you really must loop
over an array of unknown size, arrange for it to consume many blocs and thus multiple
transactions.

- Acknowledged

The Piston team has acknowledged the risk

A10 Renounce Ownership -

Typically, the contract’s owner is the account that deploys the contract. As a result, the
owner can perform certain privileged activities. The renounceOwnership function is used
in smart contracts to renounce ownership. However, if the contract’s ownership has never
been transferred before renouncing it, it will never have an Owner, which may result in a
denial of service.

18

Listing 13: PistonToken.sol

9 contract PistonToken is Initializable, ERC20Upgradeable,
— OwnableUpgradeable {

Likelihood -1
Impact - 3

Itis advised thatthe Owner cannot call renounceOwnership without first transferring own-
ership to a different address. Additionally, if a multi-signature wallet is utilized, executing
the renounceOwnership method will require two or more users to sign the transaction. Al-

ternatively, the Renounce Ownership functionality can be disabled by overriding it.

- Acknowledged

The Piston team has acknowledged the risk.

A1l Floating Pragma -

The contract makes use of the floating-point pragma 0.8.9. Contracts should be deployed
using the same compiler versionand flags that were used duringthe testing process. Lock-
ing the pragma helps ensure that contracts are not unintentionally deployed using another
pragma, such as an obsolete version, that may introduce issues in the contract system.

Listing 14: PistonToken.sol

1 // SPDX-License-Identifier: MIT

19

2 pragma solidity ~0.8.9;

Likelihood -2
Impact - 2

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

- Acknowledged

The Piston team has acknowledged the risk.

B PistonTokenController.sol

B.1 The Owner Can Take The Race Contract And The Ecosys-

tem Fees-

The swapAndLiquify() function transfers the fees to the ecosystem and the race contract.
However, the addresses of the ecosystem wallet and the race contract can be modified by
the owner. Thus, the owner can set the addresses to his own wallet and get 70% of the fees.

Listing 15: PistonTokenController.sol

ss IERC20Upgradeable (BUSD) .transfer(_ecosystemWalletAddress,
— IERC20Upgradeable (BUSD) .balanceOf (address(this)));

20

ss // send 107 to burn

@

s pistonToken.transfer(deadWallet, forBurn);

s //remaining tokens to race contract - around 407

2 pistonToken.transfer(_raceContractAddress,

o

Listing 16: PistonTokenController.sol

e function setContracts(address ecosystemWalletAddress, address
— raceContractAddress) external onlyOwner {

62 _ecosystemWalletAddress = ecosystemWalletAddress;

63 _raceContractAddress = raceContractAddress;
6

Likelihood -3

Impact-5

Itisrecommended to initialize the addresses correctly in the constructor, then remove the
settersto prevent changing these addresses.

- Acknowledged

The Piston team has acknowledged the risk.

B.2 Missing Verification In The Transfer Calls [[HIGH]

The ERC20 standard token implementation functions return the transaction status as a
Boolean. It is a good practice to check for the return status of the function call to ensure
that the transaction has passed successfully. Itis the developer’s responsibility to enclose
these function calls with require() to ensure that, when the intended ERC20 function call

21

returns false, the caller transaction also fails. However, it is mostly missed by developers
when they carry out checks in effect, the transaction would always succeed, even if the
token transfer did not.

Listing 17: PistonTokenController.sol

ss IERC20Upgradeable (BUSD) .transfer(_ecosystemWalletAddress,
— IERC20Upgradeable (BUSD) .balanceOf (address(this)));

ss // send 107 to burn

®

s pistonToken.transfer(deadWallet, forBurn);

s //remaining tokens to race contract - around 40Y%

pistonToken. transfer(_raceContractAddress,

o
N

Likelihood -3
Impact-5

Use the safeTransfer function from the safeERC20 implementation, or put the transfer call
inside an assert or require statement to verify that the transfer has passed successfully.

- Fixed

The Piston team has fixed the issue by wrapping the transfer calls inside a require state-
ment to make sure the transfer has passed successfully.

22

B.3 Missing Address Verification -

Certain functions lack a safety check inthe address, the address-type argument should in-
clude a zero-address test, otherwise, some of the contract’s functionality may become in-

accessible.

Listing 18: PistonTokenController.sol

s function initialize(address _Piston) public virtual initializer {
3 __Ownable_init();
¢ pistonToken = IToken(address(_Piston));

Listing 19: PistonTokenController.sol

e function setContracts(address ecosystemWalletAddress, address
— raceContractAddress) external onlyOwner {
62 _ecosystemWalletAddress = ecosystemWalletAddress;

63 _raceContractAddress = raceContractAddress;

64 }

Likelihood -1
Impact -3

It is recommended to make sure the addresses provided in the arguments are different

from the address(0).

23

- Acknowledged

The Piston team has acknowledged the risk.
B.4 Approve Race-

The standard ERC20 implementation contains a widely-known racing condition in its ap-
prove function, wherein a spender is able to witness the token owner broadcast a trans-
action altering their approval and quickly sign and broadcast a transaction using transfer-
From to move the current approved amount from the owner’s balance to the spender. If the
spender’s transaction is validated before the owner’s, the spender will be able to get both
approval amounts of both transactions.

Listing 20: PistonTokenController.sol

n contract PistonTokenController is Initializable, ERC20Upgradeable,
— OwnableUpgradeable {

Likelihood -1
Impact - 3

It is recommended to use the increaseAllowance() and decreaseAllowance() function to
override the approval amount instead of the approve() function.

- Acknowledged

The Piston team has acknowledged the risk.

24

B.5 Renounce Ownership-

Typically, the contract's owner is the account that deploys the contract. As a result, the
owner can perform certain privileged activities. The renounceOwnership function is used
in smart contracts to renounce ownership. However, if the contract’s ownership has never
been transferred before renouncing it, it will never have an Owner, which may result in a

denial of service.

Listing 21: PistonTokenController.sol

n contract PistonTokenController is Initializable, ERC20Upgradeable,
— OwnableUpgradeable {

Likelihood -1
Impact - 3

Itis advised thatthe Owner cannot call renounceOwnership without first transferring own-
ership to a different address. Additionally, if a multi-signature wallet is utilized, executing
the renounceOwnership method will require two or more users to sign the transaction. Al-
ternatively, the Renounce Ownership functionality can be disabled by overriding it.

- Acknowledged

The Piston team has acknowledged the risk.

25

B.6 Floating Pragma -

The contract makes use of the floating-point pragma 0.8.9. Contracts should be deployed
using the same compiler version andflags that were used during the testing process. Lock-
ing the pragma helps ensure that contracts are not unintentionally deployed using another
pragma, such as an obsolete version, that may introduce issues in the contract system.

Listing 22: PistonTokenController.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.9;

Likelihood -2
Impact - 2

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

- Acknowledged

The Piston team has acknowledged the risk.

26

C PistonPriceFeed.sol

C.1 Missing Address Verification -

Certain functions lack a safety check in the address, the address-type argument should in-
clude a zero-address test, otherwise, some of the contract’s functionality may become in-

accessible.

Listing 23: PistonPriceFeed.sol

1t function setMarketPair(address value) external {

1 require(msg.sender == owner, "owner only");
18 marketPairAddress = value;
19 }

Listing 24: PistonPriceFeed.sol

2 function setOwner(address value) external {

2 require(msg.sender == owner, "owner only");
23 owner = value;
%}

Likelihood -1

Impact - 3

It is recommended to make sure the addresses provided in the arguments are different

from the address(0).

27

- Acknowledged

The Piston team has acknowledged the risk.

