SHELLBOXE

INTELLY

Smart Contract Security Audit

Prepared by ShellBoxes
July 15", 2022 - July 229, 2022
Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Intelly
Version 1.0
Classification Public
Scope

The INTELLY Contractinthe INTELLY Repository

Repo Commit Hash
https://gitlab.com/intelly-tech/chain cda581ach31f9017543b3ce89b8f263aa5cd22c3
https://gitlab.com/intelly-tech/chain 920eeele81f20dc1b7d8d3454bf9e2b3a1226cc5
Files MD5 Hash

Access.sol 7ca825e49f9d15f3a662b91b32212ec2
Estate.sol fa392dd83a4d4566f3a9a948c0171033
Exchange.sol 35a1451f69e900f7c4c68bf35be3a338
Oracle.sol débe5e4chb55c9aces8fc433abab38908
Trader.sol 37c38b534a1564b501bd24a%9a3360efe
local/Stable.sol f97ele4c5ffd3cd95¢c229c0d37bf3114
local/Token.sol 2646f8d50d8616d9599e971dc984ec3e

https://gitlab.com/intelly-tech/chain
https://gitlab.com/intelly-tech/chain

Re-Audit Files

Files

MD5 Hash

Access.sol

96b5e0a8fa26f924aa885ec68ef97dc9

Investment.sol

d0eccfca97f5ce9e2dbaadab3cObff04

Oracle.sol

1880def0b81a8575aebb8f3f40669bec

Platform.sol

38fe9e5c5b951978fc80c74511b01d06

Stable.sol 1934310b800a4595f016f97850176b82

Swap.sol 6f86bfea71f7880bf92bdf483f3018b5

Token.sol f5e037f9848496ad6210cleblaaal74c
Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

mailto:contact@shellboxes.com

Contents

1

Introduction 6
11 Aboutintelly 6
1.2 Approach &Methodology 6
121 RiskMethodology, 7
Findings Overview 8
21 SUMMArY . . . e e e e 8
22 KeyFindings 8
Finding Details 10
A Oraclessol e 10
Al The Fixed Price Of Any Amount Below 1000000 is Zero [CRITICAL] . . 10
A2 Missing Value Verification [JBOWH 1
A3 Missing Address Verification- 13
A4 Floating Pragma- 14
B Estatesol 15
B1 Feesshouldbelimited [[NIEDIONN - - - - - - - - .- 15
B.2 TheOperator CanBurn AnyToken- 16
B.3 Missing ValueVerification- 17
B.4 Missing Address Verification [JBOWH 19
B.5 Floating Pragma- 21
C Tradersol 22
C.1 Missing Transfer Verification- 22
C2 Missing Address Verification [JEOW 23
C.3 Floating Pragma- 25
D Exchangesol 26
D.1 Missing Address Verification- 26
D.2 Floating Pragma- 27
E Tokenssol. e 28
E.l Approve Race Condition - 28
E.2 Floating Pragma- 29
F Stablessol 30
F.1 Approve Race Condition - 30

F.2 Floating Pragma-

G Accesssol

G.1 Floating Pragma-

4 Tests
5 Static Analysis (Slither)

6 Conclusion

34

38

56

1 Introduction

Intelly engaged ShellBoxes to conduct a security assessment on the INTELLY beginning
on July 15, 2022 and ending July 22", 2022. In this report, we detail our methodical ap-
proach to evaluate potential security issues associated with the implementation of smart
contracts, by exposing possible semantic discrepancies between the smart contract code
and desigh document, and by recommending additional ideas to optimize the existing code.
Our findings indicate that the current version of smart contracts can still be enhanced fur-
ther due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About Intelly

Intelly was founded with the inspiration of changing how real estate investment works. En-
abling people to benefit from the power of blockchain and opening the world of real estate

investment for small size individual investors.

Issuer Intelly

Website https://intelly.tech/
Type Solidity Smart Contract
Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a bal-
ance between efficiency, timeliness, practicability, and correctness withinthe audit's scope.
While manualtestingis advised foridentifying problemsinlogic, procedure, andimplemen-
tation, automated testing techniques help to expand the coverage of smart contracts and
can quickly detect code that does not comply with security best practices.

https://intelly.tech/

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-

pact and is categorized into four levels, namely Critical, High, Medium, and Low.

Impact

High
Medium

Critical

Low

High Medium Low

Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the INTELLY implemen-
tation. During the first part of our audit, we examine the smart contract source code and run
the codebase via a static code analyzer. The objective here is to find known coding prob-
lems statically and then manually check (reject or confirm) issues highlighted by the tool.
Additionally, we check business logics, system processes, and DeFi-related components
manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but theirimplemen-
tation mightbeimprovedbyaddressingthe discoveredflaws, whichinclude ' critical-severity,

3 medium-severity, 15 low-severity vulnerabilities.

Vulnerabilities Severity | Status
The Fixed Price Of Any Amount Below 1000000 is Zero | CRITICAL | Fixed
Fees should be limited Fixed
The Operator Can Burn Any Token Acknowledged
Missing Transfer Verification Fixed
Missing Value Verification Fixed
Missing Address Verification Fixed
Floating Pragma Fixed
Missing Value Verification Fixed
Missing Address Verification Fixed
Floating Pragma Fixed
Missing Address Verification Fixed
Floating Pragma Fixed
Missing Address Verification Fixed
Floating Pragma Fixed

Approve Race Condition

Floating Pragma

Acknowledged

Approve Race Condition

Fixed

Floating Pragma

Acknowledged

Floating Pragma

Fixed

Fixed

3 Finding Details

A Oracle.sol

A.1 TheFixedPrice Of Any Amount Below1000000isZero [CRITICAL]

When fixed is equal to true, the price can be obtained using the getFixed function. Due to
a type conversion mistake, the price will always be equal to "0” for any amount less than
1000000. This problem will impact all Estate.sol, Exchange.sol, and Trader.sol contracts
that depend on the Oracle.sol to determine the token'’s price.

Listing 1: Oracle.sol

s function _getFixed(uint amount, address[] memory path)

139 internal

140 view

141 returns (uint)

w2 |

143 uint ratio;

144 hasPermit (TOKEN_PERMIT, path[0]) ? ratio = fromRatio : ratio =
— toRatio;

145 return (amount / MEASURE) * ratio;

s }

Likelihood - 5

Impact-5

10

It is recommended to perform the multiplication operation before the division, then add a
require statement that makes sure that amount*ratio is higher than MEASURE.

- Fixed

The Intelly team has solved the issue by performing the multiplication operation before the
division,and adding arequire statement that verifiesthatamount*ratiois higherthan MEA-
SURE.

A.2 Missing Value Verification -

Certain functions lack a value safety check, the values of the arguments should be verified
toallowonlythe onesthat comply withthe contract’'s logic. The contract should ensure that,
while changing the fromRatio and toRatio, one of those variables is more than MEASURE
and the other is lower. Additionally, the length of the path array input in the _getFixed and
_getRouted functions should be confirmed to be two.

