
CAPV4
Smart Contract Security Audit

Prepared by ShellBoxes

Feb 7th, 2023 - Feb 13th, 2023

Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Cap

Version 1.0

Classification Public

Scope

Repository Commit Hash

https://github.com/capofficial/contracts/
tree/audit

6b7945b2a6f4c8db1d101700af1db275ed94fd56

Re-Audit

Repository Commit Hash

https://github.com/beskay/cap-contracts e41c4e5755171a370826ee3d1ac2d2a0f5041311

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://github.com/capofficial/contracts/tree/audit%20
https://github.com/capofficial/contracts/tree/audit%20
https://github.com/beskay/cap-contracts
mailto:contact@shellboxes.com

Contents

1 Introduction 5

1.1 About Cap . 5

1.2 Approach&Methodology . 5

1.2.1 RiskMethodology . 6

2 FindingsOverview 7

2.1 Summary . 7

2.2 Key Findings . 7

3 FindingDetails 9

SHB.1 Missing expiry update in the TP andSL orders 9

SHB.2 Stakersmay lose their rewards due to rounding errors 11

SHB.3 Fees can be bypassed . 13

SHB.4 Keeper’s native tokens can get locked . 14

SHB.5 Excessive PrivilegesGranted to theGovernanceAccount 16

SHB.6 BlockedContract FeaturesDue toMissing Link Function Call 17

SHB.7 Unchecked return value in granting roles . 18

SHB.8 Missing value verification . 20

SHB.9 Lack of Contract Verification for Granting the CONTRACTRole 23

SHB.10 Lack of Two-Factor Verification for Updating govAddress 24

SHB.11 TransactionOrder Dependency&Potential Loss of Precision in FeeCalcu-

lation . 25

SHB.12 Potential ReentrancyAttack . 28

SHB.13 Floating Pragma . 30

4 Best Practices 31

BP.1 RemovingRolesWithoutMembers . 31

BP.2 Use EnumerableSet.AddressSet for Asset List 32

3

5 Tests 33

6 Conclusion 36

7 Scope Files 37

7.1 Audit . 37

7.2 Re-Audit . 38

8 Disclaimer 40

4

1 Introduction
CapengagedShellBoxes toconductasecurityassessmenton theCAPV4 beginningonFeb

7th, 2023 and ending Feb 13th, 2023. In this report, we detail our methodical approach to

evaluate potential security issues associatedwith the implementation of smart contracts,

by exposing possible semantic discrepancies between the smart contract code and design

document, and by recommending additional ideas to optimize the existing code. Our find-

ings indicate that the current version of smart contracts can still be enhanced further due

to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Cap

CAP is decentralized trading protocol designed to be powerful and easy to use.It allows

you to trade crypto and forex perpetuals directly from your Web3 wallet, pool funds to

make real yield ,and stake CAP, the protocol’s native token.

Issuer Cap

Website https://cap.io

Type Solidity Smart Contract

Documentation https://docs.cap.io/intro/
whats-cap

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

5

https://cap.io
https://docs.cap.io/intro/whats-cap
https://docs.cap.io/intro/whats-cap

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6

2 FindingsOverview
2.1 Summary

Thefollowing isasynopsisofourconclusions fromouranalysisof theCAPV4 implementa-

tion. During the first part of our audit, we examine the smart contract source code and run

the codebase via a static code analyzer. The objective here is to find known coding prob-

lems statically and thenmanually check (reject or confirm) issues highlighted by the tool.