C.2 Renounce Ownership -

Typically, the contract’s owner is the account that deploys the contract. As a result, the
owner can perform certain privileged activities. The setOwner() function can be used to
renounce the ownership if the value argument is set to address(0). Therefore, it will never

have an Owner, which may result in a denial of service.

Listing 25: PistonPriceFeed.sol

2 function setOwner(address value) external {

2 require(msg.sender == owner, "owner only");
23 owner = value;
24 }

Likelihood -1

Impact - 3

Itisrecommended to make sure the owner can only transfer his ownership and cannot re-
nounce it.

- Acknowledged

The Piston team has acknowledged the risk

28

D PistonRace.sol

D.1 The Owner Can ControlThe Price-

Wheneverthe contract needs the priceit calls the getPrice() function fromthe PistonPrice-
Feed contract, this contract address is modifiable by the owner. Therefore, the owner have
the ability to provide the price by creating another contract and setting its address using
updatePistonTokenPriceFeed() function.

Listing 26: PistonRace.sol

89 function updatePistonTokenPriceFeed(address priceFeedAddress, bool

— _store_busd_enabled) public onlyOwner {

190 pistonTokenPriceFeed = ITokenPriceFeed(priceFeedAddress);
91 STORE_BUSD _VALUE = _store_busd_enabled;

192 }

Likelihood -3

Impact-5

It is recommended to initialize the pistonTokenPriceFeed variable to the PistonPriceFeed
address in the constructor and remove the setter to prevent modifying it.

- Acknowledged

The Piston team has acknowledged the risk.

29

D.2 Race Condition _

The ref_bonus variable is utilized to determine the bonus value. If the user calls the de-
posit() functionthenthe owner modifiesthe ref_bonus, thereis a possibility thatthe owner’s
transaction will get mined first. If that happens the deposit function will get executed with
the new value of bonus which will generate unexpected behavior from the user side.

Listing 27: PistonRace.sol

209 function updateRefBonus(uint256 _newRefBonus) public onlyOwner {

210 ref bonus = newRefBonus;
pAll }

Likelihood -2

Impact - 4

It is recommended to notify the users before modifying the ref_bonus or to add it in the ar-
guments with arequire which makes sure thatthe oneinthe contractisthe same astheone
providedin the arguments.

- Acknowledged

The Piston team has acknowledged the risk.

30

D.3 Owner Can Deny The Users From

deposits_BUSD_

The deposits_BUSD associatedtothe usersisonlyincrementedifthe STORE_BUSD_VALUE
variable is set to true. The owner can change this value to false and deny all the users from
deposits_BUSD.

Listing 28: PistonRace.sol

s« usersRealDeposits[_addr].deposits += _total_amount;
s 1if (STORE_BUSD_VALUE){

3

o

306 usersRealDeposits[_addr] .deposits_BUSD += pistonTokenPriceFeed.
— getPrice(_total_amount.div(l ether)); // new cash in BUSD

307 }

Likelihood - 2

Impact - 3

Itisrecommended to remove the setter associated to this variable to avoid this centraliza-

tionrisk.

- Acknowledged

The Piston team has acknowledged the risk.

31

D.4 Ref_Depth Should Be Lower Than 255 [[EGW

The i variable is an unit8, therefore it can take values from 0 to 255. Thus, the ref_depth
should never go higher than 255, otherwise the transaction will always revert

Listing 29: PistonRace.sol

ws for(uint8 i = 0; i < ref_depth; i++) {

47 if (_upline == address(0)) break;
439 users[_upline].total structure++;
441 _upline = users[_upline] .upline;
w2

Likelihood - 2

Impact -3

Add a require statement in the setter of ref_depth to make sure the new value is less than
255.

- Acknowledged

The Piston team has acknowledged the risk.

kY.

D.5 Missing Value Verification -

Certain functions lack a safety check in the values, the values of the arguments should be
verified to allow only the ones that go with the contract’s logic. The maxBuyAmount,
maxWalletBalance and maxSellAmount variables should be different from zero,

otherwise users will not be able to transfer the tokens.

Listing 30: PistonRace.sol

8s function updateTaxes(uint256 _depositTax, uint256 _claimTax) public

— onlyOwner {

185 DepositTax = _depositTax;
186 ClaimTax = _claimTax;
187 }

Listing 31: PistonRace.sol

we function updatePayoutRate(uint256 _newPayoutRate) public onlyOwner {

195 payoutRate = _newPayoutRate;

196 }

Listing 32: PistonRace.sol

2z function updateInitialDeposit(uint256 _newInitialDeposit) public
— onlyOwner {

20 minimumInitial = _newlInitialDeposit * 1el8;

215 }

Likelihood -2
Impact -3

33

It's recommended to verify the values provided in the arguments. The concerns can be re-

solved by utilizing a require statement.

- Acknowledged

The Piston team has acknowledged the risk.

D.6 Renounce Ownership -

Typically, the contract’s owner is the account that deploys the contract. As a result, the
owner can perform certain privileged activities. The renounceOwnership function is used
in smart contracts to renounce ownership. However, if the contract’s ownership has never
been transferred before renouncing it, it will never have an Owner, which may result in a

denial of service.

Listing 33: PistonRace.sol

s contract PistonRace is OwnableUpgradeable {

Likelihood -1
Impact - 3

Itis advised thatthe Owner cannot call renounceOwnership without first transferring own-
ership to a different address. Additionally, if a multi-signature wallet is utilized, executing
the renounceOwnership method will require two or more users to sign the transaction. Al-
ternatively, the Renounce Ownership functionality can be disabled by overriding it.

34

- Acknowledged

The Piston team has acknowledged the risk.

D.7 Floating Pragma -

The contract makes use of the floating-point pragma 0.8.9. Contracts should be deployed
using the same compiler version andflags that were used duringthe testing process. Lock-
ing the pragma helps ensure that contracts are not unintentionally deployed using another
pragma, such as an obsolete version, that may introduce issues in the contract system.

Listing 34: PistonRace.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.9;

Likelihood - 2
Impact - 2

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

- Acknowledged

The Piston team has acknowledged the risk.

35

4 Best Practices

BP.1 Unnecessaryvariableinitialization

When a variable is declared in solidity, it gets initialized with its type’s default value. Thus,

there is no need to initialize a variable with the default value. Also, the swapEnabled and

tradingEnabled are initialized as false, then changed to true right after.

Listing 35: PistonToken.sol

s //settings

52 swapEnabled = false;

53 tradingEnabled = false;
54 swapEnabled = true;

55 tradingEnabled = true;

ss maxBuyAmount = 20000 * (10%x18);
ss maxWalletBalance = 20000 * (10%*18);
ss. maxSellAmount = 3000 * (10%*18);
59 swapTokensAtAmount = 250 * (10%*18);

60 totalFees = 10;

61 extraSellFee = 0;

&2 _mint(owner(), 1000000 * (10%*18));

63 }

36

BP.2 Remove swapEnabled From
ThesetTradingEnabled()

The setTradingEnabled() function is supposed to modify the tradingEnabled, but the code
also modifies the swapEnabled variable. Therefore, it is recommended to remove the
swapEnabled from the function, as it has already a separate setter.

BP.3 Implement Transfer Conditions In _beforeTo-
kenTransfer():

Itis recommended to implement all the transfer verification in before _beforeTokenTrans-
fer() that exists in the ERC20 standard in order to separate logic and make the transfer()
function code cleaner

BP.4 Deploy Contract Using Script

It is recommended to implement a script that deploys the contracts and sets their
addressesin the right order to avoid any deployment errors.

BP.5 UseOwnable from openzeppelin

It is recommended to use the Ownable contract from Openzeppelin and the onlyOwner

modifier as a best practice.