Listing 2: Oracle.sol

s function _getFixed(uint amount, address[] memory path)

139 internal

140 view

141 returns (uint)

w2 |

143 uint ratio;

144 hasPermit (TOKEN_PERMIT, path[0]) ? ratio = fromRatio : ratio =
— toRatio;

145 return (amount / MEASURE) * ratio;

T

1

Listing 3: Oracle.sol

us function _getRouted(uint amount, address[] memory path)

149 internal

150 view

151 returns (uint)

152 {

153 uint [2] memory amounts;

154 amounts = IRouter(router).getAmountsOut(amount, path);
155 return amounts[1];

156 }

Listing 4: Oracle.sol

m function setFromRatio(uint _fromRatio) public onlyRole(OPERATOR_ROLE) {
177 fromRatio = _fromRatio;

178 }

Listing 5: Oracle.sol

wo function setToRatio(uint _toRatio) public onlyRole(OPERATOR_ROLE) {
181 toRatio = _toRatio;

-3 }

Likelihood -1
Impact - 3

We recommend that you verify the values provided in the arguments. The issue can be ad-
dressed by utilizing a require statement.

- Fixed

Thelntellyteamhas solvedtheissue by requiring one of the fromRatio and toRatio variables
to be more than MEASURE and the other is lower.

12

A.3 Missing Address Verification -

Certain functions lack a safety check in the address, the address-type arguments should
include a zero-address test, otherwise, the contract’s functionality may become inacces-
sible. The access argument should be verified to be different from the address(0), and the
_router argument should be verified to be the same as the pancakeswap router address.

Listing 6: Oracle.sol

39 constructor(

40 address _access,

a address _router,

42 address _token,

43 address _stable

w) o

45 access = _access;

46 router = _router;

a _setupPermit (TOKEN_PERMIT, _token);

48 _setupPermit (EXCHANGE_PERMIT, _token);
49 _setupPermit (EXCHANGE_PERMIT, _stable);
0}

Listing 7: Oracle.sol

84 function setAccess(address _access) public onlyRole(OPERATOR_ROLE) {

185 acCess = _acCcCess;

186

Listing 8: Oracle.sol

we function setRouter(address _router) public onlyRole(OPERATOR_ROLE) {
189 router = _router;

190 }

13

Likelihood -1
Impact - 3

We recommend that you make sure the addresses provided in the arguments are different
from the address(0).

- Fixed

The Intelly team has solved the issue by adding require statements to make sure the ad-
dresses provided in the arguments are different from the address(0).

A.4 Floating Pragma -

The contract makes use of the floating-point pragma 0.8.7. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not

unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

Listing 9: Oracle.sol

1 //SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.7;

Likelihood -1
Impact - 2

14

Consider locking the pragma version. It is advised that floating pragma should not be used
in production.
Both truffle-config.js and hardhat.config.js support locking the pragma version.

- Fixed

The Intelly team has solved the issue by locking the pragma version to 0.8.7.

B Estate.sol

B.1 Feesshould be limited || IEBIEN

The fee variable is modifiable by the operator, the setter does not have a restriction about
the values that the fee variable can take. This implies that the operator can raise the price
without being constrained, which could result in the contract having astronomical royalty
fees.

Listing 10: Estate.sol

8 constructor(

39 address _creator,
40 address _access,
a address _token,
42 address _stable,
43 address _oracle,
44 uint _amount,

45 uint _fee,

46 uint _limit

s) ERC1155("https://a2nnpid9qnmy.usemoralis.com/{id}. json") {

48 creator = _creator;

15

49 accCess = _acCcCess;

50 token = token;

51 stable = stable;

52 oracle = _oracle;

53 fee = fee;

54 limit = _limit;

55 path = [stable, token];

56 _mint(_creator, 1, _amount, "");
57 }

Listing 11: Estate.sol

s function setFee(uint _fee) public onlyRole(OPERATOR_ROLE) {
135 fee = fee;

136 }

Likelihood -2
Impact - 4

Consider limiting the value that the fee can have in both the constructor and the fee setter.

- Fixed

The Intelly team has solved the issue by limiting the value of the fee.

B.2 The Operator Can Burn Any Token _

The operator have the ability to burn anyone’s token using the burn function, this represents
a significant centralization risk where the operator have control over everyone’s tokens.

[

Listing 12: Estate.sol

158 function burn(

159 address from,
160 uint id,
161 uint amount

w2) public onlyRole(OPERATOR_ROLE) {
163 _burn(from, id, amount);
66}

Likelihood - 2
Impact-5

Consider removing the functionality or restrictingit to only allow the holder to burn his own
tokens.

- Acknowledged

Thelntellyteamhas acknowledgedthefinding, statingthatthe functionalitycannotbe changed
forregulatorypurposesunderthe BVISibaRegulatory (BVISecurities Investment Business
Act 2010) requirements.

B.3 Missing Value Verification -

Certain functions lack a value safety check, the values of the arguments should be verified
to allow only the ones that comply with the contract’s logic. The contract must ensure that
_1limit, feeand amountare differentfrom 0inboththe constructor andthe setters. Also,
the path argument should be verified to have a length of 2.

17

Code:

s constructor(

39 address _creator,
4“0 address _access,
a address _token,
42 address _stable,
43 address _oracle,
44 uint _amount,

45 uint _fee,

46 uint _limit

) ERC1155("https://a2nnpid9qnmy.usemoralis.com/{id}.json") {

48 creator = _creator;

49 access = _access;

50 token = _token;

51 stable = stable;

52 oracle = _oracle;

53 fee = fee;

54 limit = limit;

55 path = [stable, token];

56 _mint(_creator, 1, _amount, "");
57 }

ws function setFee(uint _fee) public onlyRole(OPERATOR_ROLE) {
135 fee = fee;

136 }

we function setLimit(uint _limit) public onlyRole(OPERATOR_ROLE) {
15 limit = limit;

140 }

Listing 16: Estate.sol

us function setPath(address[] memory _path) public onlyRole(OPERATOR_ROLE)
— {

147 path = _path;

us }

Likelihood -1
Impact - 3

We recommend that you verify the values provided in the arguments. The issue can be ad-
dressed by utilizing a require statement.
- Fixed

The Intelly team has fixed the issue by verifying the values provided in the arguments to
match with the logic of the smart contract.

B.4 Missing Address Verification -

Certain functions lack a safety check in the address, the address-type arguments should
include a zero-addresstest, otherwise, the contract’s functionality may becomeinaccessi-
ble. The creator, _access, token, stable, oracle, path[0]and path[l]argumentsshould
be verified to be different than the address(0).

Listing 17: Estate.sol

s constructor(

19

39 address _creator,

40 address _access,
“ address _token,
42 address _stable,
43 address _oracle,
44 uint _amount,

45 uint fee,

46 uint _limit

&~

7) ERC1155("https://a2nnpid9qnmy.usemoralis.com/{id}. json") {

48 creator = _creator,;

49 access = _access;

) token = _token;

51 stable = _stable;

52 oracle = oracle;

53 fee = fee;

54 limit = _limit;

55 path = [stable, token];

56 _mint(_creator, 1, _amount, "");
G

Listing 18: Estate.sol

us function setPath(address[] memory _path) public onlyRole(OPERATOR_ROLE)
— {

147 path = _path;

us }

Likelihood -1
Impact - 3

We recommend that you make sure the addresses provided in the arguments are different
from the address(0).

