
Kommunitas
Staking V3

Smart Contract Security Audit

Prepared by ShellBoxes

Jan 2nd, 2023 - Jan 7th, 2023

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Kommunitas

Version 1.0

Classification Public

Scope

Repository Commit Hash

https://github.com/Kommunitas-net/
staking-v3

f6bdf3df8ee71645e8863bc394bc18dfe57d4b6f

Re-Audit

Repository Commit Hash

https://github.com/Kommunitas-net/
staking-v3

ab2aadb8fc93a743df2e01a838e6ef32d8712be2

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://github.com/Kommunitas-net/staking-v3
https://github.com/Kommunitas-net/staking-v3
https://github.com/Kommunitas-net/staking-v3
https://github.com/Kommunitas-net/staking-v3
mailto:contact@shellboxes.com

Contents

1 Introduction 5

1.1 About Kommunitas . 5

1.2 Approach&Methodology . 5

1.2.1 RiskMethodology . 6

2 FindingsOverview 7

2.1 Summary . 7

2.2 Key Findings . 7

3 FindingDetails 9

SHB.1 AUser CanGetMore ThanASingle KomV Token 9

SHB.2 AnyWorker CanUnstake to AnyUser Staker 11

SHB.3 Savior has Unrestricted Power to Withdraw Tokens with emergencyWith-

drawFunction . 13

SHB.4 Owner CanChangeAnyCompound Type . 15

SHB.5 Lack of Two-Factor Verification for UpdatingAdminProxyAddress 16

SHB.6 CentralizationRisk . 18

SHB.7 Owner CanRenounceOwnership . 21

SHB.8 RaceCondition . 22

SHB.9 Missing TokenAddress Verification . 24

SHB.10 Missing Value Verification . 25

SHB.11 MissingAddress Verification . 28

SHB.12 Disynchronization between the workerNumber and the actual number of

workers . 31

4 Best Practices 33

BP.1 Using a SolidityModifier to Encapsulate onlySavior Checks 33

BP.2 Optimizing Code Quality and Readability with Separate Pause/Unpause

Functions . 34

BP.3 Optimize Event Emission by Combining Functions 35

5 Tests 37

6 Conclusion 40

3

7 Scope Files 41

7.1 Audit . 41

7.2 Re-Audit . 41

8 Disclaimer 42

4

1 Introduction
Kommunitas engaged ShellBoxes to conduct a security assessment on the Kommunitas

Staking V3 beginning on Jan 2nd, 2023 and ending Jan 7th, 2023. In this report, we detail our

methodical approach to evaluate potential security issues associated with the implemen-

tationof smart contracts, by exposingpossible semantic discrepanciesbetween thesmart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Kommunitas

Kommunitas is a decentralized and tier-less Launchpad on Polygon. They are bridging the

world to the biggest project in the most economical chain on cryptocurrency space.

Kommunitas platform’s goal is to allow project teams to focus on their project

development and building their products, while the community handle the marketing,

exposure and initial user base. They are looking for strong team with a unique and

innovative vision in the cryptocurrency industry.

Issuer Kommunitas

Website https://kommunitas.net

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

5

https://kommunitas.net

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6

2 FindingsOverview
2.1 Summary

The following is a synopsis of our conclusions from our analysis of the Kommunitas Stak-

ing V3 implementation. During the first part of our audit, we examine the smart contract

source code and run the codebase via a static code analyzer. The objective here is to find

knowncodingproblemsstaticallyand thenmanually check (rejectorconfirm) issueshigh-

lighted by the tool. Additionally, we check business logics, system processes, and DeFi-

related componentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 3

high-severity, 4medium-severity, 5 low-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. AUserCanGetMore ThanASingleKomVToken HIGH Fixed

SHB.2. AnyWorker CanUnstake to AnyUser Staker HIGH Mitigated

SHB.3. SaviorhasUnrestrictedPower toWithdrawTo-

kenswith emergencyWithdrawFunction

HIGH Acknowledged

SHB.4. Owner CanChangeAnyCompound Type MEDIUM Fixed

SHB.5. Lack of Two-Factor Verification for Updating

AdminProxyAddress

MEDIUM Fixed

SHB.6. CentralizationRisk MEDIUM Acknowledged

SHB.7. Owner CanRenounceOwnership MEDIUM Fixed

SHB.8. RaceCondition LOW Fixed

SHB.9. Missing TokenAddress Verification LOW Fixed

SHB.10. Missing Value Verification LOW Fixed

7

SHB.11. MissingAddress Verification LOW Fixed

SHB.12. Disynchronization between the workerNum-

ber and the actual number ofworkers

LOW Fixed

8

3 FindingDetails
SHB.1 AUser CanGetMore ThanASingle KomV Token

• Severity : HIGH

• Status : Fixed

• Likelihood : 3

• Impact : 2

Description:

TheKomV token is anERC20which isminted to a staker if their staked amount has reached

theminGetKomV value. It is used for voting, whichmeans a user should not be able to vote

more than once, this implies that the user should not havemore than 1 token. However, the

contract’s logic allows a user to get more than a single voting token minted.This issue is

causedby the contract checking theuser’s current balance, insteadof verifying if theyhave

already beenminted a voting token.

