SHELLBOXE

StartFi

Smart Contract Security Audit

Prepared by ShellBoxes
August 6", 2021 - August 12", 2021
Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client StartFi
Version 1.0
Classification Public
Scope

The StartFiToken Contractin the StartFi Repository

Repo

Commit Hash

https://github.com/StartFi/token_audit

cebbcaa3f9255743236f3db530f0f1f9eled57ca

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

https://github.com/StartFi/token_audit
mailto:contact@shellboxes.com

Contents

1 Introduction
11 AboutStartFi
1.2 Approach &Methodology
121 RiskMethodology

A M M B

2 Findings Overview
21 SUMMArY . . . e e e e
22 KeyFindings

3 Finding Details
A StartFiToken.sol
Al Approve Race Condition -
AW Usage of Block.TimeStamp-
A3 Floating Pragma [INFORMATIONAL]
A4 UseoflInline Assembly [INFORMATIONAL] 10
A5 Use of Nonces [INFORMATIONAL] 1

O 00 N N9 3

4 Static Analysis (Slither) 12
5 Automated Security Scan 17

6 Conclusion 19

1 Introduction

StartFi engaged ShellBoxes to conduct a security assessment on the StartFiToken begin-
ning on August 6'", 2021 and ending August 12", 2021. In this report, we detail our methodical
approachto evaluate potential securityissues associated withthe implementation of smart
contracts, by exposing possible semantic discrepancies between the smart contract code
and desigh document, and by recommending additional ideas to optimize the existing code.
Our findings indicate that the current version of smart contracts can still be enhanced fur-
ther due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About StartFi

StartFl is an NFT Platform to Help Content Creators Raise Funds for Their Digital
Content,Engaging Community to Share Rewards & Revenues.

Issuer StartFi

Website https://startfi.io
Type Solidity Smart Contract
Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

4

https://startfi.io

work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.
— Severity indicates the risk’s overall criticality.
Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

o High
S Medium
€
= Low
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The followingis a synopsis of our conclusions from our analysis of the StartFiToken imple-
mentation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but theirimplemen-
tation might be improved by addressing the discovered flaws, which include , 1 medium-

severity, 1 low-severity, 3 informational-severity vulnerabilities.

Vulnerabilities Severity Status

A.l. Approve Race Condition Acknowledged
A.2. Usage of Block.TimeStamp Acknowledged
A.3. Floating Pragma INFORMATIONAL | Acknowledged
A.4. Use of Inline Assembly INFORMATIONAL | Acknowledged
A.5. Use of Nonces INFORMATIONAL | Acknowledged

3 Finding Details

A StartFiToken.sol

A1 Approve Race Condition _

The standard ERC20 implementation contains a widely-known racing condition in its ap-
prove function, wherein a spender is able to witness the token owner broadcast a trans-
action altering their approval and quickly sign and broadcast a transaction using transfer-
From to move the current approved amount from the owner’s balance to the spender. If the
spender’s transaction is validated before the owner’s, the spender will be able to get both
approval amounts of both transactions.

Listing 1: StartFiToken.sol

s2 require(

63 verifyEIP712(target, hashStruct, v, r, s)
64 verifyPersonalSign(target, hashStruct, v, r, s)
s);
66 _approve(target, spender, value);
o}
Likelihood -2
Impact-5

Override the _approve function to use the following definition

Listing 2: StartFiToken

function _approve(address delegate, uint256 _currentValue, uint256
— numTokens) public

override returns (bool) {

if (_currentValue == allowed[msg.sender] [delegate])

{

allowed[msg.sender] [delegate] = numTokens;

emit Approval(msg.sender, delegate, numToken);
return true;
}

else return false;

}

- Acknowledged

The StartFi team acknowledged the risk and chose to use the increaseAllowance and de-
creaseAllowancetochangethe approvalamountinstead of overwritingitusingthe approve
function.