37

BP.6 Declare The Ref_Balances ArrayIn One Line

The ref_balances array can be initialized with these specific values in one line instead of

pushing each element at once.

Listing 36: PistonRace.sol

165

166

167

168

169

170

m

172

173

174

175

176

177

178

179

180

BP.7 Remove The Test Functions

ref balances.
ref balances.
ref balances.
ref balances.
ref balances.
ref balances.
ref balances.
ref balances.
ref balances.
ref balances.
ref balances.
ref balances.
ref balances
ref balances

ref balances.

push (100
push (300
push (500
push (700
push (900
push (1100
push (1300
push (1500
push (1700
push (1900
push (2100
push (2300

.push (2500
.push (2700

push (2900

ether) ;
ether) ;
ether) ;
ether) ;
ether) ;
ether) ;
ether) ;
ether) ;
ether) ;

//
//
//
//
//
//

ether); // 1 $100
ether); // 2 $300
ether); // 3 $500
ether); // 4 $700
ether); // 5 $900

10
11
12
13
14
15

$1900
$2100
$2300
$2500
$2700
$2900

worth of
worth of
worth of
worth of
worth of

worth
worth
worth
worth
worth

worth

PSTN
PSTN
PSTN
PSTN
PSTN
ether); // 6 $1100 worth of PSTN
// 7 $1300 worth of PSTN
// 8 $1500 worth of PSTN
// 9 $1700 worth of PSTN

of
of
of
of
of
of

PSTN
PSTN
PSTN
PSTN
PSTN
PSTN

The ref_balances array can be initialized with these specific values in one line instead of

pushing each element at once.

38

Listing 37: PistonRace.sol

ws function TESTAccumulatedDiv(address _addr, uint256 _value) public/*
— onlyOwner */{

199 users[_addr].accumulatedDiv = _value;

0 }

20 function TEST_UPDATE EJECT_DAYS() public onlyOwner {
202 userDepositEjectDays = 15 minutes;

03}

BP.8 Move Interfaces To Separate Files

Iltisrecommendedto moveinterfacesto separatefilesandimporttheminorderto optimize
the size of the contract.

39

5 Static Analysis (Slither)

ShellBoxes expanded the coverage of the specific contract areas using automated test-
ing methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
usedtotest mathematical relationships between Solidityinstances statically and variables
thatallow forthe detection of errorsorinconsistentusage of the contracts’ APls throughout
the entire codebase.

/// PistonPriceFeed.sol
PistonPriceFeed.setMarketPair(address) .value (PistonPriceFeed.sol#16)
— lacks a zero-check on :
- marketPairAddress = value (PistonPriceFeed.sol#18)
PistonPriceFeed.setOwner(address) .value (PistonPriceFeed.sol#21) lacks a
— zero—check on :
- owner = value (PistonPriceFeed.sol#23)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #missing-zero-address-validation

Different versions of Solidity are used:

- Version used: ['0.8.9', '"0.8.0', '~0.8.9']

- 0.8.9 (PistonPriceFeed.sol#2)

- 70.8.9 (1ibs/IUniswapV2Pair.sol#3)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC20/ERC20.
— sol#4)

- 70.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/IERC20
— .sol#4)

- 70.8.0 (node_modules/Q@openzeppelin/contracts/token/ERC20/
— extensions/IERC20Metadata.sol#4)

40

- 70.8.0 (node_modules/Qopenzeppelin/contracts/utils/Context.sol
— #4)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

Context._msgData() (node_modules/@openzeppelin/contracts/utils/Context.
< sol#21-23) is never used and should be removed

ERC20. burn(address,uint256) (node_modules/@openzeppelin/contracts/token
— /ERC20/ERC20.s01#280-295) is never used and should be removed

ERC20._mint (address,uint256) (node_modules/Qopenzeppelin/contracts/token
— /ERC20/ERC20.s01#257-267) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #dead-code

Pragma version0.8.9 (PistonPriceFeed.sol#2) necessitates a version too
— recent to be trusted. Consider deploying with 0.6.12/0.7.6/0.8.7

Pragma version~0.8.9 (1libs/IUniswapV2Pair.sol#3) necessitates a version
— too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6/0.8.7

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts/token/ERC20/
— ERC20.s0l#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— IERC20.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts/token/ERC20/
— extensions/IERC20Metadata.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts/utils/Context
< .sol#4) allows old versions

501c-0.8.9 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #incorrect-versions—-of-solidity

PistonPriceFeed.sol analyzed (6 contracts with 75 detectors), 13 result(

— s) found

//PistonPriceFeed.sol

41

PistonPriceFeed.setMarketPair(address) .value (PistonPriceFeed.sol#16)
— lacks a zero-check on :
- marketPairAddress = value (PistonPriceFeed.sol#18)
PistonPriceFeed.setOwner (address) .value (PistonPriceFeed.sol#21) lacks a
< zero—check on :
- owner = value (PistonPriceFeed.sol#23)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #missing-zero-address-validation

Different versions of Solidity are used:
- Version used: ['0.8.9', '"0.8.0', '"0.8.9']
- 0.8.9 (PistonPriceFeed.sol#2)
- 70.8.9 (1libs/IUniswapV2Pair.sol#3)
- 70.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/ERC20.
— sol#4)
- 70.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC20/IERC20
— .sol#4)
- 70.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— extensions/IERC20Metadata.sol#4)
- 70.8.0 (node_modules/Qopenzeppelin/contracts/utils/Context.sol
— #4)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

Context. msgData() (node_modules/Qopenzeppelin/contracts/utils/Context.
< s0l#21-23) is never used and should be removed

ERC20. burn(address,uint256) (node_modules/@openzeppelin/contracts/token
— /ERC20/ERC20.s01#280-295) is never used and should be removed

ERC20. mint(address,uint256) (node_modules/@openzeppelin/contracts/token
— /ERC20/ERC20.s01#257-267) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #dead-code

42

Pragma version0.8.9 (PistonPriceFeed.sol#2) necessitates a version too
— recent to be trusted. Consider deploying with 0.6.12/0.7.6/0.8.7

Pragma version~0.8.9 (1libs/IUniswapV2Pair.sol#3) necessitates a version
<> too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6/0.8.7

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC20/
— ERC20.so0l#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts/token/ERC20/
— IERC20.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC20/
— extensions/IERC20Metadata.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/utils/Context
— .sol#4) allows old versions

501¢c-0.8.9 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #incorrect-versions—-of-solidity

PistonPriceFeed.sol analyzed (6 contracts with 75 detectors), 13 result(

< s) found
//PistonRace.sol

Compilation warnings/errors on PistonRace.sol:

Warning: Contract code size exceeds 24576 bytes (a limit introduced in
< Spurious Dragon). This contract may not be deployable on mainnet.
< Consider enabling the optimizer (with a low "runs" value!),

— turning off revert strings, or using libraries.
--> PistonRace.s0l:6:1:
I
6 | contract PistonRace is OwnableUpgradeable {
| = (Relevant source part starts here and spans across multiple lines)

= o

43

PistonRace.total bnb (PistonRace.sol#106) is never initialized. It is
— used in:
- PistonRace.contractInfo() (PistonRace.sol#858-860)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #uninitialized-state-variables