20

- Fixed

The Intelly team has fixed the issue by verifying the addresses provided in the arguments to
be different from the address(0).

B.5 Floating Pragma-

The contract makes use of the floating-point pragma 0.8.7. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not

unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

Listing 19: Estate.sol

1 //SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.7;

Likelihood -1
Impact - 2

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

- Fixed

The Intelly team has solved the issue by locking the pragma version to 0.8.7.

21

C Trader.sol

C.1 Missing Transfer Verification _

The ERC20 standardtokenimplementationfunctionsreturnthetransaction statusas aBoolean.
Itisagoodpracticetocheckforthereturnstatusofthe functioncalltoensurethatthetrans-
action was executed successfully. Itisthe developer’'s responsibilityto enclose these func-
tion calls with require() to ensure that, when the intended ERC20 function call returnsfalse,

the caller transaction also fails.

Listing 20: Trader.sol

w2z function purchase(

143 address inft,

144 uint id,

145 uint amount,

146 address[] memory path

w1) public nonReentrant {

1is _checkRole (USER_ROLE) ;

149 emit Purchased(inft, _msgSender(), amount);
150 Listing memory item = listings([inft] [id];
151 uint total = item.price * amount;

152 uint price = _getPrice(total, path);

153 IToken(token) .transferFrom(_msgSender(), item.creator, price);
154 IEstate(inft) .safeTransferFrom(

155 item.creator,

156 _msgSender (),

157 id,

158 amount,

159 "

160);

161 }

22

Likelihood -1
Impact - 4

Use the safeTransfer function from the safeERC20 Implementation, or put the transfer call
inside an assert or require verifying that it returned true.

- Fixed

The Intelly team has fixed the issue by adding a require statement to make sure the transfer
has passed successfully.

C.2 Missing Address Verification -

Certain functions lack a safety check in the address, the address-type arguments should
include a zero-address test, otherwise, the contract’s functionality may become inacces-
sible. The admin, access, oracle, stableand tokenargumentsshouldbe verifiedtobe
different from the address(0).

Listing 21: Trader.sol

55, constructor(

56 address _access,
57 address _admin,
58 address _oracle,
59 address _stable,
60 address _token

a) {

62 access = _access;

23

63

64

65

66

67

admin = _admin;

oracle = oracle;

stable = stable;

token = _token;

Listing 22: Trader.sol

w3 function setAccess(address _access) public onlyRole(OPERATOR_ROLE) {

164

165

167

168

169

m

172

173

175

176

177

179

180

181

accCess = _accCess;

function setAdmin(address _

admin = _admin;

function setOracle(address

oracle = _oracle;

function setStable(address

stable = _stable;

admin) public onlyRole(OPERATOR_ROLE) {

_oracle) public onlyRole(OPERATOR_ROLE) {

_stable) public onlyRole(OPERATOR_ROLE) {

function setToken(address _token) public onlyRole(OPERATOR_ROLE) {

token = _token;

Likelihood -1
Impact - 3

24

We recommend that you make sure the addresses provided in the arguments are different
from the address(0).

- Fixed

The Intelly team has fixed the issue by verifying the addresses provided in the arguments to
be different from the address(0).

C.3 FloatingPragma -

The contract makes use of the floating-point pragma 0.8.7. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

Listing 23: Trader.sol

1 //SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.7;

Likelihood -1
Impact - 2

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

25

- Fixed

The Intelly team has solved the issue by locking the pragma version to 0.8.7.

D Exchange.sol

D.1 Missing Address Verification -

Certain functions lack a safety check in the address, the address-type arguments should
include a zero-address test, otherwise, the contract’s functionality may become inacces-
sible. The admin, access and oracle arguments should be verified to be different from
the address(0).

Listing 24: Exchange.sol

s constructor(

35 address _admin,
36 address _access,
37 address _oracle
) o

39 admin = _admin;
40 access = _access;
“ oracle = oracle;
42 }

Listing 25: Exchange.sol

w3 function setAccess(address _access) public onlyRole(OPERATOR_ROLE) {
104 access = _access;

105 }

Listing 26: Exchange.sol

26

w7 function setOracle(address _oracle) public onlyRole(OPERATOR_ROLE) {
108 oracle = oracle;

109 }

Listing 27: Exchange.sol

m function setAdmin(address _admin) public onlyRole(OPERATOR_ROLE) {
2 admin = _admin;

E

Likelihood -1
Impact - 3

We recommend that you make sure the addresses provided in the arguments are different
from the address(0).

- Fixed

The Intelly team has fixed the issue by verifying the addresses provided in the arguments to
be different from the address(0).

D.2 Floating Pragma -

The contract makes use of the floating-point pragma 0.8.7. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionally be deployed usinganother pragma, whichinsome casesmaybe anobsolete
version, that may introduce issues to the contract system.

27

Listing 28: Exchange.sol

1 //SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.7;

Likelihood -1
Impact - 2

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

- Fixed

The Intelly team has solved the issue by locking the pragma version to 0.8.7.

E Token.sol
E.1 Approve Race Condition-

The standard ERC20 implementation contains a widely known racing condition in its ap-
prove function, wherein a spender can witness the token owner broadcast a transaction
altering their approval and quickly sign and broadcast a transaction using transferFrom to
movethe currentapproved amountfromthe owner'sbalancetothe spender. Ifthe spender’s
transaction is validated before the owner’s, the spender will be able to get both approval
amounts of both transactions.

28

Listing 29: Token.sol

7 contract Token is ERC20 {

8 constructor() ERC20("Intelly Token", "INTL") {
9 _mint(msg.sender, 900 * 10%%18);
10 }
n ¥
Likelihood -1
Impact - 3

We recommend using increaseAllowance and decreaseAllowance functions to modify the
approval amount instead of using the approve function to modify it.

- Acknowledged

The Intelly team has acknowledged the risk, stating that the contract will not be deployed.
E.2 Floating Pragma-

The contract makes use of the floating-point pragma 0.8.7. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

29

Listing 30: Token.sol

1 //SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.7;

Likelihood -1
Impact - 2

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

- Fixed

The Intelly team has solved the issue by locking the pragma version to 0.8.7.

F Stable.sol

F.1 Approve Race Condition -

The standard ERC20 implementation contains a widely known racing condition in its ap-
prove function, wherein a spender can witness the token owner broadcast a transaction
altering their approval and quickly sign and broadcast a transaction using transferFrom to
movethe currentapproved amountfromthe owner'sbalancetothe spender. Ifthe spender’s
transaction is validated before the owner’s, the spender will be able to get both approval
amounts of both transactions.

30

Listing 31: Stable.sol

7 contract Token is ERC20 {

8 constructor() ERC20("Intelly Token", "INTL") {
9 _mint(msg.sender, 900 * 10%%18);
10 }
n ¥
Likelihood -1
Impact - 3

We recommend using increaseAllowance and decreaseAllowance functions to modify the
approval amount instead of using the approve function to modify it.