Additionally, we check business logics, system processes, and DeFi-related components

manually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include 1

critical-severity, 1 high-severity, 4medium-severity, 7 low-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Missing expiry update in the TP andSL orders CRITICAL Fixed

SHB.2. Stakersmay lose their rewards due to round-

ing errors

HIGH Fixed

SHB.3. Fees can be bypassed MEDIUM Fixed

SHB.4. Keeper’s native tokens can get locked MEDIUM Fixed

SHB.5. Excessive Privileges Granted to the Gover-

nanceAccount

MEDIUM Acknowledged

SHB.6. BlockedContract FeaturesDue toMissingLink

Function Call

MEDIUM Acknowledged

SHB.7. Unchecked return value in granting roles LOW Fixed

SHB.8. Missing value verification LOW Fixed

SHB.9. Lack of Contract Verification for Granting the

CONTRACTRole

LOW Acknowledged

SHB.10. Lack of Two-Factor Verification for Updating

govAddress

LOW Acknowledged

7

SHB.11. Transaction Order Dependency & Potential

Loss of Precision in FeeCalculation

LOW Partially Fixed

SHB.12. Potential ReentrancyAttack LOW Fixed

SHB.13. Floating Pragma LOW Fixed

8

3 FindingDetails
SHB.1 Missing expiry update in the TP andSL orders

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

The submitOrder function is used to submit an order that will be executed later by the

Keeper, the expiry attribute is the timestamp at which the order expires. The function

accepts as arguments the tpPrice and the slPrice. If any of these arguments is different

from zero, the contract creates a separate stop/limit reduce-only order depending on the

arguments. However, to create these orders, the function makes use of the same

parameters that were used to create the initial orderwithout updating the expiry attribute.

This represents a huge risk to the user’s position.

Exploit Scenario:

• The user submits amarket order A at 3:10pmwith an expiry set to 3:14pm, in addition

to a slPrice thatwill create an order to protect his position if the price drops to a limit.

• The market order gets executed at 3:13pm and the price decreases significantly and

passes the limit set in the SL order at 3:20pm.

• The SL order is expired by the time, therefore the Keeperswill not be able to execute

the SL order.

This results in a huge risk on the user’s positionwhere aprice decrease candirectly re-

sult in the position’s liquidation, bypassing the SL order protection. The same thing applies

on TP orders.

Files Affected:

9

SHB.1.1: Orders.sol

128 // submit take profit order
129 if (tpPrice > 0) {
130 params.price = tpPrice;
131 params.orderType = 1;
132 params.isReduceOnly = true;
133

134 // Order is reduce-only so valueConsumed is always zero
135 (tpOrderId,) = _submitOrder(params);
136 }
137

138 // submit stop loss order
139 if (slPrice > 0) {
140 params.price = slPrice;
141 params.orderType = 2;
142 params.isReduceOnly = true;
143

144 // Order is reduce-only so valueConsumed is always zero
145 (slOrderId,) = _submitOrder(params);
146 }
147

148 // Update orders to cancel each other
149 if (tpOrderId > 0 && slOrderId > 0) {
150 orderStore.updateCancelOrderId(tpOrderId, slOrderId);
151 orderStore.updateCancelOrderId(slOrderId, tpOrderId);
152 }

Recommendation:

Consider resetting the expiry timestamp of the TP and SL orders when these options are

enabled.

10

Updates

TheCAP teamresolved the issue by setting the expiry to zero before creating the TPandSL

orders.

SHB.1.2: Orders.sol

128 // reset order expiry for TP/SL orders
129 if (params.expiry > 0) params.expiry = 0;

SHB.2 Stakersmay lose their rewardsdue to roundingerrors

• Severity : HIGH

• Status : Fixed

• Likelihood : 2

• Impact : 3

Description:

By staking CAP, the users receive a portion of protocol fees directly in ETH and USDC. The

feesaredistributedamongstakersbasedontheirshareof thestakingpoolandcanbewith-

drawn at any time. However, there is a possibility of a rounding error in the incrementRe-

wardPerToken. If thependingReward[asset]*UNIT is lowerthanthetotalSupplytheamount

variable will round to zero. This results in the stakers losing a part of their rewards since

pendingReward[asset] is set to zero afterwards and the rewardPerTokenSum[asset] is not

incremented. There is also a precision loss even in the casewhere the amount is different

fromzero, thiswill occurwhenever the pendingReward[asset] * UNIT is not divisible by the

totalSupply. The UNITmultiplier reduces the risk but it does not solve the issue. The prob-

ability of this issue depends on the collected fees by the protocol, and it increases by the

increase of the CAP tokens staked.