PistonRace.unstakeBoost() (PistonRace.sol#352-397) performs a
— multiplication on the result of a division:
—-current_amount BUSD = pistonPrice.mul (usersBoosts[_addr].
— stakedBoost PSTN.div(1000000000000000000)) (PistonRace.sol
— #366)
PistonRace.eject() (PistonRace.sol#671-736) performs a multiplication on
— the result of a division:
-current_amount_BUSD = pistonPrice.mul(user.userDepositsForEject[
< i] .amount PSTN.div(1000000000000000000)) (PistonRace.sol
— #685)
PistonRace.eject() (PistonRace.sol#671-736) performs a multiplication on
<~ the result of a division:
-pistonPrice.mul (user.userDepositsForEject[i] .amount PSTN.div
— (1000000000000000000)) <= user.userDepositsForEject[i].
— amount BUSD (PistonRace.sol#693)
PistonRace.eject() (PistonRace.sol#671-736) performs a multiplication on
<~ the result of a division:
-ejectTaxAmount = amountAvailableForEject.div(100) .mul(EjectTax)
— (PistonRace.sol#718)
PistonRace.sustainabilityFeeV2(address,uint256) (PistonRace.sol#803-807)
<~ performs a multiplication on the result of a division:
-_bracket = users[_addr] .payouts.add(_pendingDiv) .div(
— deposit_bracket_size) (PistonRace.sol#804)
- bracket * 5 (PistonRace.sol#806)
PistonRace.payout0f (address) (PistonRace.sol#810-837) performs a
— multiplication on the result of a division:
-share = users[_addr] .deposits.mul (payoutRate * 1e18).div(100e18)
— .div(86400) (PistonRace.sol#819)

44

-payout = share * block.timestamp.safeSub(users[_addr].
— deposit_time) (PistonRace.sol#821)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #divide-before-multiply

Reentrancy in PistonRace.airdrop(address,uint256) (PistonRace.sol
— #865-905) :

External calls:

- require(bool,string) (pistonToken.transferFrom(_addr,address(
< this), amount),PISTON to contract transfer failed; check
< balance and allowance.) (PistonRace.sol#873-880)

State variables written after the call(s):

- users[_to].accumulatedDiv = gross_payout (PistonRace.sol#887)

- users[_to] .deposits += _realizedAmount (PistonRace.sol#890)

- users[_to] .deposit_time = block.timestamp (PistonRace.sol#891)

Reentrancy in PistonRace.deposit(address,uint256) (PistonRace.sol
— #266-329):

External calls:

- require(bool,string) (pistonToken.transferFrom(_addr,address(
< this), amount),PISTON token transfer failed) (PistonRace.
— s01#294-301)

State variables written after the call(s):

- _deposit(_addr, total amount) (PistonRace.sol#311)

- users[_addr] .deposits += _amount (PistonRace.sol#452)
- users[_addr] .deposit_time = block.timestamp (PistonRace.
< sol#453)

- _refPayout(_addr,realizedDeposit + taxedDivs,ref_bonus) (

—s PistonRace.sol#313)

- users[_addr] .ref claim_pos = ref_depth (PistonRace.sol
— #472)

- users[_up].accumulatedDiv = gross_payout (PistonRace.sol
— #483)

- users[_up] .deposits += _bonus (PistonRace.sol#484)

45

- users[_up] .deposit_time = block.timestamp (PistonRace.
<> s01#485)

- users[_up] .match_bonus += _bonus (PistonRace.sol#489)

- users[_addr] .ref_claim_pos = ref_depth (PistonRace.sol

— #497)

1 (PistonRace.sol#504)
1 (PistonRace.sol#513)
0 (PistonRace.sol#517)

- users[_addr] .ref claim pos +

- users[_addr].ref claim pos +

- users[_addr] .ref claim_pos
- users[_addr] .userDepositsForEject.push(UserDepositsForEject(
< _total amount,pistonTokenPriceFeed.getPrice(_total amount.
— div(1000000000000000000)) ,block.timestamp,false)) (
— PistonRace.sol#317-324)
- usersRealDeposits[_addr].deposits += _total amount (PistonRace.
< s01#304)
- usersRealDeposits[_addr].deposits_BUSD += pistonTokenPriceFeed.
— getPrice(_total_amount.div(1000000000000000000)) (
— PistonRace.sol#306)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-1

PistonRace.updateCompoundTax (uint256) (PistonRace.sol#221-224) contains
— a tautology or contradiction:
- require(bool) (_newCompoundTax >= 0 &% _newCompoundTax <= 20) (
— PistonRace.sol#222)
PistonRace.updateExitTax (uint256) (PistonRace.sol#226-229) contains a
— tautology or contradiction:
- require(bool) (_newExitTax >= 0 && _newExitTax <= 20) (
— PistonRace.sol#227)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #tautology-or-contradiction

PistonRace.deposit(address,uint256) .taxedDivs (PistonRace.sol#284) is a

— local variable never initialized

46

PistonRace.eject () .amountDeposits_PSTN (PistonRace.sol#674) is a local
— variable never initialized
PistonRace.eject () .amountAvailableForEject (PistonRace.sol#673) is a
<~ local variable never initialized
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

< #uninitialized-local-variables

PistonRace.unstakeBoost() (PistonRace.sol#352-397) ignores return value
— by tokenMint.mint(address(this),differenceToMint) (PistonRace.sol
— #386)

PistonRace._claim_out(address) (PistonRace.sol#593-614) ignores return
< value by tokenMint.mint(address(this),differenceToMint) (
— PistonRace.sol#602)

PistonRace.eject() (PistonRace.sol#671-736) ignores return value by
< tokenMint.mint (address(this) ,differenceToMint) (PistonRace.sol
— #730)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #unused-return

PistonRace.updateTaxes(uint256,uint256) (PistonRace.sol#184-187) should
— emit an event for:
- DepositTax = _depositTax (PistonRace.sol#185)
- ClaimTax = _claimTax (PistonRace.sol#186)
PistonRace.updatePayoutRate(uint256) (PistonRace.sol#194-196) should
— emit an event for:
- payoutRate = _newPayoutRate (PistonRace.sol#195)
PistonRace.updateRefDepth(uint256) (PistonRace.sol#205-207) should emit
— an event for:
- ref _depth = _newRefDepth (PistonRace.sol#206)
PistonRace.updateRefBonus (uint256) (PistonRace.sol#209-211) should emit
— an event for:
- ref bonus = newRefBonus (PistonRace.sol#210)
PistonRace.updateInitialDeposit(uint256) (PistonRace.sol#213-215) should

— emit an event for:

47

- minimumInitial = newInitialDeposit * 1el18 (PistonRace.sol#214)
PistonRace.updateMinimumAmount (uint256) (PistonRace.sol#217-219) should
— emit an event for:
- minimumAmount = newminimumAmount * 1el18 (PistonRace.sol#218)
PistonRace.updateCompoundTax (uint256) (PistonRace.sol#221-224) should
< emit an event for:
- CompoundTax = _newCompoundTax (PistonRace.sol#223)
PistonRace.updateExitTax(uint256) (PistonRace.sol#226-229) should emit
— an event for:
- ExitTax = newExitTax (PistonRace.sol#228)
PistonRace.updateDepositBracketSize (uint256) (PistonRace.sol#231-233)
— should emit an event for:
- deposit_bracket_size = _newBracketSize * 1000000000000000000 (
— PistonRace.sol#232)
PistonRace.updateMaxPayoutCap(uint256) (PistonRace.sol#235-237) should
— emit an event for:
- max_payout_cap = _newPayoutCap * 1000000000000000000 (
— PistonRace.sol#236)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #missing-events-arithmetic

PistonRace.getNextUpline(address,uint256,uint256) (PistonRace.sol
— #522-546) has external calls inside a loop: _max roll ok = users[
< _addr] .deposits.add(_bonus) < this.maxRoll0f (usersRealDeposits[
< _addr] .deposits) (PistonRace.sol#537)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— /#calls-inside-a-loop