A.2 Usage of Block.TimeStamp -

Block.timestamp is used in the contract. The variable blockis a set of variables. The times-
tamp does not always reflect the current time and may be inaccurate. The value of a block
can be influenced by miners. Maximal Extractable Value attacks require a timestamp of up
to 900 seconds. There is no guarantee that the value is right, all what is guaranteed is that it
is higher than the timestamp of the previous block.

Listing 3: StartFiToken

so. require(block.timestamp <= deadline, "AnyswapV3ERC20: Expired permit");

Listing 4: StartFiToken

n require(block.timestamp <= deadline, "StartFiToken: Expired permit");

Likelihood - 3
Impact - 2

You can use an Oracle to get the exact time or verify if a delay of 900 seconds won't destroy
the logic of the staking contract.

- Acknowledged

The StartFi team accepted the risk and preferred not to use the oracle for the reason that
900 seconds won't have an impact on the business logic.

A.3 Floating Pragma [INFORMATIONAL]

The contract makes use of the floating-point pragma 0.8.0. Contracts should be deployed
using the same compiler version andflags that were used duringthe testing process. Lock-
ing the pragma helps to ensure that contracts are not unintentionally deployed using an-
other pragma, such as an obsolete version, that may introduce issues in the contract sys-
tem.

Listing 5: StartFiToken

3 pragma solidity >=0.8.0;

4+ pragma experimental SMTChecker;

Likelihood -2
Impact -1

Consider locking the pragma version. It is advised that floating pragma not be used in pro-
duction. Both truffle-config.js and hardhat.config.js support locking the pragma version.

- Acknowledged

A.4 Use of Inline Assembly [INFORMATIONAL]

Inline assembly is a way to access the EVM at a low level. This discards several important
safety features in Solidity.

Listing 6: StartFiToken

uint chainld;
assembly {
chainId := chainId

Likelihood - 2
Impact -1

When possible, do not use inline assembly because it is a manner to access to the EVM at a
low level. An attacker could bypass many important safety features of Solidity.

10

- Acknowledged

A5 UseofNonces [INFORMATIONAL]

The mapping nonces register how many signatures have been used for a particular holder.
When creating the signature, a nonces value needs to be included. When executing the per-
mit, the nonce included must exactly match the number of signatures that have been used
so far for that holder.

This ensures that each signature is used only once. All these three conditions together, the
PERMIT_TYPEHASH, the DOMAIN_SEPARATOR, and the nonce, make sure that each signa-
ture is used only for the intended contract, the intended function, and only once.

Listing 7: StartFiToken

mapping (address => uint256) public nonces;

constructor(string memory name,

- Acknowledged

1

4 Static Analysis (Slither)

ShellBoxes expanded the coverage of the specific contract areas using automated test-
ing methodologies. Slither, a Solidity static analysis framework, was one of the tools used.
Slither was run on all-scoped contracts in both text and binary formats. This tool can be
usedtotest mathematical relationships between Solidityinstances statically and variables
thatallow forthe detection of errorsorinconsistentusage of the contracts’ APls throughout
the entire codebase.

ERC20PresetFixedSupply.constructor(string,string,uint256,address) .name (
— node_modules/@openzeppelin/contracts/token/ERC20/presets/
— ERC20PresetFixedSupply.sol#25) shadows:
- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/ERC20.
— s01#60-62) (function)
- IERC20Metadata.name() (node_modules/@openzeppelin/contracts/token/
— ERC20/extensions/IERC20Metadata.sol#16) (function)
ERC20PresetFixedSupply.constructor(string,string,uint256,address) .symbol
— (node_modules/@openzeppelin/contracts/token/ERC20/presets/
— ERC20PresetFixedSupply.sol#26) shadows:
- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/ERC20/
< ERC20.s01#68-70) (function)
- IERC20Metadata.symbol() (node_modules/Qopenzeppelin/contracts/token/
— ERC20/extensions/IERC20Metadata.sol#21) (function)
StartFiToken.constructor(string,string,address) .name (contracts/
— StartFiToken.sol#21) shadows:
- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/ERC20.
— so0l#60-62) (function)
- IERC20Metadata.name() (node_modules/@openzeppelin/contracts/token/
— ERC20/extensions/IERC20Metadata.sol#16) (function)