Exploit Scenario:

1. The attacker stakesminGetKomVamount.

2. The _stake function checks if theattacker alreadyhasaKomV tokenbychecking their

balance.

3. Since the attacker’s balance is 0, a KomV token isminted and given to the attacker.

4. The attacker transfers theKomV token to an account they own.

5. The attacker unstakes thewhole amount.

6. The_unstake functionchecks if theattackerstillhas theKomVtokenbychecking their

balance.

7. Since thebalance is 0 (because theKomV tokenwas transferred to another account.)

8. The attacker repeats this process as many times as they want to obtain more KomV

tokens.

9

Files Affected:

SHB.1.1: KommunitasStakingV3.sol

436 if(
437 stakerDetail[_sender].stakedAmount >= minGetKomV &&
438 IERC20MintableBurnableUpgradeable(komVToken).balanceOf(_sender) == 0
439){
440 IERC20MintableBurnableUpgradeable(komVToken).mint(_sender, 1);
441 }

SHB.1.2: KommunitasStakingV3.sol

512 if(
513 stakerDetail[_sender].stakedAmount < minGetKomV &&
514 IERC20MintableBurnableUpgradeable(komVToken).balanceOf(_sender) > 0
515){
516 IERC20MintableBurnableUpgradeable(komVToken).burn(_sender, 1);
517 }

Recommendation:

Consider using amapping of userswho own the KomV token so that a staker should be the

only one owning and responsible for that KomV token. The mapping will look as follows :

mapping(address => bool) public hasKomV;

Updates

The Kommunitas team resolved the issue by adding the hasKomV mapping to identify the

userswho alreadyminted their KomV token.

SHB.1.3: KommunitasStakingV3.sol

444 if(
445 stakerDetail[_sender].stakedAmount >= minGetKomV &&
446 IERC20MintableBurnableUpgradeable(komVToken).balanceOf(_sender) ==

,! 0 &&
447 !hasKomV[_sender]

10

448){
449 IERC20MintableBurnableUpgradeable(komVToken).mint(_sender, 1);
450 hasKomV[_sender] = true;
451 }

SHB.1.4: KommunitasStakingV3.sol

523 stakerDetail[_sender].stakedAmount < minGetKomV &&
524 IERC20MintableBurnableUpgradeable(komVToken).balanceOf(_sender) >

,! 0 &&
525 hasKomV[_sender]
526){
527 IERC20MintableBurnableUpgradeable(komVToken).burn(_sender, 1);
528 hasKomV[_sender] = false;
529 }

SHB.2 AnyWorker CanUnstake to AnyUser Staker

• Severity : HIGH

• Status : Mitigated

• Likelihood : 2

• Impact : 3

Description:

The contract’s unstake function allows any worker to unstake tokens from any staker, re-

gardlessofwhether theworkerhasapermissionor authorization to doso. This canpoten-

tially allow a worker to unstake tokens from a staker without their consent or knowledge,

potentially leading to loss of funds or other negative consequences.

Files Affected:

SHB.2.1: KommunitasStakingV3.sol

322 function unstake(

11

323 uint232 _userStakedIndex,
324 uint256 _amount,
325 address _staker
326) external virtual whenNotPaused {
327 // set staker
328 if(!isWorker[_msgSender()]) _staker = _msgSender();

Recommendation:

To ensure that only the caller is able to unstake their own tokens in the unstake function,

you canmodify the function as follows:

SHB.2.2: KommunitasStakingV3.sol

function unstake(uint232 _userStakedIndex, uint256 _amount) external
,! virtual whenNotPaused {

address _staker = _msgSender();
.....

}

This ensures that only the caller is able to unstake their own tokens, rather than allowing a

worker to unstake tokens on behalf of someone else.

Updates

The Kommunitas teammitigated the risk by preventing the worker from unstaking before

the due date.

SHB.2.3: KommunitasStakingV3.sol

326 function unstake(
327 uint232 _userStakedIndex,
328 uint256 _amount,
329 address _staker
330) external virtual whenNotPaused {
331 // get stake data
332 Stake memory stakeDetail = staked[_staker][_userStakedIndex];
333

12

334 // worker check
335 if(isWorker[_msgSender()]){
336 require(block.timestamp > stakeDetail.endedAt, "premature");
337 } else {
338 _staker = _msgSender();
339 }

SHB.3 Savior has Unrestricted Power to Withdraw Tokens

with emergencyWithdrawFunction

• Severity : HIGH

• Status : Acknowledged

• Likelihood : 2

• Impact : 3

Description:

TheemergencyWithdrawfunction in thecontractallowsthesavioraddresstowithdrawany

amount of tokens from the contract, without any restrictions or limitations. This gives the

savior address excessive power and could potentially be abused.