Reentrancy in PistonRace._claim_out(address) (PistonRace.sol#593-614):
External calls:
- tokenMint.mint (address(this) ,differenceToMint) (PistonRace.sol
— #602)

State variables written after the call(s):

48

- usersWithdrawn[_addr].withdrawn = realizedPayout (PistonRace.
< s01#605)
- usersWithdrawn[_addr] .withdrawn BUSD = pistonTokenPriceFeed.
— getPrice(realizedPayout.div(1000000000000000000)) (
— PistonRace.sol#606)
Reentrancy in PistonRace._claim_out(address) (PistonRace.sol#593-614):
External calls:
- tokenMint.mint (address(this) ,differenceToMint) (PistonRace.sol
— #602)
- require(bool) (pistonToken.transfer (address(msg.sender),
— realizedPayout)) (PistonRace.sol#609)
State variables written after the call(s):
- total txs ++ (PistonRace.sol#612)
Reentrancy in PistonRace.airdrop(address,uint256) (PistonRace.sol
— #865-905) :
External calls:
- require(bool,string) (pistonToken.transferFrom(_addr,address(
< this), amount),PISTON to contract transfer failed; check
< balance and allowance.) (PistonRace.sol#873-880)

State variables written after the call(s):

airdrops[_addr] .airdrops += _realizedAmount (PistonRace.sol

— #894)

airdrops[_addr].last_airdrop = block.timestamp (PistonRace.sol
— #895)
- airdrops[_to].airdrops_received += _realizedAmount (PistonRace.
< s01#896)
- total_airdrops += _realizedAmount (PistonRace.sol#899)
- total_txs += 1 (PistonRace.sol#900)
Reentrancy in PistonRace.deposit(address,uint256) (PistonRace.sol
— #266-329):
External calls:
- require(bool,string) (pistonToken.transferFrom(_addr,address(
< this), amount),PISTON token transfer failed) (PistonRace.
< s01#294-301)

49

State variables written after the call(s):
- _deposit(_addr,_total_amount) (PistonRace.sol#311)
- total deposited += _amount (PistonRace.sol#454)
- total txs ++ (PistonRace.sol#327)
Reentrancy in PistonRace.stakeBoost(uint256) (PistonRace.sol#332-350):
External calls:
- require(bool,string) (pistonToken.transferFrom(_addr,address(
< this), amount),PISTON to contract transfer failed; check
— balance and allowance for staking.) (PistonRace.sol
— #337-344)
State variables written after the call(s):
- usersBoosts[_addr].stakedBoost PSTN += _amount (PistonRace.sol
— #345)
- usersBoosts[_addr].last_action_time = block.timestamp (
— PistonRace.sol#346)
- usersBoosts[_addr] .stakedBoost_BUSD += pistonTokenPriceFeed.
— getPrice(_amount.div(1000000000000000000)) (PistonRace.sol
— #348)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-2

Reentrancy in PistonRace._claim_out(address) (PistonRace.sol#593-614):
External calls:
- tokenMint.mint (address(this) ,differenceToMint) (PistonRace.sol
— #602)
- require(bool) (pistonToken.transfer (address(msg.sender),
— realizedPayout)) (PistonRace.sol#609)
Event emitted after the call(s):
- Leaderboard(_addr,users[_addr].referrals,users[_addr].deposits,
— users[_addr] .payouts,users[_addr].total_structure) (
— PistonRace.sol#611)
Reentrancy in PistonRace.airdrop(address,uint256) (PistonRace.sol
— #865-905) :

External calls:

50

- require(bool,string) (pistonToken.transferFrom(_addr,address(
< this), amount),PISTON to contract transfer failed; check
< balance and allowance.) (PistonRace.sol#873-880)

Event emitted after the call(s):

- NewAirdrop(_addr, to,_realizedAmount,block.timestamp) (

— PistonRace.sol#903)
- NewDeposit(_to, realizedAmount) (PistonRace.sol#904)
Reentrancy in PistonRace.deposit(address,uint256) (PistonRace.sol
— #266-329) :

External calls:

- require(bool,string) (pistonToken.transferFrom(_addr,address(
< this), amount),PISTON token transfer failed) (PistonRace.
— s01#294-301)

Event emitted after the call(s):

- Leaderboard(_addr,users[_addr] .referrals,users[_addr].deposits,
— users[_addr] .payouts,users[_addr].total_structure) (

< PistonRace.sol#326)

MatchPayout (_up,_addr, bonus) (PistonRace.sol#493)
- _refPayout(_addr,realizedDeposit + taxedDivs,ref bonus)
— (PistonRace.sol#313)
NewDeposit(_addr, amount) (PistonRace.sol#457)

- _deposit(_addr,_total_amount) (PistonRace.sol#311)

NewDeposit(_up, bonus) (PistonRace.sol#492)
- _refPayout(_addr,realizedDeposit + taxedDivs,ref bonus)
— (PistonRace.sol#313)
Reentrancy in PistonRace.eject() (PistonRace.sol#671-736):
External calls:
- tokenMint.mint (address(this) ,differenceToMint) (PistonRace.sol
— #730)
- require(bool) (pistonToken.transfer (address(msg.sender),
— amountAvailableForEject)) (PistonRace.sol#733)
Event emitted after the call(s):
- Ejected(msg.sender,amountAvailableForEject,block.timestamp) (

< PistonRace.sol#735)

91

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-3

PistonRace.eject() (PistonRace.sol#671-736) uses timestamp for
<~ comparisons
Dangerous comparisons:
- require(bool,string) (user.userDepositsForEject[0] .depositTime >
— block.timestamp.sub(userDepositEjectDays),eject period is
— over) (PistonRace.sol#680)
PistonRace.payout0f (address) (PistonRace.sol#810-837) uses timestamp for
<> comparisons
Dangerous comparisons:
- users[_addr] .payouts + payout > max_payout (PistonRace.sol#826)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #block-timestamp

AddressUpgradeable.verifyCallResult (bool,bytes,string) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #174-194) uses assembly
- INLINE ASM (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/AddressUpgradeable.sol#186-189)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #assembly-usage

PistonRace.eject() (PistonRace.sol#671-736) compares to a boolean
< constant:
-user.userDepositsForEject[i] .ejected == false (PistonRace.sol
— #683)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #boolean-equality

Different versions of Solidity are used:

- Version used: ['70.8.0', '"0.8.1', '~0.8.2', '"0.8.9']
- 70.8.9 (PistonRace.sol#2)

92

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/access
— /OwnableUpgradeable.sol#4)
- 70.8.2 (node_modules/Qopenzeppelin/contracts-upgradeable/proxy/
— utils/Initializable.sol#4)
- 70.8.1 (node_modules/Qopenzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#4)
- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/utils/
— ContextUpgradeable.sol#4)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

AddressUpgradeable.functionCall (address,bytes) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #85-87) is never used and should be removed
AddressUpgradeable.functionCall (address,bytes,string) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
< #95-101) is never used and should be removed
AddressUpgradeable.functionCallWithValue (address,bytes,uint256) (
— node_modules/Qopenzeppelin/contracts—upgradeable/utils/
— AddressUpgradeable.sol#114-120) is never used and should be
— removed
AddressUpgradeable.functionCallWithValue (address,bytes,uint256,string) (
— node_modules/Qopenzeppelin/contracts—upgradeable/utils/
— AddressUpgradeable.sol#128-139) is never used and should be
— removed
AddressUpgradeable.functionStaticCall (address,bytes) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #147-149) is never used and should be removed
AddressUpgradeable.functionStaticCall (address,bytes,string) (
— node_modules/@openzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#157-166) is never used and should be
— removed
AddressUpgradeable.sendValue (address,uint256) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol

33

— #60-65) is never used and should be removed

AddressUpgradeable.verifyCallResult (bool,bytes,string) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
< #174-194) is never used and should be removed

ContextUpgradeable. _Context_init() (node_modules/@openzeppelin/
— contracts-upgradeable/utils/ContextUpgradeable.sol#18-19) is
< never used and should be removed

ContextUpgradeable._ _Context_init unchained() (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol
— #21-22) is never used and should be removed

ContextUpgradeable. _msgData() (node_modules/Qopenzeppelin/contracts—
— upgradeable/utils/ContextUpgradeable.sol#27-29) is never used and
— should be removed

Initializable. disablelInitializers() (node_modules/@openzeppelin/
— contracts-upgradeable/proxy/utils/Initializable.sol#131-137) is
— never used and should be removed

SafeMath.max (uint256,uint256) (PistonRace.sol#964-966) is never used and
<~ should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #dead-code

Pragma version~0.8.9 (PistonRace.sol#2) necessitates a version too
— recent to be trusted. Consider deploying with 0.6.12/0.7.6/0.8.7

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— access/0OwnableUpgradeable.sol#4) allows old versions

Pragma version~0.8.2 (node_modules/Qopenzeppelin/contracts-upgradeable/
— proxy/utils/Initializable.sol#4) allows old versions

Pragma version~0.8.1 (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/AddressUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/
— utils/ContextUpgradeable.sol#4) allows old versions

501c-0.8.9 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

< #incorrect-versions—-of-solidity

94

OwnableUpgradeable._ _gap (node_modules/Qopenzeppelin/contracts-
— upgradeable/access/OwnableUpgradeable.sol#94) is never used in
— PistonRace (PistonRace.sol#6-909)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #unused-state-variable

PistonRace.total bnb (PistonRace.sol#106) should be constant

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #state-variables-that-could-be-declared-constant

PistonRace.sol analyzed (9 contracts with 75 detectors), 63 result(s)

— found
///PistonTokenController.sol

PistonTokenController.swapAndLiquify() (PistonTokenController.sol#66-96)
— ignores return value by IERC20Upgradeable(BUSD).transfer(
— _ecosystemWalletAddress, IERC20Upgradeable (BUSD) .balanceOf (address
— (this))) (PistonTokenController.sol#86)
PistonTokenController.swapAndLiquify() (PistonTokenController.sol#66-96)
— ignores return value by pistonToken.transfer(deadWallet,forBurn)
— (PistonTokenController.sol#89)
PistonTokenController.swapAndLiquify() (PistonTokenController.sol#66-96)
< ignores return value by pistonToken.transfer(
— _raceContractAddress,pistonToken.balance0f (address(this))) (
— PistonTokenController.sol#92)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #unchecked-transfer

PistonTokenController.swapTokensForBUSD(uint256) (PistonTokenController.
— s01#98-113) ignores return value by pistonToken.approve(address(
— uniswapV2Router) ,tokenAmount) (PistonTokenController.sol#104)
PistonTokenController.addLiquidity(uint256,uint256) (
— PistonTokenController.sol#115-131) ignores return value by

95

— pistonToken.approve(address (uniswapV2Router) ,tokenAmount) (
— PistonTokenController.sol#117)
PistonTokenController.addLiquidity(uint256,uint256) (
— PistonTokenController.sol#115-131) ignores return value by
— IERC20Upgradeable (BUSD) .approve (address (uniswapV2Router) ,
— busdAmount) (PistonTokenController.sol#118)
PistonTokenController.addLiquidity(uint256,uint256) (
— PistonTokenController.sol#115-131) ignores return value by
— uniswapV2Router.addLiquidity(address(pistonToken) ,BUSD,
— tokenAmount,busdAmount,0,0,owner () ,block.timestamp) (
— PistonTokenController.sol#121-130)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #unused-return

PistonTokenController.setContracts(address,address) .
— ecosystemWalletAddress (PistonTokenController.sol#61) lacks a
< zero-check on :
- _ecosystemWalletAddress = ecosystemWalletAddress (
— PistonTokenController.sol#62)
PistonTokenController.setContracts(address,address) .raceContractAddress
— (PistonTokenController.sol#61) lacks a zero-check on :
- _raceContractAddress = raceContractAddress (
< PistonTokenController.sol#63)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #missing-zero-address-validation

Reentrancy in PistonTokenController.initialize(address) (
— PistonTokenController.sol#34-55):
External calls:
- uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory()).
— createPair(address(pistonToken) ,BUSD) (
— PistonTokenController.sol#44)
State variables written after the call(s):

- burnPercent = 10 (PistonTokenController.sol#52)

56

liquidityPercent = 20 (PistonTokenController.sol#51)
marketingDevPercent = 30 (PistonTokenController.sol#53)
racePercent = 40 (PistonTokenController.sol#54)
uniswapV2Router = _uniswapV2Router (PistonTokenController.sol

— #48)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-2

AddressUpgradeable.verifyCallResult (bool,bytes,string) (node_modules/

— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol

— #174-194) uses assembly

INLINE ASM (node_modules/@openzeppelin/contracts-upgradeable/
— utils/AddressUpgradeable.sol#186-189)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #assembly-usage

Different versions of Solidity are used:

Version used: ['"0.8.0', '"0.8.1', '"0.8.2', '70.8.9']

~0.8.9 (PistonTokenController.sol#2)

~0.8.9 (libs/IUniswapV2Factory.sol#3)

~0.8.9 (libs/IUniswapV2Pair.sol#3)

~0.8.9 (libs/IUniswapV2Router.sol#3)

~0.8.0 (node_modules/@openzeppelin/contracts—upgradeable/access
— /OwnableUpgradeable.sol#4)

~0.8.2 (node_modules/@openzeppelin/contracts-upgradeable/proxy/
— utils/Initializable.sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/token/
— ERC20/ERC20Upgradeable.sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/token/
— ERC20/IERC20Upgradeable.sol#4)

70.8.0 (node_modules/@openzeppelin/contracts—upgradeable/token/
— ERC20/extensions/IERC20MetadataUpgradeable.sol#4)

~0.8.1 (node_modules/@openzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#4)

57

- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/utils/
— ContextUpgradeable.sol#4)
- 70.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/utils/
— math/SafeMathUpgradeable.sol#4)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

AddressUpgradeable.functionCall (address,bytes) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #85-87) is never used and should be removed
AddressUpgradeable.functionCall (address,bytes,string) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
< #95-101) is never used and should be removed
AddressUpgradeable.functionCallWithValue (address,bytes,uint256) (
— node_modules/Qopenzeppelin/contracts—upgradeable/utils/
— AddressUpgradeable.sol#114-120) is never used and should be
— removed
AddressUpgradeable.functionCallWithValue (address,bytes,uint256,string) (
— node_modules/Qopenzeppelin/contracts—upgradeable/utils/
— AddressUpgradeable.sol#128-139) is never used and should be
— removed
AddressUpgradeable.functionStaticCall (address,bytes) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #147-149) is never used and should be removed
AddressUpgradeable.functionStaticCall (address,bytes,string) (
— node_modules/@openzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#157-166) is never used and should be
— removed
AddressUpgradeable.sendValue (address,uint256) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #60-65) is never used and should be removed
AddressUpgradeable.verifyCallResult (bool,bytes,string) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
< #174-194) is never used and should be removed