- Acknowledged

The Intelly team has acknowledged the risk, stating that the contract will not be deployed.
F.2 Floating Pragma -

The contract makes use of the floating-point pragma 0.8.7. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

31

Listing 32: Stable.sol

1 //SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.7;

Likelihood -1
Impact - 2

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

- Fixed

The Intelly team has solved the issue by locking the pragma version to 0.8.7.

G Access.sol

G.1 Floating Pragma -

The contract makes use of the floating-point pragma 0.8.7. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

kY.

Listing 33: Access.sol

1 //SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.7;

Likelihood -1
Impact - 2

Consider locking the pragma version. It is advised that floating pragma should not be used
in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

- Fixed

The Intelly team has solved the issue by locking the pragma version to 0.8.7.

33

Tests

Access Contract Unit Tests

Deploying
Should deploy
Should deploy
Should deploy

Granting Role
Should grant
Should grant

— ms)
Should grant
Should grant
Should grant
Should grant

Revoking Role

Should revoke
— ms)
Should revoke
Should revoke
Should revoke
Should revoke

ed with Default Admin Role (80ms)
ed with Preset Admin Roles (44ms)
ed with Preset Role Admins for Roles

multiple roles for a single account (190ms)
Default Admin Role only with Default Admin Role (497

Operator Role with only Default Admin Role (185ms)
Moderator Role only with Operator Role (359ms)
User Role only with Moderator Role (292ms)

Vip Role only with Moderator Role (276ms)

Default Admin Role only with Default Admin Role (302

Operator Role only with Default Admin Role (259ms)
Moderator Role only with Operator Role (443ms)
User Role only with Moderator Role (288ms)

Vip Role only with Moderator Role (294ms)

Should renounce role only from the calling account. (204ms)

Oracle Contract Unit Tests

Deploying
Should set pe

rmits for tokens on contract deploy

Should deployed with declared contract addresses

Read Operations

Should get fi
— ms)

1) Should get

xed prices while 'fix = true' on Oracle Contract (160

prices from Router while 'fix = false' on Oracle

34

— Contract

Should revert getting price if tokens are not permitted on Oracle
— Contract (40ms)

Should revert getting price if both adresses are same on Oracle

— Contract (39ms)
Write Operations
Should set variables only with Operator Role (845ms)
Should grant permit to tokens only with Operator Role (286ms)
Should revoke permit from tokens only with Operator Role (222ms)

Exchange Contract Unit Tests
Deploying
Should deployed with declared contract addresses and values

Write Operations

Should set variables only with Operator Role (575ms)

Exchange Operations

Should exchange tokens with fixed prices while 'fix = true' on

< Oracle Contract (292ms)

2) Should exchange tokens with routed price while 'fix = false' on

—» QOracle Contract

Should revert exchange if tokens are not permitted on Oracle
— Contract (280ms)

Should revert exchange if both adresses are same

Estate Contract Unit Tests
Deploying
Should deployed with declared variables (50ms)

User Operations

Should revert NFT transfers if sender is not owner nor approved
— (691ms)

Should revert NFT transfers to accounts without User Role on
— Access Contract (872ms)

Should revert NFT transfers from accounts without User Role on

< Access Contract (460ms)

35

Should revert NFT transfers if receiver exceeds Balance Limit on
— Estate Contract (369ms)

Should transfer NFT between User Roles (166ms)

Should pay royalty fee if sender account has no Vip Role on Access
< Contracrt (304ms)

Operator Operations

Should set NFT Uri only with Operator Role (340ms)

Should pause NFT only with Operator Role (315ms)

Should unpause NFT only with Operator Role (339ms)

Should burn NFT only with Operator Role (1601ms)

Should revert NFT transfer with operator transfer method(0T) calls
< without Operator Role on Access Contract (1337ms)

Should transfer NFT with OT only to account that has User or
— Operator Roles (389ms)

Should revert NFT transfer with OT to User Role above Balance
— Limit (241ms)

Should transfer NFT with OT to Operator Role without limit (80ms)

Should batch transfer NFT only between Operator Role (2386ms)

Trader Contract Unit Tests
Deploying
Should deployed with declared variables
Listing
Should revert list NFT without Operator Role on Access Contract
— (506ms)
Should revert list NFT without approve to Trader Contract (44ms)
Should revert list NFT without balance (106ms)
Should revert list NFT with price under 1 ether (106ms)
Should list only Approved and Owned NFTs with Operator Role (75ms)
Purchasing
Should revert purchase NFT without User Role (200ms)
Should revert purchase NFT without approved Intelly Token (108ms)
Should revert purchase NFT without Intelly Token balance (150ms)
Should revert purchase NFT if User exceeds NFT Balance Limit (191

36

< ms)
Should purchase listed NFT fractions with an account has User Role
— and has enough amount of Intelly Token balance and

— allowance (229ms)

55 passing (49s)
2 failing

Inorder to guarantee the functionality of the contractsin all test cases, we advise fixing the
problems that arose when running the tests.

37

5 Static Analysis (Slither)

ShellBoxes expanded the coverage of the specific contract areas using automated test-
ing methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
usedtotest mathematical relationships between Solidityinstances statically and variables
thatallow forthe detection of errorsorinconsistentusage of the contracts’ APls throughout
the entire codebase.

'npx hardhat compile --force' running

Compiled 24 Solidity files successfully

TAccess is re-used:

- contracts/Exchange.sol#8-10
- contracts/Estate.sol#9-11

- contracts/Oracle.sol#182-184
- contracts/Estate.sol#9-11

- contracts/Trader.sol#8-10

contracts/Estate.sol#9-11
IToken is re-used:

- contracts/Exchange.sol#12-18
- contracts/Estate.sol#20-26

contracts/Trader.sol#30-36
- contracts/Estate.sol#20-26
IO0racle is re-used:

- contracts/Exchange.sol#20-22

contracts/Estate.sol#13-18

contracts/Trader.sol#26-28

contracts/Estate.sol#13-18

38

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

< #name-reused

Estate._payFee(address,uint256) (contracts/Estate.sol#110-115) ignores
— return value by IToken(token).transferFrom(from,creator,price) (
— contracts/Estate.sol#113)
Exchange.exchange (uint256,address[]) (contracts/Exchange.sol#92-101)
— ignores return value by IToken(path[0]).transferFrom(_msgSender ()
— ,admin,amount) (contracts/Exchange.sol#95)
Exchange.exchange (uint256,address[]) (contracts/Exchange.sol#92-101)
< ignores return value by IToken(path[1]).transferFrom(admin,
— _msgSender (), getPrice(amount,path)) (contracts/Exchange.sol
— #96-100)
Trader.purchase(address,uint256,uint256,address[]) (contracts/Trader.sol
— #142-161) ignores return value by IToken(token).transferFrom(
— _msgSender() ,item.creator,price) (contracts/Trader.sol#153)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #unchecked-transfer