Exploit Scenario:

The savior address could potentially use the emergencyWithdraw function to withdraw a

largeamountof tokens fromthecontract, potentially causing financialharmto thecontract

or its users. Also, the savior can set his address as a receiver and will be able to get the

tokens.

Files Affected:

SHB.3.1: KommunitasStakingV3.sol

690 function emergencyWithdraw(
691 address _token,

13

692 uint256 _amount,
693 address _receiver
694) external virtual {
695 onlySavior();
696

697 // adjust amount to wd
698 uint256 balance = IERC20Upgradeable(_token).balanceOf(address(this))

,! ;
699 if(_amount > balance) _amount = balance;
700

701 IERC20MintableBurnableUpgradeable(_token).safeTransfer(
702 _receiver,
703 _amount
704);
705 }
706 }

Recommendation:

It is recommended to implement restrictions or limitations on the emergencyWithdraw

function to prevent the savior address fromhaving unrestricted power towithdraw tokens

from the contract. This could include implementing a maximum withdrawal limit or

requiring additional approvals or checks before allowing the savior address to withdraw

tokens.

Updates

TheKommunitasteamacknowledgedtherisk,statingthat theemergencyWithdrawisapart

of the business logic for safety, and they are utilizing amultisig contract as a savior, which

needs 2-of-3 approvals to perform the transaction.

14

SHB.4 Owner CanChangeAnyCompound Type

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

Description:

The contract’s changeCompoundType function allows the owner to change the compound

type of any staked tokens, regardless of whether they have permission or authorization to

doso. Thiscanpotentiallyallowtheowner tochangethecompoundtypeofuser’sstakedto-

kenswithout their consent, potentially leading tounexpectedorunintended consequences

for the affected user.

Files Affected:

SHB.4.1: KommunitasStakingV3.sol

375 function changeCompoundType(
376 address _staker,
377 uint232 _userStakedIndex,
378 CompoundTypes _newCompoundType
379) external virtual whenNotPaused {
380 // owner validation
381 if(_msgSender() != owner()) _staker = _msgSender();

Recommendation:

Consider removing the owner’s power to change the compound type for a staker and set

the _staker variable to the caller’s address (msg.sender). This ensures that only the caller

isable tochange thecompound type for their stake, rather than theownerhaving thepower

to do so for any staker.

15

Updates

TheKommunitas teamresolved the issuebypreventing theowner fromchanging the com-

pound type for the users.

SHB.5 Lack of Two-Factor Verification for Updating Admin

ProxyAddress

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

Description:

The transferProxyAdmin function, in the AdminProxyManager contract, allows the current

proxyAdmin() to update the admin proxy addresswithout any additional verification or au-

thentication. This can lead to permanently giving the admin role to a wrong admin, which

cannot be revoked again.

Exploit Scenario:

When this function is called with a mistaken address as parameter by the existing

adminProxy, the AdminProxyManager privileges are immediately transferred to this

unknown address.The original admin will lose the contract and will be unable to retrieve

their control.

Files Affected:

SHB.5.1: AdminProxyManager.sol

27 function transferProxyAdmin(address _newProxyAdmin) external virtual
,! proxied {

28 require(_newProxyAdmin != address(0) && _newProxyAdmin !=
,! _proxyAdmin(), "bad");

16

29

30 assembly {
31 sstore(0

,! xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b
32 5d6103, _newProxyAdmin)
33 }

Recommendation:

Consider addinganextra function topermit thenewlyassignedadmin to claimproxyAdmin

control. This will stop the issue of automatic assignment of a mistaken address. When an

address is set as the admin using the transferProxyAdmin function, the contract can have

an additional function.For instance,updateProxyAdmin will be called by the assigned per-

son.The later becomes the new ProxyAdmin and then the former admin no longer has the

proxy admin privileges.

Updates

TheKommunitas teamresolved the issueby implementing two-factorverification, thiswas

done by adding the _pendingProxyAdmin variable and the acceptProxyAdmin function that

allows the newadmins to claim their ownership.

SHB.5.2: AdminProxyManager.sol

39 function acceptProxyAdmin() external {
40 address sender = msg.sender;
41 require(_pendingProxyAdmin == msg.sender, "bad");
42 _transferProxyAdmin(sender);
43 }

17

SHB.6 CentralizationRisk

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The functions changeCompoundType, setMin, setPeriodInDays, setPenaltyFee and setAPY

are functions thatmodify values related to each lock index. However, the owner is the only

one able to change these values at any time,without the consent of the stakers.