58

ContextUpgradeable. Context_init() (node_modules/Qopenzeppelin/
— contracts-upgradeable/utils/ContextUpgradeable.sol#18-19) is
<> never used and should be removed
ContextUpgradeable._ _Context_init unchained() (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol
< #21-22) is never used and should be removed
ContextUpgradeable. _msgData() (node_modules/Qopenzeppelin/contracts—
— upgradeable/utils/ContextUpgradeable.sol#27-29) is never used and
— should be removed
ERC20Upgradeable.__ERC20_init(string,string) (node_modules/@openzeppelin
— /contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol#55-57) is
<~ never used and should be removed
ERC20Upgradeable. _ERC20_init_unchained(string,string) (node_modules/
— Qopenzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.
— sol#59-62) is never used and should be removed
ERC20Upgradeable. burn(address,uint256) (node_modules/Qopenzeppelin/
— contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol#285-300)
<~ 1is never used and should be removed
ERC20Upgradeable. mint(address,uint256) (node_modules/Qopenzeppelin/
— contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol#262-272)
<~ 1is never used and should be removed
Initializable. disablelInitializers() (node_modules/@openzeppelin/
— contracts-upgradeable/proxy/utils/Initializable.sol#131-137) is
<~ never used and should be removed
SafeMathUpgradeable.div(uint256,uint256,string) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/math/
— SafeMathUpgradeable.sol#191-200) is never used and should be
— removed
SafeMathUpgradeable.mod (uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#151-153)
<> 1s never used and should be removed
SafeMathUpgradeable.mod(uint256,uint256,string) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/math/
— SafeMathUpgradeable.sol#217-226) is never used and should be

59

— removed

SafeMathUpgradeable.sub(uint256,uint256,string) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/math/
— SafeMathUpgradeable.sol#168-177) is never used and should be
— removed

SafeMathUpgradeable.tryAdd(uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#22-28)
— 1is never used and should be removed

SafeMathUpgradeable.tryDiv(uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#64-69)
< is never used and should be removed

SafeMathUpgradeable.tryMod (uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#76-81)
<~ 1is never used and should be removed

SafeMathUpgradeable.tryMul (uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#47-57)
<~ 1is never used and should be removed

SafeMathUpgradeable.trySub(uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#35-40)
— 1is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #dead-code

Pragma version~0.8.9 (PistonTokenController.sol#2) necessitates a
— version too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6/0.8.7
Pragma version~0.8.9 (1libs/IUniswapV2Factory.sol#3) necessitates a
< version too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6/0.8.7
Pragma version~0.8.9 (libs/IUniswapV2Pair.sol#3) necessitates a version
< too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6/0.8.7
Pragma version~0.8.9 (1libs/IUniswapV2Router.sol#3) necessitates a

— version too recent to be trusted. Consider deploying with

60

— 0.6.12/0.7.6/0.8.7

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— access/0OwnableUpgradeable.sol#4) allows old versions

Pragma version~0.8.2 (node_modules/Qopenzeppelin/contracts-upgradeable/
— proxy/utils/Initializable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/
— token/ERC20/ERC20Upgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— token/ERC20/IERC20Upgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts-upgradeable/
— token/ERC20/extensions/IERC20MetadatalUpgradeable.sol#4) allows
<~ old versions

Pragma version~0.8.1 (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/AddressUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— utils/ContextUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/math/SafeMathUpgradeable.sol#4) allows old versions

801¢c-0.8.9 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity

Variable IUniswapV2RouterOl.addLiquidity(address,address,uint256,uint256
— ,uint256,uint256,address,uint256) .amountADesired (libs/
— IUniswapV2Router.sol#12) is too similar to IUniswapV2RouterO1.
— addLiquidity(address,address,uint256,uint256,uint256,uint256,
— address,uint256) .amountBDesired (libs/IUniswapV2Router.sol#13)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

< #variable—-names-are-too-similar
PistonTokenController.slitherConstructorConstantVariables() (

— PistonTokenController.sol#11-152) uses literals with too many

— digits:

61

- deadWallet = 0x000000000000000000000000000000000000dEaD (
— PistonTokenController.sol#18)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #too-many-digits

OwnableUpgradeable._ _gap (node_modules/@openzeppelin/contracts-
— upgradeable/access/OwnableUpgradeable.sol#94) is never used in
— PistonTokenController (PistonTokenController.sol#11-152)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #unused-state-variable
PistonTokenController.sol analyzed (14 contracts with 75 detectors), 53

— result(s) found

////PistonToken.sol

Contract locking ether found:
Contract PistonToken (PistonToken.sol#9-213) has payable
— functions:
- PistonToken.receive() (PistonToken.sol#74-75)
But does not have a function to withdraw the ether
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #contracts-that-lock-ether

PistonToken.mintMaster (PistonToken.sol#28) is written in both

mintMaster = owner() (PistonToken.sol#45)

mintMaster = owner() (PistonToken.sol#49)
PistonToken.swapEnabled (PistonToken.sol#12) is written in both

swapEnabled = false (PistonToken.sol#52)

swapEnabled = true (PistonToken.sol#54)
PistonToken.tradingEnabled (PistonToken.sol#13) is written in both

tradingEnabled = false (PistonToken.sol#53)

tradingEnabled = true (PistonToken.sol#55)

62

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #fiwrite—-after-write

PistonToken.setFees(uint256,uint256) (PistonToken.sol#96-102) should
< emit an event for:
- totalFees = _totalFees (PistonToken.sol#99)
- extraSellFee = _extraSellFee (PistonToken.sol#100)
PistonToken.setMaxBuyAmount (uint256) (PistonToken.sol#128-130) should
< emit an event for:
- maxBuyAmount = amount * 10 ** 18 (PistonToken.sol#129)
PistonToken.setMaxWalletBalance(uint256) (PistonToken.sol#132-134)
<— should emit an event for:
- maxWalletBalance = amount * 10 ** 18 (PistonToken.sol#133)
PistonToken.setMaxSellAmount (uint256) (PistonToken.sol#136-138) should
<~ emit an event for:
- maxSellAmount = amount * 10 *x 18 (PistonToken.sol#137)
PistonToken.setSwapTokensAtAmount (uint256) (PistonToken.sol#140-142)
< should emit an event for:
- swapTokensAtAmount = amount * 10 *x 18 (PistonToken.sol#141)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #missing-events-arithmetic

PistonToken.setUniswapV2PairAndController (address,address) .
— _uniswapV2Pair (PistonToken.sol#90) lacks a zero-check on :
- uniswapV2Pair = address(_uniswapV2Pair) (PistonToken.sol
— #91)
PistonToken.setUniswapV2PairAndController(address,address)._controller (
— PistonToken.sol#90) lacks a zero-check on :
- controller = address(_controller) (PistonToken.sol#92)
PistonToken.setMintMasterAddress(address)._value (PistonToken.sol#148)
— lacks a zero-check on :
- mintMaster = _value (PistonToken.sol#150)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #missing-zero-address-validation

63

AddressUpgradeable.verifyCallResult (bool,bytes,string) (node_modules/

— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #174-194) uses assembly

INLINE ASM (node_modules/@openzeppelin/contracts-upgradeable/
— utils/AddressUpgradeable.sol#186-189)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #assembly-usage

Different versions of Solidity are used:

Version used: ['~0.8.0', '"0.8.1', '70.8.2', '70.8.9']

~0.8.9 (PistonToken.sol#2)

~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/access
— /OwnableUpgradeable.sol#4)

~0.8.2 (node_modules/@openzeppelin/contracts—upgradeable/proxy/
— utils/Initializable.sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/token/
— ERC20/ERC20Upgradeable.sol#4)