Oracle._getFixed(uint256,address[]) (contracts/Oracle.sol#127-135)
— performs a multiplication on the result of a division:

-(amount / MEASURE) * ratio (contracts/Oracle.sol#134)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #divide-before-multiply

Reentrancy in Estate.safeTransferFrom(address,address,uint256,uint256,
— bytes) (contracts/Estate.sol#169-186):
External calls:
- _payFee(from,amount) (contracts/Estate.sol#183)
- IToken(token) .transferFrom(from,creator,price) (contracts/Estate.sol
— #113)
- _safeTransferFrom(from,to,id,amount,data) (contracts/Estate.sol#185)
- IERC1155Receiver(to) .onERC1155Received (operator,from,id,amount,data)
— (node_modules/Q@openzeppelin/contracts/token/ERC11556/ERC1155.s01

39

— #476-484)
State variables written after the call(s):
- _safeTransferFrom(from,to,id,amount,data) (contracts/Estate.sol#185)
- _balances[id] [from] = fromBalance - amount (node modules/
< Qopenzeppelin/contracts/token/ERC1155/ERC11565.501#178)
- _balances[id] [to] += amount (node_modules/@openzeppelin/contracts/
— token/ERC1155/ERC1155.s01#180)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-1

ERC1155. doSafeTransferAcceptanceCheck(address,address,address,uint256,
— uint256,bytes) .reason (node_modules/@openzeppelin/contracts/token
— /ERC1155/ERC1155.s01#480) is a local variable never initialized
ERC1155. doSafeTransferAcceptanceCheck(address,address,address,uint256,
— uint256,bytes) .response (node_modules/Qopenzeppelin/contracts/
— token/ERC1155/ERC1155.s01#476) is a local variable never
< initialized
ERC1155. doSafeBatchTransferAcceptanceCheck(address,address,address,
— uint256[] ,uint256[] ,bytes) .response (node_modules/Qopenzeppelin/
— contracts/token/ERC1155/ERC1155.501#498) is a local variable
< never initialized
ERC1155. doSafeBatchTransferAcceptanceCheck(address,address,address,
— uint256[] ,uint256[] ,bytes) .reason (node_modules/Qopenzeppelin/
— contracts/token/ERC1155/ERC1155.501#503) is a local variable
< never initialized
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

< #uninitialized-local-variables

ERC1155. doSafeTransferAcceptanceCheck(address,address,address,uint256,
— uint256,bytes) (node_modules/@openzeppelin/contracts/token/
— ERC1155/ERC1155.501#467-486) ignores return value by
— IERC1155Receiver(to) .onERC1155Received (operator,from,id,amount,
— data) (node_modules/@openzeppelin/contracts/token/ERC1155/ERC1155
— .S0l#476-484)

40

ERC1155. doSafeBatchTransferAcceptanceCheck(address,address,address,
— uint256[] ,uint256[] ,bytes) (node_modules/@openzeppelin/contracts/
— token/ERC1155/ERC1155.501#488-509) ignores return value by
— IERC1155Receiver(to) .onERC1155BatchReceived (operator,from,ids,
— amounts,data) (node_modules/Q@openzeppelin/contracts/token/ERC1155
< /ERC1155.s01#497-507)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #unused-return

Router.constructor(address,address)._token (contracts/local/Router.sol
— #9) lacks a zero-check on :
- token = _token (contracts/local/Router.sol#10)
Router.constructor (address,address)._stable (contracts/local/Router.sol
— #9) lacks a zero-check on :
- stable = _stable (contracts/local/Router.sol#11)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #missing-zero-address-validation

Estate.constructor(address,address,address,address,address,uint256,
— uint256,uint256) . creator (contracts/Estate.sol#42) lacks a zero-
< check on :
- creator = _creator (contracts/Estate.sol#51)
Estate.constructor(address,address,address,address,address,uint256,
— uint256,uint256) . access (contracts/Estate.sol#43) lacks a zero-
< check on :
- access = _access (contracts/Estate.sol#52)
Estate.constructor(address,address,address,address,address,uint256,
— uint256,uint256) . token (contracts/Estate.sol#44) lacks a zero-
< check on :
- token = _token (contracts/Estate.sol#53)
Estate.constructor(address,address,address,address,address,uint256,
— uint256,uint256) . stable (contracts/Estate.sol#45) lacks a zero-
< check on :
- stable = _stable (contracts/Estate.sol#54)

41

Estate.constructor(address,address,address,address,address,uint256,
— uint256,uint256) . oracle (contracts/Estate.sol#46) lacks a zero-
— check on :
- oracle = _oracle (contracts/Estate.sol#55)
Exchange.constructor(address,address,address)._admin (contracts/Exchange
— .sol#35) lacks a zero-check on :
- admin = _admin (contracts/Exchange.sol#39)
Exchange.constructor(address,address,address)._access (contracts/
— Exchange.sol#36) lacks a zero-check on :
- access = _access (contracts/Exchange.sol#40)
Exchange.constructor(address,address,address)._oracle (contracts/
— Exchange.sol#37) lacks a zero-check on :
- oracle = _oracle (contracts/Exchange.sol#41)
Exchange.setAccess(address) . _access (contracts/Exchange.sol#103) lacks a
— zero-check on :
- access = _access (contracts/Exchange.sol#104)
Exchange.setOracle(address)._oracle (contracts/Exchange.sol#107) lacks a
<~ zero-check on :
- oracle = _oracle (contracts/Exchange.sol#108)
Exchange.setAdmin(address) . _admin (contracts/Exchange.sol#111) lacks a
— zero-check on :
- admin = _admin (contracts/Exchange.sol#112)
Oracle.constructor(address,address,address,address) . _access (contracts/
— Oracle.sol#29) lacks a zero-check on :
- access = _access (contracts/Oracle.sol#34)
Oracle.constructor(address,address,address,address) . router (contracts/
— Oracle.sol#30) lacks a zero-check on :
- router = _router (contracts/Oracle.sol#35)
Oracle.setAccess(address) . _access (contracts/Oracle.sol#173) lacks a
< zero-check on :
- access = _access (contracts/Oracle.sol#174)
Oracle.setRouter (address) . _router (contracts/Oracle.sol#177) lacks a
— zero-check on :

- router = _router (contracts/Oracle.sol#178)

42

Trader.constructor (address,address,address,address,address) . _access (
— contracts/Trader.sol#56) lacks a zero-check on :
- access = _access (contracts/Trader.sol#62)
Trader.constructor (address,address,address,address,address) . _admin (
— contracts/Trader.sol#57) lacks a zero-check on :
- admin = _admin (contracts/Trader.sol#63)
Trader.constructor (address,address,address,address,address) . oracle (
— contracts/Trader.sol#58) lacks a zero-check on :
- oracle = _oracle (contracts/Trader.sol#64)
Trader.constructor (address,address,address,address,address) . _stable (
— contracts/Trader.sol#59) lacks a zero-check on :
- stable = _stable (contracts/Trader.sol#65)
Trader.constructor (address,address,address,address,address) . _token (
— contracts/Trader.sol#60) lacks a zero-check on :
- token = _token (contracts/Trader.sol#66)
Trader.setAccess(address) . _access (contracts/Trader.sol#163) lacks a
< zero-check on :
- access = _access (contracts/Trader.sol#164)
Trader.setAdmin(address)._admin (contracts/Trader.sol#167) lacks a zero-
<~ check on :
- admin = _admin (contracts/Trader.sol#168)
Trader.setOracle(address)._oracle (contracts/Trader.sol#171) lacks a
— zero-check on :
- oracle = _oracle (contracts/Trader.sol#172)
Trader.setStable(address) . _stable (contracts/Trader.sol#175) lacks a
< zero-check on :
- stable = _stable (contracts/Trader.sol#176)
Trader.setToken(address) . _token (contracts/Trader.sol#179) lacks a zero-
< check on :
- token = _token (contracts/Trader.sol#180)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