Exploit Scenario:

1. An owner can set theminStaking value to a low value and set the APY to a high value

tomotivate users to lock their funds.

2. Theownerhasenoughstakers. Theowner immediatelysets thepenaltyFeetoareally

high value, and changes all the staker’s compoundTypes, and theAPY to 0. Hence, the

stakers are unable to unstake their funds.

Files Affected:

SHB.6.1: KommunitasStakingV3.sol

381 function changeCompoundType(
382 address _staker,
383 uint232 _userStakedIndex,
384 CompoundTypes _newCompoundType
385) external virtual whenNotPaused {
386 // owner validation
387 if(_msgSender() != owner()) _staker = _msgSender();
388

389 // get stake data
390 Stake memory stakeDetail = staked[_staker][_userStakedIndex];

18

391

392 require(
393 staked[_staker].length > _userStakedIndex && // user staked index

,! validation
394 stakeDetail.compoundType != _newCompoundType, // compound type

,! validation
395 "bad"
396);
397

398 // assign new compound type
399 staked[_staker][_userStakedIndex].compoundType = _newCompoundType;
400 }

SHB.6.2: KommunitasStakingV3.sol

635 function setMin(
636 uint64 _minStaking,
637 uint64 _minPrivatePartner,
638 uint64 _minGetKomV,
639 uint16 _minLockIndexGetGiveaway
640) external virtual onlyOwner {
641 if(_minStaking > 0) minStaking = _minStaking;
642 if(_minPrivatePartner > 0){
643 minPrivatePartner = _minPrivatePartner;
644 privatePartnerStakedAmount = 0; // reset private partner total

,! staked amount
645 }
646 if(_minGetKomV > 0) minGetKomV = _minGetKomV;
647 if(_minLockIndexGetGiveaway > 0){
648 minLockIndexGetGiveaway = _minLockIndexGetGiveaway;
649 giveawayStakedAmount = 0; // reset giveaway total staked amount
650 }
651 }

SHB.6.3: KommunitasStakingV3.sol

19

653 function setPeriodInDays(
654 uint16 _lockIndex,
655 uint128 _newLockPeriodInDays
656) external virtual onlyOwner {
657 require(lockNumber > _lockIndex, "bad");
658 lock[_lockIndex].lockPeriodInSeconds = _newLockPeriodInDays * 86400;
659 }

SHB.6.4: KommunitasStakingV3.sol

661 function setPenaltyFee(
662 uint16 _lockIndex,
663 uint64 _feeInPercent_d2
664) external virtual onlyOwner {
665 require(lockNumber > _lockIndex, "bad");
666 lock[_lockIndex].feeInPercent_d2 = _feeInPercent_d2;
667 }

SHB.6.5: KommunitasStakingV3.sol

669 function setAPY(
670 uint16 _lockIndex,
671 uint64 _apy_d2
672) external virtual onlyOwner {
673 require(lockNumber > _lockIndex, "bad");
674 lock[_lockIndex].apy_d2 = _apy_d2;
675 }

SHB.6.6: KommunitasStakingV3.sol

682 function togglePause() external onlyOwner virtual {
683 if(paused()){
684 _unpause();
685 } else {
686 _pause();
687 }
688 }

20

Recommendation:

Since these functions modify state variables related to the stakers, such changes should

be proposed to the stakers, and themajority should either accept or deny these proposals.

Updates

TheKommunitas teamacknowledged the risk, stating that they are using amultisigwallet,

and they are planning to implement a governance system to enable stakers to vote on new

proposals.

SHB.7 Owner CanRenounceOwnership

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

Description:

Typically, the account that deploys the contract is also its owner. Consequently, the owner

is able to engage in certain privileged activities in his own name. In smart contracts, the

renounceOwnership function is used to renounce ownership, whichmeans that if the con-

tract’s ownership has never been transferred, it will never have anOwner, rendering some

owner-exclusive functionality unavailable.

Files Affected:

SHB.7.1: KommunitasStakingV3.sol

15 contract KommunitasStakingV3 is
16 Initializable,
17 UUPSUpgradeable,
18 OwnableUpgradeable ,
19 PausableUpgradeable,
20 AdminProxyManager,

21

21 IKommunitasStakingV3

Recommendation:

We recommend that you prevent the owner from calling renounceOwnership without first

transferring ownership to a different address. Additionally, if you decide to use a multi-

signaturewallet, then the execution of the renounceOwnershipwill require for at least two

or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-

tionality by overriding it.

Updates

The Kommunitas team resolved the issue by removing the renounceOwnership function

from theOwnableUpgradeable contract.