Files Affected:

SHB.2.1: StakingStore.sol

67 /// @notice Increments `asset` reward per token
68 /// @dev Only callable by other protocol contracts

11

69 function incrementRewardPerToken(address asset) external onlyContract {
70 if (totalSupply == 0) return;
71 uint256 amount = (pendingReward[asset] * UNIT) / totalSupply;
72 rewardPerTokenSum[asset] += amount;
73 pendingReward[asset] = 0;
74 }

Recommendation:

Consider using the following code to update the reward per token:

SHB.2.2: StakingStore.sol

/// @notice Increments `asset` reward per token
/// @dev Only callable by other protocol contracts
function incrementRewardPerToken(address asset) external onlyContract {

if (totalSupply == 0) return;
uint256 nonWithdrawableFunds = (pendingReward[asset] * UNIT) %

,! totalSupply;
uint256 amount = (pendingReward[asset] * UNIT - nonWithdrawableFunds

,!) / totalSupply;
rewardPerTokenSum[asset] += amount;
pendingReward[asset] = nonWithdrawableFunds/UNIT;

}

Updates

TheCAP team resolved the issue by using the following code:

SHB.2.3: StakingStore.sol

71 function incrementRewardPerToken(address asset) external onlyContract {
72 if (totalSupply == 0) return;
73 uint256 amount = (pendingReward[asset] * UNIT) / totalSupply;
74 rewardPerTokenSum[asset] += amount;
75 // due to rounding errors a fraction of fees stays in the contract

12

76 // pendingReward is set to the amount which is left over, and will
,! be distributed later

77 pendingReward[asset] -= (amount * totalSupply) / UNIT;
78 }

SHB.3 Fees can be bypassed

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

Description:

Thewithdraw is utilized towithdraw funds from the pool, calling this function costs awith-

drawal fee that is capped at 5% of the amount to be withdrawn. However, the fees can be

bypassed by the caller by withdrawing his amount overmultiple rounds of small amounts.

The amount to bewithdrawn in each step should be less than 100 units to be able to cause a

roundingerror in line205tobeable tobypassthewithdrawal fee. It isworthmentioning that

this is only possible if the gas fees are low,which is possible in a layer 2 chain (Arbitrum).

Files Affected:

SHB.3.1: Pool.sol

189 function withdraw(address asset, uint256 amount) public {
190 require(amount > 0, '!amount');
191 require(assetStore.isSupported(asset), '!asset');
192

193 address user = msg.sender;
194

195 // check pool balance and clp supply
196 uint256 balance = poolStore.getBalance(asset);
197 uint256 clpSupply = poolStore.getClpSupply(asset);
198 require(balance > 0 && clpSupply > 0, '!empty');

13

199

200 // check user balance
201 uint256 userBalance = poolStore.getUserBalance(asset, user);
202 if (amount > userBalance) amount = userBalance;
203

204 // calculate pool withdrawal fee
205 uint256 feeAmount = (amount * poolStore.getWithdrawalFee(asset)) /

,! BPS_DIVIDER;
206 uint256 amountMinusFee = amount - feeAmount;

Recommendation:

Consider implementinga restrictionon theamount tobewithdrawnandsettingaminimum

value thatwill prevent any fee bypass caused by rounding errors.

Updates

The CAP team resolved the issue by verifying the amount argument to be greater than

BPS_DIVIDER.