—> #missing-zero-address-validation

43

Variable 'ERC1155. doSafeTransferAcceptanceCheck(address,address,address

%

R

{

,uint256,uint256,bytes) .response (node_modules/@openzeppelin/
contracts/token/ERC11565/ERC1155.s01#476) ' in ERC1155.
_doSafeTransferAcceptanceCheck(address,address,address,uint256,
uint256,bytes) (node_modules/@openzeppelin/contracts/token/
ERC1155/ERC1155.s01#467-486) potentially used before declaration:
response != IERC1155Receiver.onERC1155Received.selector (
node_modules/@openzeppelin/contracts/token/ERC1155/ERC1155.s01
#ATT)

Variable 'ERC1155. doSafeTransferAcceptanceCheck(address,address,address

.

L0 1d

<_)

,uint256,uint256,bytes) .reason (node_modules/Q@openzeppelin/
contracts/token/ERC11565/ERC1155.s01#480) ' in ERC1155.
_doSafeTransferAcceptanceCheck(address,address,address,uint256,
uint256,bytes) (node_modules/@openzeppelin/contracts/token/
ERC1155/ERC1155.501#467-486) potentially used before declaration:
revert(string) (reason) (node_modules/Qopenzeppelin/contracts/

token/ERC1155/ERC1155.s01#481)

Variable 'ERC1155. doSafeBatchTransferAcceptanceCheck(address,address,

!

R

>

address,uint256[] ,uint256[] ,bytes) .response (node_modules/
Q@openzeppelin/contracts/token/ERC1156/ERC11565.5s01#498) ' in
ERC1155. doSafeBatchTransferAcceptanceCheck(address,address,
address,uint256[],uint256[],bytes) (node_modules/Qopenzeppelin/
contracts/token/ERC1165/ERC1155.501#488-509) potentially used
before declaration: response != IERC1155Receiver.
onERC1155BatchReceived.selector (node_modules/Qopenzeppelin/
contracts/token/ERC11565/ERC1155.s01#500)

Variable 'ERC1155. doSafeBatchTransferAcceptanceCheck(address,address,

i

R

address,uint256[] ,uint256[] ,bytes) .reason (node_modules/
Qopenzeppelin/contracts/token/ERC11556/ERC11565.s01#503) ' in
ERC1155. doSafeBatchTransferAcceptanceCheck(address,address,
address,uint256[] ,uint256[] ,bytes) (node_modules/Qopenzeppelin/
contracts/token/ERC1165/ERC1155.s01#488-509) potentially used
before declaration: revert(string) (reason) (node_modules/

Qopenzeppelin/contracts/token/ERC1155/ERC1155.s01#504)

44

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #pre-declaration-usage-of-local-variables

Reentrancy in Estate.safeTransferFrom(address,address,uint256,uint256,
— bytes) (contracts/Estate.sol#169-186):
External calls:
- _payFee(from,amount) (contracts/Estate.sol#183)
- IToken(token) .transferFrom(from,creator,price) (contracts/Estate.sol
— #113)
- safeTransferFrom(from,to,id,amount,data) (contracts/Estate.sol#185)
- IERC1155Receiver(to) .onERC1155Received (operator,from,id,amount,data)
< (node_modules/@openzeppelin/contracts/token/ERC1165/ERC1155.s0l
— #476-484)
Event emitted after the call(s):
- TransferSingle(operator,from,to,id,amount) (node_modules/
— Qopenzeppelin/contracts/token/ERC1155/ERC11565.501#182)
- _safeTransferFrom(from,to,id,amount,data) (contracts/Estate.sol#185)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #reentrancy-vulnerabilities-3

Address.verifyCallResult (bool,bytes,string) (node_modules/Qopenzeppelin/
— contracts/utils/Address.sol#201-221) uses assembly

- INLINE ASM (node_modules/@openzeppelin/contracts/utils/Address.sol
— #213-216)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #assembly-usage

Different versions of Solidity is used:
- Version used: ['70.8.0', '"0.8.1', '~0.8.7']
- 70.8.0 (node_modules/@openzeppelin/contracts/access/AccessControl.sol

— #4)

~0.8.0 (node_modules/@openzeppelin/contracts/access/IAccessControl.
— sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts/security/Pausable.sol#4)

45

~0.8.0 (node_modules/@openzeppelin/contracts/security/ReentrancyGuard
— .sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC1155/ERC1155.
— sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC1155/IERC1155.
— sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC1155/
— IERC1155Receiver.sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC1155/extensions
— /IERC1155MetadataURI.sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/ERC20.s0l1#4)

~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/IERC20.s0l
— #4)

~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/extensions/
— IERC20Metadata.sol#4)

~0.8.1 (node_modules/@openzeppelin/contracts/utils/Address.sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts/utils/Context.sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts/utils/Strings.sol#4)

~0.8.0 (node_modules/@openzeppelin/contracts/utils/introspection/
— ERC165.s01#4)

~0.8.0 (node_modules/@openzeppelin/contracts/utils/introspection/

< IERC165.s0l1#4)

~0.8.7 (contracts/Access.sol#2)
~0.8.7 (contracts/Estate.sol#2)
~0.8.7 (contracts/Exchange.sol#2)
~0.8.7 (contracts/Oracle.sol#2)
~0.8.7 (contracts/Trader.sol#2)
~0.8.7 (contracts/local/Stable.sol#2)
~0.8.7 (contracts/local/Token.sol#2)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

Estate. beforeTokenTransfer (address,address,address,uint256[],uint256[],

— bytes) (contracts/Estate.sol#95-104) is never used and should be

46

— removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #dead-code

Pragma version~0.8.7 (contracts/local/Router.sol#2) necessitates a
— version too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6
501c-0.8.7 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/access/
— AccessControl.sol#4) necessitates a version too recent to be
— trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/access/
< TAccessControl.sol#4) necessitates a version too recent to be
— trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts/security/
— Pausable.sol#4) necessitates a version too recent to be trusted.
< Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/security/
— ReentrancyGuard.sol#4) necessitates a version too recent to be
< trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC1155
— /ERC1155.s01#4) necessitates a version too recent to be trusted.
— Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC1155
— /IERC1155.s01#4) necessitates a version too recent to be trusted.
— Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC1155
— /IERC1155Receiver.sol#4) necessitates a version too recent to be
— trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC1155
— /extensions/IERC1155MetadataURI.sol#4) necessitates a version too