70.8.0 (node_modules/@openzeppelin/contracts—upgradeable/token/
— ERC20/IERC20Upgradeable.sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/token/
— ERC20/extensions/IERC20MetadatalUpgradeable.sol#4)

70.8.1 (node_modules/@openzeppelin/contracts—upgradeable/utils/
— AddressUpgradeable.sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/utils/
— ContextUpgradeable.sol#4)

70.8.0 (node_modules/@openzeppelin/contracts-upgradeable/utils/
— math/SafeMathUpgradeable.sol#4)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

AddressUpgradeable.functionCall (address,bytes) (node_modules/

< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol

< #85-87) is never used and should be removed

64

AddressUpgradeable.functionCall (address,bytes,string) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
< #95-101) is never used and should be removed

AddressUpgradeable.functionCallWithValue (address,bytes,uint256) (

— node_modules/@openzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#114-120) is never used and should be
— removed

AddressUpgradeable.functionCallWithValue(address,bytes,uint256,string) (
— node_modules/@openzeppelin/contracts-upgradeable/utils/

— AddressUpgradeable.sol#128-139) is never used and should be
— removed

AddressUpgradeable.functionStaticCall (address,bytes) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #147-149) is never used and should be removed

AddressUpgradeable.functionStaticCall(address,bytes,string) (

— node_modules/@openzeppelin/contracts-upgradeable/utils/
— AddressUpgradeable.sol#157-166) is never used and should be
— removed

AddressUpgradeable.sendValue (address,uint256) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #60-65) is never used and should be removed

AddressUpgradeable.verifyCallResult (bool,bytes,string) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol
— #174-194) is never used and should be removed

ContextUpgradeable. _Context_init() (node_modules/Qopenzeppelin/

— contracts-upgradeable/utils/ContextUpgradeable.sol#18-19) is
— never used and should be removed

ContextUpgradeable._ _Context_init unchained() (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol
— #21-22) is never used and should be removed

ContextUpgradeable. _msgData() (node_modules/Qopenzeppelin/contracts—
— upgradeable/utils/ContextUpgradeable.sol#27-29) is never used and

— should be removed

65

ERC20Upgradeable. burn(address,uint256) (node_modules/Qopenzeppelin/
— contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol#285-300)
< is never used and should be removed
Initializable. disableInitializers() (node_modules/@openzeppelin/
— contracts-upgradeable/proxy/utils/Initializable.sol#131-137) is
— never used and should be removed
SafeMathUpgradeable.div(uint2566,uint256,string) (node_modules/
< Qopenzeppelin/contracts-upgradeable/utils/math/
— SafeMathUpgradeable.sol#191-200) is never used and should be
— removed
SafeMathUpgradeable.mod(uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#151-153)
— 1is never used and should be removed
SafeMathUpgradeable.mod(uint256,uint256,string) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/math/
— SafeMathUpgradeable.sol#217-226) is never used and should be
— removed
SafeMathUpgradeable.sub(uint256,uint256,string) (node_modules/
— Qopenzeppelin/contracts-upgradeable/utils/math/
— SafeMathUpgradeable.sol#168-177) is never used and should be
— removed
SafeMathUpgradeable.tryAdd(uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#22-28)
< is never used and should be removed
SafeMathUpgradeable.tryDiv(uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#64-69)
<> is never used and should be removed
SafeMathUpgradeable.tryMod (uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#76-81)
< 1is never used and should be removed
SafeMathUpgradeable.tryMul (uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#47-57)

— is never used and should be removed

66

SafeMathUpgradeable.trySub(uint256,uint256) (node_modules/@openzeppelin/
— contracts-upgradeable/utils/math/SafeMathUpgradeable.sol#35-40)
< is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
—> #dead-code

Pragma version~0.8.9 (PistonToken.sol#2) necessitates a version too
— recent to be trusted. Consider deploying with 0.6.12/0.7.6/0.8.7

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— access/0OwnableUpgradeable.sol#4) allows old versions

Pragma version~0.8.2 (node_modules/Q@openzeppelin/contracts-upgradeable/
— proxy/utils/Initializable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— token/ERC20/ERC20Upgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— token/ERC20/IERC20Upgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— token/ERC20/extensions/IERC20MetadatalUpgradeable.sol#4) allows
—> old versions

Pragma version~0.8.1 (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/AddressUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts-upgradeable/
— utils/ContextUpgradeable.sol#4) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts-upgradeable/
— utils/math/SafeMathUpgradeable.sol#4) allows old versions

501¢c-0.8.9 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity

PistonToken.initialize() (PistonToken.sol#40-67) uses literals with too
— many digits:
- _mint (owner(),1000000 * (10 *x 18)) (PistonToken.sol#66)
PistonToken.slitherConstructorConstantVariables() (PistonToken.sol

— #9-213) uses literals with too many digits:

67

- deadWallet = 0x000000000000000000000000000000000000dEaD (
— PistonToken.sol#15)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #too-many-digits

OwnableUpgradeable._ _gap (node_modules/@openzeppelin/contracts-
— upgradeable/access/OwnableUpgradeable.sol#94) is never used in
— PistonToken (PistonToken.sol#9-213)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #unused-state-variable

PistonToken.sol analyzed (9 contracts with 75 detectors), 49 result(s)

— found

Most of the vulnerabilities found by the analysis have already been addressed by the smart
contract code review.

68

6 Conclusion

In this audit, we examined the design and implementation of Piston contract and discov-
ered severalissues of varying severity. Piston team addressed 2 issues raised in the initial
report and implemented the necessary fixes, while classifying the rest as a risk with low-
probability of occurrence. Shellboxes auditors advised Piston Team to maintain a high level
of vigilance and to keep those findings in mind in order to avoid any future complications.

69

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

70

mailto:contact@shellboxes.com

	Introduction
	About Piston
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Disclaimer
	Key Findings

	Finding Details
	PistonToken.sol
	Fees Can Be Bypassed [HIGH]
	Owner Can Disable Transfers [HIGH]
	The Panbusdswap Pair Can Be Removed From Automatedmarketmakerpairs [HIGH]
	Missing Value Verification [MEDIUM]
	mintMaster Can Be Set to Any Address [MEDIUM]
	Old Controllers Are Not Included Back In The Fees [MEDIUM]
	Missing Address Verification [LOW]
	Approve Race [LOW]
	For Loop Over Dynamic Array [LOW]
	Renounce Ownership [LOW]
	Floating Pragma [LOW]

	PistonTokenController.sol
	The Owner Can Take The Race Contract And The Ecosystem Fees [HIGH]
	Missing Verification In The Transfer Calls [HIGH]
	Missing Address Verification [LOW]
	Approve Race [LOW]
	Renounce Ownership [LOW]
	Floating Pragma [LOW]

	PistonPriceFeed.sol
	Missing Address Verification [LOW]
	Renounce Ownership [LOW]

	PistonRace.sol
	The Owner Can Control The Price [HIGH]
	Race Condition [MEDIUM]
	Owner Can Deny The Users From deposits_BUSD [MEDIUM]
	Ref_Depth Should Be Lower Than 255 [LOW]
	Missing Value Verification [LOW]
	Renounce Ownership [LOW]
	Floating Pragma [LOW]

	Best Practices
	Unnecessary variable initialization
	Remove swapEnabled From ThesetTradingEnabled()
	Implement Transfer Conditions In _beforeTokenTransfer():
	Deploy Contract Using Script
	Use Ownable from openzeppelin
	Declare The Ref_Balances Array In One Line
	Remove The Test Functions
	Move Interfaces To Separate Files

	Static Analysis (Slither)
	Conclusion