SHB.3.2: Pool.sol

189 function withdraw(address asset, uint256 amount) public {
190 require(amount > BPS_DIVIDER, '!amount');
191 require(assetStore.isSupported(asset), '!asset');

SHB.4 Keeper’s native tokens can get locked

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

14

Description:

The executeOrders is used by theKeeper to execute submitted orders, theKeeper needs to

pay a fee that will be transferred to pyth. However, the require statement makes sure that

the msg.value is greater than the fee. Therefore, if the keeper deposits a msg.value that is

higher than fee, themsg.value - feewill not be used, and the keeperwill not be able to get it

back.

Files Affected:

SHB.4.1: Processor.sol

122 function executeOrders(
123 uint256[] calldata orderIds,
124 bytes[] calldata priceUpdateData
125) external payable nonReentrant ifNotPaused {
126 // updates price for all submitted price feeds
127 uint256 fee = pyth.getUpdateFee(priceUpdateData);
128 require(msg.value >= fee, '!fee');
129 pyth.updatePriceFeeds{value: fee}(priceUpdateData);

Recommendation:

Consider verifying themsg.value to be equal to the fee, or to transfer back themsg.value -

fee.

Updates

TheCAP team resolved the issue by refunding the diff to the sender.

SHB.4.2: Processor.sol

158 // Refund msg.value excess, if any
159 if (msg.value > fee) {
160 uint256 diff = msg.value - fee;
161 payable(msg.sender).sendValue(diff);
162 }

15

SHB.5 Excessive Privileges Granted to the Governance

Account

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The Governable contract is designed to have the governance account have excessive priv-

ileges within the project business logic. The onlyGovmodifier is used to restrict access to

certain functionsandenforce that theycanonlybecalledby thegovernanceaccount. How-

ever, this creates a centralized risk as the governance account has control overmany crit-

ical functions such as setting assets in the AssetStore contract, setting funding intervals

in the FundingStore, updating markets in the MarketStore contract, setting the maxMar-

ketOrderTTL, maxTriggerOrderTTL and chainlinkCooldown using the OrderStore functions

and all functions within the storage contract DataStore. This concentration of power in a

single account increases the risk of a single point of failure and goes against the principles

of decentralization.

Files Affected:

SHB.5.1: Governable.sol

12 constructor() {
13 _setGov(msg.sender);
14 }
15

16 /// @dev Reverts if called by any account other than gov
17 modifier onlyGov() {
18 require(msg.sender == gov, '!gov');
19 _;
20 }

16

Recommendation:

To mitigate the centralization risk, it is recommended to implement a more robust gover-

nance structure, such as amulti-sig or an on-chain votingmechanism. This would ensure

that there is no single point of failure and that the system ismore resilient to attacks. Addi-

tionally, it may be a good idea to limit the scope of the onlyGovmodifier to only those func-

tions that truly require governance-level access.

Updates

TheCAP teamacknowledged the riskstating that theyareplanning toset thegov toamulti-

sig.

SHB.6 Blocked Contract Features Due to Missing Link Func-

tion Call

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The API Contracts, including Finding, Orders, Pool, Positions, Processor, and Staking, re-

quires communication with the store contracts. If the link function that initializes proto-

col contracts isnot called immediately after contract deployment, the featuresof theseAPI

Contractswill be blocked.

Files Affected:

All link functions in the Finding.sol, Orders.sol, Pool.sol, Positions.sol, Processor.sol, and

Staking.sol contracts.

17

Recommendation:

Consider calling the link function in the contract’s constructor or implementing a fail-safe

mechanism that automatically gets the required store contract address from the DataS-

tore, if it has not already been set through the link function.

Updates

The CAP team acknowledged the risk stating that they will be using a deployment script to

solve the issue.

SHB.7 Unchecked return value in granting roles

• Severity : LOW

• Status : Fixed

• Likelihood : 2

• Impact : 1

Description:

TheRoleStore contractmakes use of the EnumerableSet contract fromOpeenZepplin. The

addand remove functions returnabooleanvalue that represents thestatusof the call. This

boolean value is not being checked in the contract. This makes the grantRole and revoke-

Role calls succeed in all cases, even if the add and remove fail.