SHB.8 RaceCondition

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The setMin function in the contract allows the owner to update the minStaking variable,

which is used to validate the minimum amount required for staking in the stake function.

However, the setMin function does not use any synchronization mechanism to prevent

concurrent access, which could lead to a race condition. This could lead to unpredictable

behavior in the stake function, since theminStaking variablemay be updated concurrently

with a stake transaction.

22

Files Affected:

SHB.8.1: KommunitasStakingV3.sol

635 function setMin(
636 uint64 _minStaking,
637 uint64 _minPrivatePartner,
638 uint64 _minGetKomV,
639 uint16 _minLockIndexGetGiveaway
640) external virtual onlyOwner {
641 if(_minStaking > 0) minStaking = _minStaking;
642 if(_minPrivatePartner > 0){
643 minPrivatePartner = _minPrivatePartner;
644 privatePartnerStakedAmount = 0; // reset private partner total

,! staked amount
645 }
646 if(_minGetKomV > 0) minGetKomV = _minGetKomV;
647 if(_minLockIndexGetGiveaway > 0){
648 minLockIndexGetGiveaway = _minLockIndexGetGiveaway;
649 giveawayStakedAmount = 0; // reset giveaway total staked amount
650 }
651 }

Recommendation:

To fix the race condition issue in the setMin function, you can use a synchronizationmech-

anism such as a require statement to ensure that the minStaking variable is not updated

concurrentlywith a stake transaction.

Updates

TheKommunitas teamresolved the issueby requiring the contract to bepausedbefore ex-

ecuting the setMin function.

SHB.8.2: KommunitasStakingV3.sol

660 function setMin(

23

661 uint64 _minStaking,
662 uint64 _minPrivatePartner,
663 uint64 _minGetKomV,
664 uint16 _minLockIndexGetGiveaway
665) external virtual whenPaused onlyOwner {
666 if(_minStaking > 0) minStaking = _minStaking;
667 if(_minPrivatePartner > 0){
668 minPrivatePartner = _minPrivatePartner;
669 privatePartnerStakedAmount = 0; // reset private partner total

,! staked amount
670 }
671 if(_minGetKomV > 0) minGetKomV = _minGetKomV;
672 if(_minLockIndexGetGiveaway > 0){
673 minLockIndexGetGiveaway = _minLockIndexGetGiveaway;
674 giveawayStakedAmount = 0; // reset giveaway total staked amount
675 }
676

677 // unpause
678 _unpause();
679 }

SHB.9 Missing TokenAddress Verification

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

Thecontract’s init functionallowsthesettingofkomTokenandkomVTokentokenaddresses

without verifying that the addresses are contract addresses. This can potentially allow an

attacker to set these token addresses to non-contract addresses or address(0).

24

Files Affected:

SHB.9.1: KommunitasStakingV3.sol

124 komToken = _komToken;
125 komVToken = _komVToken;

Recommendation:

It is recommended to verify that the addresses being set as the komToken and komVToken

token addresses are indeed contract addresses. This can be done by calling the isContract

function on the addresses in question. This function is provided by the Ethereum Contract

Address Validation library, which can be found here: Address.sol

Updates

TheKommunitas teamresolved the issuebyusing the isContract function tomakesure the

_komToken and the _komVToken addresses refer to smart contracts.

SHB.9.2: KommunitasStakingV3.sol

119 require(
120 _lockPeriodInDays.length == _apy_d2.length &&
121 _lockPeriodInDays.length == _feeInPercent_d2.length &&
122 AddressUpgradeable.isContract(_komToken) &&
123 AddressUpgradeable.isContract(_komVToken) &&
124 _savior != address(0),
125 "misslength"
126);

SHB.10 Missing Value Verification

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

25

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/utils/Address.sol#L26

Description:

There are three functions setPeriodInDays, setPenaltyFee, and setAPY that are used to up-

date state variables related to the staking process. These functions can only be accessed

by theowner. However, therearenochecks inplace toensure that thevaluesof thesestate

variables are not set to unreasonable values. For example, there is no check to prevent the

APY frombeing set to 0 or the penaltyFee frombeing set to a large number.

Files Affected:

SHB.10.1: KommunitasStakingV3.sol

653 function setPeriodInDays(
654 uint16 _lockIndex,
655 uint128 _newLockPeriodInDays
656) external virtual onlyOwner {
657 require(lockNumber > _lockIndex, "bad");
658 lock[_lockIndex].lockPeriodInSeconds = _newLockPeriodInDays * 86400;
659 }

SHB.10.2: KommunitasStakingV3.sol

661 function setPenaltyFee(
662 uint16 _lockIndex,
663 uint64 _feeInPercent_d2
664) external virtual onlyOwner {
665 require(lockNumber > _lockIndex, "bad");
666 lock[_lockIndex].feeInPercent_d2 = _feeInPercent_d2;
667 }

SHB.10.3: KommunitasStakingV3.sol

669 function setAPY(
670 uint16 _lockIndex,
671 uint64 _apy_d2
672) external virtual onlyOwner {
673 require(lockNumber > _lockIndex, "bad");

26

674 lock[_lockIndex].apy_d2 = _apy_d2;
675 }

Recommendation:

For the setPeriodInDays function, it is recommended to use a list of predefined options

(such as 30, 90, 120,..) rather than allowing the input of any number.