47

— recent to be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC20/
— ERC20.s0l#4) necessitates a version too recent to be trusted.
< Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— IERC20.sol#4) necessitates a version too recent to be trusted.
< Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts/token/ERC20/
— extensions/IERC20Metadata.sol#4) necessitates a version too
— recent to be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.1 (node_modules/@openzeppelin/contracts/utils/Address
< .sol#4) necessitates a version too recent to be trusted. Consider
< deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/Qopenzeppelin/contracts/utils/Context
< .sol#4) necessitates a version too recent to be trusted. Consider
— deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/utils/Strings
< .sol#4) necessitates a version too recent to be trusted. Consider
— deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/utils/
— introspection/ERC165.s0l#4) necessitates a version too recent to
— be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/utils/
< introspection/IERC165.s0l#4) necessitates a version too recent to
< be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.7 (contracts/Access.sol#2) necessitates a version too
— recent to be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.7 (contracts/Estate.sol#2) necessitates a version too
— recent to be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.7 (contracts/Exchange.sol#2) necessitates a version
< too recent to be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version~0.8.7 (contracts/Oracle.sol#2) necessitates a version too

— recent to be trusted. Consider deploying with 0.6.12/0.7.6

48

Pragma version~0.8.7 (contracts/Trader.sol#2) necessitates a version too
— recent to be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version~0.8.7 (contracts/local/Stable.sol#2) necessitates a
< version too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6
Pragma version~0.8.7 (contracts/local/Token.sol#2) necessitates a
— version too recent to be trusted. Consider deploying with
— 0.6.12/0.7.6
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity

Low level call in Address.sendValue(address,uint256) (node_modules/
— Qopenzeppelin/contracts/utils/Address.sol#60-65) :

- (success) = recipient.call{value: amount}() (node_modules/
— Qopenzeppelin/contracts/utils/Address.sol#63)

Low level call in Address.functionCallWithValue(address,bytes,uint256,
— string) (node_modules/@openzeppelin/contracts/utils/Address.sol
— #128-139):

- (success,returndata) = target.call{value: value}(data) (node_modules/
— Qopenzeppelin/contracts/utils/Address.sol#137)

Low level call in Address.functionStaticCall(address,bytes,string) (
— node_modules/@openzeppelin/contracts/utils/Address.sol#157-166) :

- (success,returndata) = target.staticcall(data) (node_modules/
— Qopenzeppelin/contracts/utils/Address.sol#164)

Low level call in Address.functionDelegateCall(address,bytes,string) (
— node_modules/@openzeppelin/contracts/utils/Address.sol#184-193):

- (success,returndata) = target.delegatecall(data) (node_modules/
— Qopenzeppelin/contracts/utils/Address.sol#191)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #low-level-calls

Oracle (contracts/Oracle.sol#8-180) should inherit from IOracle (
< contracts/Estate.sol#13-18)

49

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #missing-inheritance

Parameter Estate.setFee(uint256). fee (contracts/Estate.sol#137) is not
— in mixedCase

Parameter Estate.setLimit(uint256). limit (contracts/Estate.sol#141) is
<~ not in mixedCase

Parameter Estate.setPath(address[])._path (contracts/Estate.sol#149) is
— not in mixedCase

Parameter Exchange.setAccess(address)._access (contracts/Exchange.sol
— #103) is not in mixedCase

Parameter Exchange.setOracle(address)._oracle (contracts/Exchange.sol
— #107) is not in mixedCase

Parameter Exchange.setAdmin(address)._admin (contracts/Exchange.sol#111)
<~ 1is not in mixedCase

Parameter Exchange.setMin(uint256)._min (contracts/Exchange.sol#115) is
— not in mixedCase

Parameter Exchange.setMax(uint256). _max (contracts/Exchange.sol#119) is
— not in mixedCase

Parameter Oracle.setFromRatio(uint256). fromRatio (contracts/Oracle.sol
< #165) is not in mixedCase

Parameter Oracle.setToRatio(uint256). toRatio (contracts/Oracle.sol#169)
<~ 1s not in mixedCase

Parameter Oracle.setAccess(address). _access (contracts/Oracle.sol#173)
— is not in mixedCase

Parameter Oracle.setRouter(address)._router (contracts/Oracle.sol#177)
<~ 1s not in mixedCase

Parameter Trader.setAccess(address). access (contracts/Trader.sol#163)
— is not in mixedCase

Parameter Trader.setAdmin(address)._admin (contracts/Trader.sol#167) is
— not in mixedCase

Parameter Trader.setOracle(address). oracle (contracts/Trader.sol#171)

— is not in mixedCase

50

Parameter Trader.setStable(address). stable (contracts/Trader.sol#175)
<~ is not in mixedCase

Parameter Trader.setToken(address). token (contracts/Trader.sol#179) is
< not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #conformance-to-solidity-naming-conventions

Oracle.slitherConstructorConstantVariables() (contracts/Oracle.sol
— #8-180) uses literals with too many digits:

- MEASURE = 1000000 (contracts/Oracle.sol#13)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
—> #too-many-digits

getAmountsOut (uint256,address[]) should be declared external:

- Router.getAmountsOut (uint256,address[]) (contracts/local/Router.sol
— #14-27)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #public-function-that-could-be-declared-external

grantRole(bytes32,address) should be declared external:
- AccessControl.grantRole(bytes32,address) (node_modules/Q@openzeppelin/
— contracts/access/AccessControl.sol#144-146)
revokeRole (bytes32,address) should be declared external:
- AccessControl.revokeRole (bytes32,address) (node_modules/@openzeppelin
— /contracts/access/AccessControl.sol#159-161)
renounceRole (bytes32,address) should be declared external:
- AccessControl.renounceRole(bytes32,address) (node_modules/
— Qopenzeppelin/contracts/access/AccessControl.sol#179-183)
uri(uint256) should be declared external:
- ERC1155.uri(uint256) (node_modules/@openzeppelin/contracts/token/
— ERC1155/ERC1155.s01#59-61)
balanceOfBatch(address[],uint256[]) should be declared external:
- ERC1155.balanceOfBatch(address[],uint256[]) (node modules/
— Qopenzeppelin/contracts/token/ERC1155/ERC1155.s01#82-98)

o1

setApprovalForAll (address,bool) should be declared external:

- ERC1155.setApprovalForAll (address,bool) (node_modules/Qopenzeppelin/
— contracts/token/ERC1155/ERC1155.s01#103-105)

safeTransferFrom(address,address,uint256,uint256,bytes) should be
< declared external:

- ERC1155.safeTransferFrom(address,address,uint256,uint256,bytes) (
— node_modules/Qopenzeppelin/contracts/token/ERC11565/ERC1155.s0l
— #117-129)

- Estate.safeTransferFrom(address,address,uint256,uint256,bytes) (
— contracts/Estate.sol#169-186)

safeBatchTransferFrom(address,address,uint256[] ,uint256[] ,bytes) should
— be declared extermnal:

- ERC1155.safeBatchTransferFrom(address,address,uint256[] ,uint256[],
— bytes) (node_modules/@openzeppelin/contracts/token/ERC1155/
— ERC1155.s01#134-146)

- Estate.safeBatchTransferFrom(address,address,uint256([] ,uint256[],
— bytes) (contracts/Estate.sol#207-217)

name() should be declared external:

- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/ERC20.
— sol#62-64)

symbol() should be declared external:

- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/ERC20/
— ERC20.s01#70-72)

decimals() should be declared external:

- ERC20.decimals() (node_modules/Qopenzeppelin/contracts/token/ERC20/
— ERC20.s01#87-89)

totalSupply() should be declared external:

- ERC20.totalSupply() (node_modules/@openzeppelin/contracts/token/ERC20
— /ERC20.s01#94-96)

balanceOf (address) should be declared external:

- ERC20.balance0f (address) (node_modules/@openzeppelin/contracts/token/
— ERC20/ERC20.s01#101-103)

transfer(address,uint256) should be declared external:

92

- ERC20.transfer (address,uint256) (node_modules/@openzeppelin/contracts
— /token/ERC20/ERC20.s01#113-117)
approve (address,uint256) should be declared external:
- ERC20.approve(address,uint256) (node_modules/@openzeppelin/contracts/
— token/ERC20/ERC20.s01#136-140)
transferFrom(address,address,uint256) should be declared external:
- ERC20.transferFrom(address,address,uint256) (node modules/
— Qopenzeppelin/contracts/token/ERC20/ERC20.s01#158-167)
increaseAllowance(address,uint256) should be declared external:
- ERC20.increaseAllowance(address,uint256) (node_modules/@openzeppelin/
— contracts/token/ERC20/ERC20.s01#181-185)
decreaseAllowance(address,uint256) should be declared external:
- ERC20.decreaseAllowance(address,uint256) (node_modules/@openzeppelin/
— contracts/token/ERC20/ERC20.s01#201-210)
setFee(uint256) should be declared external:
- Estate.setFee(uint256) (contracts/Estate.sol#137-139)
setLimit(uint256) should be declared external:
- Estate.setLimit(uint256) (contracts/Estate.sol#141-143)
setURI(string) should be declared external:
- Estate.setURI(string) (contracts/Estate.sol#145-147)
setPath(address[]) should be declared external:
- Estate.setPath(address[]) (contracts/Estate.sol#149-151)
pause() should be declared external:
- Estate.pause() (contracts/Estate.sol#153-155)
unpause () should be declared external:
- Estate.unpause() (contracts/Estate.sol#157-159)
burn(address,uint256,uint256) should be declared external:
- Estate.burn(address,uint256,uint256) (contracts/Estate.sol#161-167)
operatorTransfer (address,address,uint256,uint256,bytes) should be
< declared external:
- Estate.operatorTransfer(address,address,uint256,uint256,bytes) (
— contracts/Estate.sol#188-205)
exchange (uint256,address[]) should be declared external:

- Exchange.exchange (uint256,address[]) (contracts/Exchange.sol#92-101)

33

setAccess(address) should be declared external:

- Exchange.setAccess(address) (contracts/Exchange.sol#103-105)
setOracle(address) should be declared external:

- Exchange.setOracle(address) (contracts/Exchange.sol#107-109)
setAdmin(address) should be declared external:

- Exchange.setAdmin(address) (contracts/Exchange.sol#111-113)
setMin(uint256) should be declared external:

- Exchange.setMin(uint256) (contracts/Exchange.sol#115-117)
setMax(uint256) should be declared external:

- Exchange.setMax(uint256) (contracts/Exchange.sol#119-121)
grantPermit (bytes32,address) should be declared external:

- Oracle.grantPermit (bytes32,address) (contracts/Oracle.sol#95-101)
revokePermit (bytes32,address) should be declared external:

- Oracle.revokePermit (bytes32,address) (contracts/Oracle.sol#103-109)
getPrice(uint256,address[]) should be declared external:

- Oracle.getPrice(uint256,address[]) (contracts/Oracle.sol#147-159)
switchFix(bool) should be declared external:

- Oracle.switchFix(bool) (contracts/Oracle.sol#161-163)
setFromRatio(uint256) should be declared external:

- Oracle.setFromRatio(uint256) (contracts/Oracle.sol#165-167)
setToRatio(uint256) should be declared external:

- Oracle.setToRatio(uint256) (contracts/Oracle.sol#169-171)
setAccess(address) should be declared external:

- Oracle.setAccess(address) (contracts/Oracle.sol#173-175)

setRouter (address) should be declared external:

- Oracle.setRouter(address) (contracts/Oracle.sol#177-179)
list(address,address,uint256,uint256) should be declared external:

- Trader.list(address,address,uint256,uint256) (contracts/Trader.sol

— #119-140)
purchase (address,uint256,uint256,address[]) should be declared external:
- Trader.purchase(address,uint256,uint256,address[]) (contracts/Trader.
— sol#142-161)
setAccess(address) should be declared external:

- Trader.setAccess(address) (contracts/Trader.sol#163-165)

94

setAdmin(address) should be declared external:

- Trader.setAdmin(address) (contracts/Trader.sol#167-169)

setOracle(address) should be declared external:

- Trader.setOracle(address) (contracts/Trader.sol#171-173)

setStable(address) should be declared external:

- Trader.setStable(address) (contracts/Trader.sol#175-177)

setToken(address) should be declared external:

- Trader.setToken(address) (contracts/Trader.sol#179-181)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #public-function-that-could-be-declared-external

. analyzed (29 contracts with 75 detectors), 146 result(s) found

Most of the vulnerabilities found by the analysis have already been addressed by the smart
contract code review.

95

6 Conclusion

In this audit, we examined the design and implementation of INTELLY contract and discov-
ered severalissues of varying severity. Intelly team addressed most of the issues raised in

the initial report and implemented the necessary fixes.

The present code base is well-structured and ready for the mainnet.

56

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

57

mailto:contact@shellboxes.com

	Introduction
	About Intelly
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Oracle.sol
	The Fixed Price Of Any Amount Below 1000000 is Zero [CRITICAL]
	Missing Value Verification [LOW]
	Missing Address Verification [LOW]
	Floating Pragma [LOW]

	Estate.sol
	Fees should be limited [MEDIUM]
	The Operator Can Burn Any Token [MEDIUM]
	Missing Value Verification [LOW]
	Missing Address Verification [LOW]
	Floating Pragma [LOW]

	Trader.sol
	Missing Transfer Verification [MEDIUM]
	 Missing Address Verification [LOW]
	Floating Pragma [LOW]

	Exchange.sol
	Missing Address Verification [LOW]
	Floating Pragma [LOW]

	Token.sol
	Approve Race Condition [LOW]
	Floating Pragma [LOW]

	Stable.sol
	Approve Race Condition [LOW]
	Floating Pragma [LOW]

	Access.sol
	Floating Pragma [LOW]

	Tests
	Static Analysis (Slither)
	Conclusion