Files Affected:

SHB.7.1: RoleStore.sol

25 /// @notice Grants `role` to `account`
26 /// @dev Only callable by governance
27 function grantRole(address account, bytes32 role) external onlyGov {
28 roles.add(role);
29 roleMembers[role].add(account);
30 }

18

SHB.7.2: RoleStore.sol

32 /// @notice Revokes `role` from `account`
33 /// @dev Only callable by governance
34 function revokeRole(address account, bytes32 role) external onlyGov {
35 roleMembers[role].remove(account);
36 }

Recommendation:

Considerwrapping the add and remove calls inside a require tomake sure the transaction

status accurately represents the state changes.

Updates

TheCAP team resolved the issue bywrapping the add and remove calls inside a require.

SHB.7.3: RoleStore.sol

27 function grantRole(address account, bytes32 role) external onlyGov {
28 // add role if not already present
29 if (!roles.contains(role)) roles.add(role);
30

31 require(roleMembers[role].add(account));
32 }

SHB.7.4: RoleStore.sol

36 function revokeRole(address account, bytes32 role) external onlyGov {
37 require(roleMembers[role].remove(account));
38

39 // Remove role if it has no longer any members
40 if (roleMembers[role].length() == 0) {
41 roles.remove(role);
42 }
43 }

19

SHB.8 Missing value verification

• Severity : LOW

• Status : Fixed

• Likelihood : 2

• Impact : 1

Description:

Certain functions lack a value safety check. The values of the arguments should be verified

to allowonly the ones that complywith the contract’s logic.

• In the OrderStore contract, the setMaxMarketOrderTTL and setMaxTriggerOrderTTL

functions are called by the gov to set the maxMarketOrderTTL and

maxTriggerOrderTTL variables. By default, maxMarketOrderTTL is set to 5 minutes

and maxTriggerOrderTTL is set to 180 days. However, there is no verification to

ensure that the amount parameter passed to these functions is not equal to zero and

themaxMarketOrderTTL should be verified to be lower than themaxTriggerOrderTTL

argument. This can result in the submitOrder process being blocked, as the

_submitOrder function requires that ttl must be less than or equal to the value of

maxMarketOrderTTL() or maxTriggerOrderTTL(). The same requirement is present

in the _executeOrder function in the Processor contract.

• In the OrderStore contract, the setChainlinkCooldown function takes the amount

parameter, which is the duration in seconds. However, there is no verification

performed to ensure that the amount parameter is not equal to zero, which can

result in the _executeOrder function in the Processor contract being blocked as if the

order was submitted less than chainlinkCooldown seconds ago, this function will

return falsewith an errormessage.

• In the FundingStore contract, there is no verification to ensure that the amount pa-

rameter passed to the setFundingInterval function is not equal to zero. This can re-

sult in the updateFundingTracker function in the Funding contract failing as the cal-

culation lastUpdated + fundingStore.fundingInterval() may exceed the value of _now

if fundingInterval is set to zero.

20

• The setFeeShare function from PoolStore and StakingStore contracts is missing a

limitation over the value of the fee.

• The same issue in the setRemoveMarginBuffer and setKeeperFeeShare functions

fromPositionStore contract

• The same issue in the setPoolProfitLimit function in theRiskStore contract.

Files Affected:

SHB.8.1: OrderStore.sol

64 function setMaxMarketOrderTTL(uint256 amount) external onlyGov {
65 maxMarketOrderTTL = amount;
66 }
67

68 /// @notice Set duration until trigger orders expire
69 /// @dev Only callable by governance
70 /// @param amount Duration in seconds
71 function setMaxTriggerOrderTTL(uint256 amount) external onlyGov {
72 maxTriggerOrderTTL = amount;
73 }

SHB.8.2: OrderStore.sol

78 function setChainlinkCooldown(uint256 amount) external onlyGov {
79 chainlinkCooldown = amount;
80 }