12

StartFiToken.constructor(string,string,address) .symbol (contracts/
— StartFiToken.sol#22) shadows:

- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/ERC20/
— ERC20.s01#68-70) (function)

- IERC20Metadata.symbol() (node_modules/Qopenzeppelin/contracts/token/
— ERC20/extensions/IERC20Metadata.sol#21) (function)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

< #local-variable-shadowing

StartFiToken.permit(address,address,uint256,uint256,uint8,bytes32,
— bytes32) (contracts/StartFiToken.sol#49-63) uses timestamp for
—> comparisons
Dangerous comparisons:
- require(bool,string) (block.timestamp <= deadline,AnyswapV3ERC20:
— Expired permit) (contracts/StartFiToken.sol#50)
StartFiToken.transferWithPermit (address,address,uint256,uint256,uint8,
— bytes32,bytes32) (contracts/StartFiToken.sol#73-92) uses
— timestamp for comparisons
Dangerous comparisons:
- require(bool,string) (block.timestamp <= deadline,StartFiToken:
— Expired permit) (contracts/StartFiToken.sol#74)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #block-timestamp

StartFiToken.constructor(string,string,address) (contracts/StartFiToken.
— s0l#21-39) uses assembly

- INLINE ASM (contracts/StartFiToken.sol#27-29)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #assembly-usage
Different versions of Solidity are used:

- Version used: ['>=0.8.0', '~0.8.0']
- 70.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC20/ERC20.s01#3)

13

- 70.8.0 (node_modules/Qopenzeppelin/contracts/token/ERC20/IERC20.s01l
)

- 70.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/extensions/
— ERC20Burnable.sol#3)

- 70.8.0 (node_modules/Q@openzeppelin/contracts/token/ERC20/extensions/
— IERC20Metadata.sol#3)

- 70.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/presets/
— ERC20PresetFixedSupply.sol#2)

- 70.8.0 (node_modules/Qopenzeppelin/contracts/utils/Context.sol#3)

- >=0.8.0 (contracts/StartFiToken.sol#3)

- SMTChecker (contracts/StartFiToken.sol#4)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #different-pragma-directives-are-used

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— ERC20.s0l#3) allows old versions

Pragma version~0.8.0 (node_modules/Q@openzeppelin/contracts/token/ERC20/
— IERC20.s0l#3) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— extensions/ERC20Burnable.sol#3) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— extensions/IERC20Metadata.sol#3) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
— presets/ERC20PresetFixedSupply.sol#2) allows old versions

Pragma version~0.8.0 (node_modules/@openzeppelin/contracts/utils/Context
— .sol#3) allows old versions

Pragma version>=0.8.0 (contracts/StartFiToken.sol#3) allows old versions

501c-0.8.0 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #incorrect-versions—-of-solidity

Variable StartFiToken.DOMAIN SEPARATOR (contracts/StartFiToken.sol#14)

— is not in mixedCase

14

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #conformance-to-solidity-naming-conventions

Redundant expression "this (node_modules/Qopenzeppelin/contracts/utils/
— Context.sol#21)" inContext (node_modules/Qopenzeppelin/contracts/
— utils/Context.sol#15-24)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

— #iredundant-statements

StartFiToken.constructor(string,string,address) (contracts/StartFiToken.
— sol#21-39) uses literals with too many digits:

- ERC20PresetFixedSupply (name, symbol, 100000000 * 1000000000000000000,
— owner) (contracts/StartFiToken.sol#24)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #too-many-digits

name () should be declared external:

- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/ERC20.
— s0l#60-62)

symbol() should be declared external:

- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/ERC20/
< ERC20.s01#68-70)

decimals() should be declared external:

- ERC20.decimals() (node_modules/Qopenzeppelin/contracts/token/ERC20/
— ERC20.s01#85-87)

totalSupply() should be declared external:

- ERC20.totalSupply() (node_modules/Qopenzeppelin/contracts/token/ERC20
— /ERC20.s01#92-94)

balance0f (address) should be declared external:

- ERC20.balanceOf (address) (node_modules/Qopenzeppelin/contracts/token/
— ERC20/ERC20.s01#99-101)

transfer (address,uint256) should be declared external:

- ERC20.transfer (address,uint256) (node_modules/@openzeppelin/contracts
— /token/ERC20/ERC20.s0l#111-114)

15

approve (address,uint256) should be declared external:
- ERC20.approve(address,uint256) (node_modules/Qopenzeppelin/contracts/
— token/ERC20/ERC20.s01#130-133)
transferFrom(address,address,uint256) should be declared external:
- ERC20.transferFrom(address,address,uint256) (node_modules/
— Qopenzeppelin/contracts/token/ERC20/ERC20.s01#148-156)
increaseAllowance(address,uint256) should be declared external:
- ERC20.increaseAllowance(address,uint256) (node_modules/Qopenzeppelin/
— contracts/token/ERC20/ERC20.s01#170-173)
decreaseAllowance (address,uint256) should be declared external:
- ERC20.decreaseAllowance(address,uint256) (node_modules/@openzeppelin/
— contracts/token/ERC20/ERC20.s01#189-195)
burn(uint256) should be declared external:
- ERC20Burnable.burn(uint256) (node_modules/Qopenzeppelin/contracts/
— token/ERC20/extensions/ERC20Burnable.sol#19-21)
burnFrom(address,uint256) should be declared external:
- ERC20Burnable.burnFrom(address,uint256) (node_modules/@openzeppelin/
— contracts/token/ERC20/extensions/ERC20Burnable.sol#34-39)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
— #public-function-that-could-be-declared-external
. analyzed (7 contracts with 78 detectors), 31 result(s) found

[

5 Automated Security Scan

ShellBoxes used automated security scanners to assist with detection of well-known se-

curity issues and to identify vulnerabilities, on the smart contract we used MythX. MythXis

a security analysis APl that allows anyone to create purpose-built security tools for smart

contract developers.

Report for StartFiToken.sol
https://dashboard.mythx.io/#/console/analyses/fed30535-282c-42af-9972-9abb0481618d

Line SWC Title Severity Short Description
3 (SWC-103) Floating Pragma Low A floating pragma is set.
33 (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "*" discovered
i (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "++" discovered
115 (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "++" discovered

Report for openzeppelin-contracts/contracts/token/ERC20/ERC20.s0l
https://dashboard.mythx.io/#/console/analyses/fed30535-282c-42af-9972-9abb0481618d

Line SWC Title Severity Short Description
159 (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "-" discovered
178 (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "+" discovered
200 (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "-" discovered
233 (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "-" discovered
235 (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "+=" discovered
256 (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "+=" discovered
257 (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "+=" discovered
282 (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "-" discovered
284 (SWC-101) Integer Overflow and Underflow Unknown Arithmetic operation "-=" discovered

Report for openzeppelin-contracts/contracts/token/ERC20/extensions/ERC20Burnable.sol
https://dashboard.mythx.io/#/console/analyses/fed30535-282c-42af-9972-9abb0481618d

Line

SWC Title

Severity

Short Description

38

(SWC-101) Integer Overflow and Underflow

Unknown

Arithmetic

operation

"-" discovered

17

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

18

6 Conclusion

We examined the design and implementation of StartFl Token in this audit. The present code
baseis well-organized. We would much appreciate any constructive input orideas regard-
ing our methodology, audit findings, or potential scope/coverage gaps in this report.

19

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

20

mailto:contact@shellboxes.com

	Introduction
	About StartFi
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	StartFiToken.sol
	Approve Race Condition [MEDIUM]
	Usage of Block.TimeStamp [LOW]
	Floating Pragma [INFORMATIONAL]
	Use of Inline Assembly [INFORMATIONAL]
	Use of Nonces [INFORMATIONAL]

	Static Analysis (Slither)
	Automated Security Scan
	Conclusion