For the setPenaltyFee function, it is recommended to set a maximum limit for the penalty

fee that cannot be exceeded. Similarly, for the setAPY function, it is recommended to set a

minimumvalue thatmust bemet.

Updates

TheKommunitas teammitigated the riskbyverifying theargumentsof thesetPeriodInDays

and the setPenaltyFee, and verifying the upper limit in the setAPY function.

SHB.10.4: KommunitasStakingV3.sol

681 function setPeriodInDays(
682 uint16 _lockIndex,
683 uint128 _newLockPeriodInDays
684) external virtual onlyOwner {
685 require(
686 lockNumber > _lockIndex &&
687 _newLockPeriodInDays >= 86400 &&
688 _newLockPeriodInDays <= (5 * yearInSeconds),
689 "bad"
690);
691 lock[_lockIndex].lockPeriodInSeconds = _newLockPeriodInDays * 86400;
692 }

SHB.10.5: KommunitasStakingV3.sol

694 function setPenaltyFee(
695 uint16 _lockIndex,
696 uint64 _feeInPercent_d2
697) external virtual onlyOwner {

27

698 require(
699 lockNumber > _lockIndex &&
700 _feeInPercent_d2 >= 100 &&
701 _feeInPercent_d2 < 10000,
702 "bad"
703);
704 lock[_lockIndex].feeInPercent_d2 = _feeInPercent_d2;
705 }

SHB.10.6: KommunitasStakingV3.sol

707 function setAPY(
708 uint16 _lockIndex,
709 uint64 _apy_d2
710) external virtual onlyOwner {
711 require(
712 lockNumber > _lockIndex &&
713 _apy_d2 < 10000,
714 "bad"
715);
716 lock[_lockIndex].apy_d2 = _apy_d2;
717 }

SHB.11 MissingAddress Verification

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

Certain functions lack a safety check in the address, the address-type arguments should

include a zero-address test, otherwise, the contract’s functionality may become inacces-

sible.

28

Files Affected:

SHB.11.1: KommunitasStakingV3.sol

677 function setSavior(address _savior) external virtual {
678 onlySavior();
679 savior = _savior;
680 }

SHB.11.2: KommunitasStakingV3.sol

105 function init(
106 address _komToken,
107 address _komVToken,
108 uint128[] calldata _lockPeriodInDays,
109 uint64[] calldata _apy_d2,
110 uint64[] calldata _feeInPercent_d2,
111 address _savior
112) external initializer proxied {
113 __UUPSUpgradeable_init();
114 __Pausable_init();
115 __Ownable_init();
116 __AdminProxyManager_init(_msgSender());
117

118 require(
119 _lockPeriodInDays.length == _apy_d2.length &&
120 _lockPeriodInDays.length == _feeInPercent_d2.length,
121 "misslength"
122);
123

124 komToken = _komToken;
125 komVToken = _komVToken;
126 lockNumber = uint16(_lockPeriodInDays.length);
127 savior = _savior;

29

SHB.11.3: KommunitasStakingV3.sol

613 function addWorker(address _worker) external virtual onlyOwner {
614 isWorker[_worker] = true;
615 ++workerNumber;
616 }

SHB.11.4: KommunitasStakingV3.sol

618 function removeWorker(address _worker) external virtual onlyOwner {
619 isWorker[_worker] = false;
620 --workerNumber;
621 }

SHB.11.5: KommunitasStakingV3.sol

623 function changeWorker(
624 address _oldWorker,
625 address _newWorker
626) external virtual onlyOwner {
627 isWorker[_oldWorker] = false;
628 isWorker[_newWorker] = true;
629 }

SHB.11.6: KommunitasStakingV3.sol

631 function toggleTrustedForwarder(address _forwarder) external virtual
,! onlyOwner {

632 isTrustedForwarder[_forwarder] = !isTrustedForwarder[_forwarder];
633 }

Recommendation:

We recommend that youmake sure the addresses provided in the arguments are different

from the address(0).

30

Updates

The Kommunitas team resolved the issue by verifying all the address arguments to be dif-

ferent from the address(0).