SHB.8.3: FundingStore.sol

23 function setFundingInterval(uint256 amount) external onlyGov {
24 fundingInterval = amount;
25 }

SHB.8.4: StakingStore.sol andPoolStore.sol

function setFeeShare(uint256 bps) external onlyGov {
feeShare = bps;

21

}

SHB.8.5: RiskStore.sol

54 function setPoolProfitLimit(address asset, uint256 bps) external onlyGov
,! {

55 require(bps <= MAX_POOL_PROFIT_LIMIT, '!profit-limit');
56 poolProfitLimit[asset] = bps;
57 }

SHB.8.6: PositionStore.sol

48 function setRemoveMarginBuffer(uint256 bps) external onlyGov {
49 removeMarginBuffer = bps;
50 }
51

52 /// @notice Sets keeper fee share
53 /// @dev Only callable by governance
54 /// @param bps new `keeperFeeShare` in bps
55 function setKeeperFeeShare(uint256 bps) external onlyGov {
56 require(bps <= MAX_KEEPER_FEE_SHARE, '!keeper-fee-share');
57 keeperFeeShare = bps;
58 }

Recommendation:

• It is recommended that the OrderStore contract be updated to include a check that

verifies that the amount parameter passed to the setMaxMarketOrderTTL and

setMaxTriggerOrderTTL functions is not equal to zero.Additionally, the

maxMarketOrderTTL should be verified to be lower than the maxTriggerOrderTTL

argument.

• It is recommended to add a verification to ensure that the amount parameter passed

to the setChainlinkCooldown function is not equal to zero, in order to avoid potential

issueswith the _executeOrder function.

• It isrecommendedtoaddaverificationcheck inthesetFundingInterval functiontoen-

sure that the amount parameter is not equal to zero.

22

Updates

TheCAP team resolved the issue by verifying the values as recommended.

SHB.9 Lack of Contract Verification for Granting the

CONTRACTRole

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

Description:

In the Roles contract, the onlyContract modifier is used to ensure that the calling account

has theCONTRACT role.In theRoleStore contract, the grantRole function is only accessible

by thegov, but there is nocondition to ensure that theaccount beinggranted theCONTRACT

role isasmartcontract. This lackofverificationcan leadtosecurityrisks,asanon-contract

account couldpotentially begranted theCONTRACTroleandhaveaccess tosensitive func-

tionalitywithin the system.

Files Affected:

SHB.9.1: RoleStore.sol

27 function grantRole(address account, bytes32 role) external onlyGov {
28 roles.add(role);
29 roleMembers[role].add(account);
30 }

Recommendation:

Consideraddingacondition to thegrantRole function in theRoleStorecontract toverify that

the account being granted the CONTRACT role is a smart contract.

23

Updates

The CAP team acknowledged the risk stating that verifying the account to be a smart con-

tractwill not reduce the risk.

SHB.10 Lack of Two-Factor Verification for Updating gov Ad-

dress

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

Description:

The setGov function is used by the governance in order to change the governance address,

there is a risk of the governance being set to address(0) or a wrong address by accident,

which can lead to a denial of service in all the functions protected by the onlyGovmodifier.

Files Affected:

SHB.10.1: Governable.sol

24 /// @notice Sets a new governance address
25 /// @dev Only callable by governance
26 function setGov(address _gov) external onlyGov {
27 _setGov(_gov);
28 }

Recommendation:

Consider changing the gov address over two steps, where the first is setting up a pending-

Gov and the second call is done by the pendingGovwhere they can take the ownership and

be the newgov.

24

Updates

TheCAP teamacknowledged the risk as they decided to keep it a one stepmodification.

SHB.11 Transaction Order Dependency & Potential Loss of

Precision in FeeCalculation

• Severity : LOW

• Status : Partially Fixed

• Likelihood : 1

• Impact : 2

Description:

The creditFee function in the Position contract calculates fees based on the

keeperFeeShare and feeShare set in the store contracts. However, these fees are

modifiable by the governance and there is an order dependency between the calculation of

the fee and the modification of the fee share, which may lead to an unexpected result. In

addition to that, the fee calculation can result in a precision loss due to the percentages

that are taken from the trading fees,which depend on the order size.

Files Affected:

SHB.11.1: Positions.sol

466 function creditFee(
467 uint256 orderId,
468 address user,
469 address asset,
470 string memory market,
471 uint256 fee,
472 bool isLiquidation,
473 address keeper
474) public onlyContract {
475 if (fee == 0) return;

25

476

477 uint256 keeperFee;
478

479 if (keeper != address(0)) {
480 keeperFee = (fee * positionStore.keeperFeeShare()) /

,! BPS_DIVIDER;
481 }
482

483 // Calculate fees
484 uint256 netFee = fee - keeperFee;
485

486 uint256 feeToStaking = (netFee * stakingStore.feeShare()) /
,! BPS_DIVIDER;

487 uint256 feeToPool = (netFee * poolStore.feeShare()) / BPS_DIVIDER
,! ;

488 uint256 feeToTreasury = netFee - feeToStaking - feeToPool;

Recommendation:

Consider improving the precision in the fees calculation, also adding the modifiable vari-

ables as arguments and verifying that theymatch the values stored in the contracts.

Updates

TheCAPteamresolved theprecision loss issuebymultiplying the feeby1018 to increase the

precision.

SHB.11.2: Positions.sol

466 function creditFee(
467 uint256 orderId,
468 address user,
469 address asset,
470 string memory market,
471 uint256 fee,
472 bool isLiquidation,

26

473 address keeper
474) public onlyContract {
475 if (fee == 0) return;
476

477 // multiply fee by UNIT (10^18) to increase position
478 fee = fee * UNIT;
479

480 uint256 keeperFee;
481 if (keeper != address(0)) {
482 keeperFee = (fee * positionStore.keeperFeeShare()) / BPS_DIVIDER;
483 }
484

485 // Calculate fees
486 uint256 netFee = fee - keeperFee;
487 uint256 feeToStaking = (netFee * stakingStore.feeShare()) /

,! BPS_DIVIDER;
488 uint256 feeToPool = (netFee * poolStore.feeShare()) / BPS_DIVIDER;
489 uint256 feeToTreasury = netFee - feeToStaking - feeToPool;
490

491 // Increment balances, transfer fees out
492 // Divide fee by UNIT to get original fee value back
493 poolStore.incrementBalance(asset, feeToPool / UNIT);
494 stakingStore.incrementPendingReward(asset, feeToStaking / UNIT);
495 fundStore.transferOut(asset, DS.getAddress('treasury'),

,! feeToTreasury / UNIT);
496 fundStore.transferOut(asset, keeper, keeperFee / UNIT);
497

498 emit FeePaid(
499 orderId,
500 user,
501 asset,
502 market,
503 fee / UNIT, // paid by user
504 feeToPool / UNIT,

27

505 feeToStaking / UNIT,
506 feeToTreasury / UNIT,
507 keeperFee / UNIT,
508 isLiquidation
509);
510 }

SHB.12 Potential ReentrancyAttack

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The withdraw function allows users to withdraw their balance in a specific asset from the

pool store. The function calls the transferOut function to transfer the withdrawn funds to

the user’s address. However, the implementation of the transferOut function is vulnerable

to re-entrancy attacks.

The problem with sendValue is that it is a low-level function that sends Ether directly

to the recipient without any protection from re-entrancy attacks. This can lead to potential

security risks and unauthorized funds transfer.

This issue is not limited to the withdraw function, but rather it is a widespread problem

that affects all functions that calls the transferOut function.