SHB.12 Disynchronization between the workerNumber and

the actual number ofworkers

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 1

Description:

The addWorker and removeWorker functions, add the worker’s address to a mapping and

then increment or decrement the workerNumber variable to keep track of the number of

workers currently active in the contract. However, these functions donot check if aworker

alreadyexists(incaseofaddWorker)ornot (in caseof removeWorker), andstill increments

the workerNumber which causes a mismatch between the workerNumber and the actual

number ofworkers.

Files Affected:

SHB.12.1: KommunitasStakingV3.sol

615 function addWorker(address _worker) external virtual onlyOwner {
616 isWorker[_worker] = true;
617 ++workerNumber;
618 }

SHB.12.2: KommunitasStakingV3.sol

620 function removeWorker(address _worker) external virtual onlyOwner {
621 isWorker[_worker] = false;
622 --workerNumber;

31

623 }

Recommendation:

Consideraddingarequirestatement thatchecks that theenteredaddress isnotaddress(0)

and that it does not already exist in the addWorker. This can be done as follows :

SHB.12.3: KommunitasStakingV3.sol

613 function addWorker(address _worker) external virtual onlyOwner {
614 require(_worker != address(0) && !isWorker[_worker], "worker already

,! exists");
615 isWorker[_worker] = true;
616 ++workerNumber;
617 }

and for the removeWorker the codewill look something like this :

SHB.12.4: KommunitasStakingV3.sol

618 function removeWorker(address _worker) external virtual onlyOwner {
619 require(isWorker[_worker], "worker does not exist");
620 isWorker[_worker] = false;
621 --workerNumber;
622 }

Updates

The Kommunitas team resolved the issue by preventing the addition of the address(0) and

themodification of theworkerNumber if the address already exists.

32

4 Best Practices

BP.1 Using a Solidity Modifier to Encapsulate

onlySavior Checks

Description:

It is generally a good practice to use Solidity modifiers to encapsulate and reuse common

checks or functionality in a contract. Modifiers allow you to define a set of conditions or

requirements that must bemet in order to execute the code in a function ormethod. In the

case of the onlySavior function, it appears to be used to enforce that only the savior

address is allowed to execute certain functions or methods in the contract. However,

using a separate function to perform this check can be somewhat inefficient and can

potentially lead to code duplication if the same check is needed inmultiple functions.

1. Define a modifier named onlySavior that contains the check for the savior address. For

example:

BP.1.1: KommunitasStakingV3.sol

modifier onlySavior() {
require(_msgSender() == savior, "!savior");
_;

}

2. Apply theonlySaviormodifier to any functionsormethods that shouldonly beaccessible

to the savior address. For example:

BP.1.2: KommunitasStakingV3.sol

function someFunction() public onlySavior {
// Function body

}

33

Status -Not Fixed

BP.2 Optimizing Code Quality and Readability with

Separate Pause/Unpause Functions

Description:

In the togglePause function, the pause/unpause logic is currently encapsulated in a single

function. This can potentially make the code more difficult to read and understand, as the

purpose and behavior of the functionmay not be immediately clear. One potential solution

to improve the readability and clarity of this code is to separate the pause/unpause logic

into two separate functions. For example:

BP.2.1: KommunitasStakingV3.sol

function pause() external onlyOwner virtual {
_pause();

}

function unpause() external onlyOwner virtual {
_unpause();

}

This approach allows you to clearly distinguish the pause and unpause functionality and

make it more explicit in the contract code. It also allows you to give the functions descrip-

tive names that reflect their purpose, which can make the code easier to understand and

maintain.

34

Status -Not Fixed

BP.3 OptimizeEventEmissionbyCombiningFunc-

tions

Description:

The contract includes theemitUnstaked function that only emits anevent anddoesnot per-

form any other actions. This can potentially lead to unnecessary gas costs and code com-

plexity. It is recommended tooptimize thecontract by removing the function thatonlyemits

an event ,and adding the event emission directly to the core function that performs addi-

tional actions. This can help reduce gas costs and code complexity by reducing the number

of function calls and events that are emitted.

Files Affected:

BP.3.1: KommunitasStakingV3.sol

568 function emitUnstaked(
569 address _stakerAddress,
570 uint128 _lockPeriodInDays,
571 CompoundTypes _compoundType,
572 uint256 _amount,
573 uint256 _reward,
574 uint256 _penaltyPremature,
575 uint128 _stakedAt,
576 uint128 _endedAt,
577 bool _isPremature
578) internal virtual {
579 emit Unstaked(
580 _stakerAddress,
581 _lockPeriodInDays,
582 _compoundType,
583 _amount,
584 _reward,

35

585 _penaltyPremature,
586 _stakedAt,
587 _endedAt,
588 uint128(block.timestamp),
589 _isPremature
590);
591 }

Status -Not Fixed

36

5 Tests
! StakingV3 (27 passing (1m))

X Success: Stake 100 kom in no compounding type (415ms)

X Success: Unstake 100 kom in no compounding type (46ms)

X Success: Stake 100 kom in rewardOnly compounding type

X Success: Unstake 100 kom in rewardOnly compounding type (65ms)

X Success: Stake 100 kom in principalAndReward compounding type

X Success: Unstake 100 kom in principalAndReward compounding type

(53ms)

X Success: Full premature unstake 100 kom in no compounding type

(64ms)

X Success: Partial premature unstake 80 of 100 kom in no compounding

type (68ms)

X Success: Full prematureunstake 100kom in rewardOnly compounding

type (54ms)

X Success: Partial prematureunstake80of 100 kom in rewardOnly com-

pounding type (67ms)

X Success: Full premature unstake 100 kom in principalAndReward

compounding type (54ms)

X Success: Partial premature unstake 80 of 100 kom in

principalAndReward compounding type (67ms)

X Success: Stake 500k kom in no compounding type

37

X Success: Unstake 500k kom in no compounding type (59ms)

X Success: Stake 500k kom in rewardOnly compounding type

X Success: Unstake 500k kom in rewardOnly compounding type (65ms)

X Success: Stake 500k kom in principalAndReward compounding type

X Success: Unstake500kkom inprincipalAndRewardcompounding type

(62ms)

X Success: Full premature unstake 500k kom in no compounding type

(64ms)

X Success: Partial premature unstake 600k of 800k kom in no

compounding type (76ms)

X Success: Partial premature unstake 200k of 800k kom in no

compounding type (76ms)

X Success: Full premature unstake 500k kom in rewardOnly compound-

ing type (64ms)

X Success: Partial premature unstake 600k of 800k kom in rewardOnly

compounding type (75ms)

X Success: Partial premature unstake 200k of 800k kom in rewardOnly

compounding type (74ms)

X Success: Full premature unstake 500k kom in principalAndReward

compounding type (54ms)

X Success: Partial premature unstake 600k of 800k kom in principalAn-

dReward compounding type (74ms)

38

X Success: Partial premature unstake 200k of 800k kom in principalAn-

dReward compounding type (73ms)

39

6 Conclusion
In this audit, we examined the design and implementation of Kommunitas Staking V3 con-

tract and discovered several issues of varying severity. Kommunitas teamaddressed 9 is-

sues raised in the initial report and implemented the necessary fixes, while classifying the

rest as a risk with low-probability of occurrence. Shellboxes’ auditors advised Kommuni-

tas Team tomaintain a high level of vigilance and to keep those findings inmind in order to

avoid any future complications.

40

7 Scope Files

7.1 Audit

Files MD5Hash

contracts/KommunitasStakingV3.sol a4a94d6910cce3457860ebac89e70fd0

contracts/interface/IERC20MintableBurnableUp
gradeable.sol

9af652f839f640e7a7884ae356963f18

contracts/interface/IKommunitasStakingV3.sol e6571d83f8da80268f88c72078f3f084

contracts/util/AdminProxyManager.sol 4b03425e63129be5e9c3c3744e760370

contracts/util/ERC1967.sol 51185e23ee344363c77388be75e0c0e1

7.2 Re-Audit

Files MD5Hash

contracts/KommunitasStakingV3.sol fcdeac0b5c31867867ee004381db8d39

contracts/util/AdminProxyManager.sol 5faab490d0f406375288c3ed8d7068c5

contracts/util/OwnableUpgradeable.sol 919731340efa4bb64950ec96f37051e7

contracts/interface/IERC20MintableBurnableUp
gradeable.sol

9af652f839f640e7a7884ae356963f18

contracts/interface/IKommunitasStakingV3.sol e6571d83f8da80268f88c72078f3f084

contracts/util/ERC1967.sol 51185e23ee344363c77388be75e0c0e1

41

8 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject that engagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

42

For a Contract Audit, contact us at contact@shellboxes.com

43

mailto:contact@shellboxes.com

	Introduction
	About Kommunitas
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	A User Can Get More Than A Single KomV Token
	Any Worker Can Unstake to Any User Staker
	Savior has Unrestricted Power to Withdraw Tokens with emergencyWithdraw Function
	Owner Can Change Any Compound Type
	Lack of Two-Factor Verification for Updating Admin Proxy Address
	Centralization Risk
	Owner Can Renounce Ownership
	Race Condition
	Missing Token Address Verification
	Missing Value Verification
	Missing Address Verification
	Disynchronization between the workerNumber and the actual number of workers

	Best Practices
	Using a Solidity Modifier to Encapsulate onlySavior Checks
	Optimizing Code Quality and Readability with Separate Pause/Unpause Functions
	Optimize Event Emission by Combining Functions

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