Files Affected:

SHB.12.1: Pool.sol

215 // transfer funds out
216 fundStore.transferOut(asset, user, amountMinusFee);

SHB.12.2: FundStore.sol

28

31 function transferOut(address asset, address to, uint256 amount)
,! external onlyContractOrGov {

32 if (amount == 0 to == address(0)) return;
33 if (asset == address(0)) {
34 payable(to).sendValue(amount);
35 } else {
36 IERC20(asset).safeTransfer(to, amount);
37 }
38 }

Recommendation:

To mitigate this risk, it is recommended to use the nonReentrant modifier from the Reen-

trancyGuard byOpenzeppelin in the transferOut function.

Updates

TheCAP team resolved the issue by implementing the use of the nonReentrantmodifier.

SHB.12.3: FundStore.sol

31 function transferOut(address asset, address to, uint256 amount) external
,! onlyContractOrGov {

32 if (amount == 0 to == address(0)) return;
33 if (asset == address(0)) {
34 payable(to).sendValue(amount);
35 } else {
36 IERC20(asset).safeTransfer(to, amount);
37 }
38 }

29

SHB.13 Floating Pragma

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 1

Description:

The contract makes use of the floating-point pragma 0.8.13. Contracts should be deployed

using the same compiler version. Locking the pragma helps ensure that contractswill not

unintentionallybedeployedusinganotherpragma,which insomecasesmaybeanobsolete

version, thatmay introduce issues to the contract system.

Files Affected:

All Contracts

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-

sion.

Updates

TheCAP team resolved the issue by locking the pragma version to 0.8.17.

30

4 Best Practices

BP.1 RemovingRolesWithoutMembers

Description:

The revokeRole function in the RoleStore contract allows governance to remove a specific

role fromagiven account by removing the account from the roleMembersmapping for that

role. Tomaintain a clean and efficient rolemanagement system, it is a best practice to also

remove any roles that no longer have anymembers. This can be done by adding the follow-

ing code to the revokeRole function:

BP.1.1: RoleStore.sol

if (roleMembers[role].isEmpty()) {
roles.remove(role);

}

This will ensure that the getRoleCount function returns the correct number of roles in the

systemand prevents the accumulation of unused roles.

Files Affected:

BP.1.2: RoleStore.sol

34 function revokeRole(address account, bytes32 role) external onlyGov
,! {

35 roleMembers[role].remove(account);
36 }

Status - Fixed

31

BP.2 Use EnumerableSet.AddressSet for Asset

List

Description:

In the AssetStore contract, the assetList array is used to keep track of all assets stored in

thesystem. Tooptimize theassetmanagement, it is recommended touse theEnumerable-

Set.AddressSet data structure instead of the standard array. Thiswill ensure that each as-

set is stored only once, avoiding duplication and improving performance. The set function

in the code can be modified to directly use the add function provided by the Enumerable-

Set.AddressSet.

Files Affected:

BP.2.1: AssetStore.sol

16 address[] public assetList;
17 mapping(address => Asset) private assets;
18

19 constructor(RoleStore rs) Roles(rs) {}
20

21 /// @notice Set or update an asset
22 /// @dev Only callable by governance
23 /// @param asset Asset address, e.g. address(0) for ETH
24 /// @param assetInfo Struct containing minSize and chainlinkFeed
25 function set(address asset, Asset memory assetInfo) external onlyGov

,! {
26 assets[asset] = assetInfo;
27 for (uint256 i = 0; i < assetList.length; i++) {
28 if (assetList[i] == asset) return;
29 }
30 assetList.push(asset);
31 }

Status - Acknowledged

32

5 Tests
Results:

Running 13 tests for test/foundry/Orders.t.sol:OrderTest
[PASS] testCancelOrder() (gas: 433232)
[PASS] testCancelOrderUSDC() (gas: 467372)
[PASS] testRefundMsgValueExcess() (gas: 535964)
[PASS] testReverTPBelowSLPrice() (gas: 497723)
[PASS] testRevertAboveMaxLeverage() (gas: 103200)
[PASS] testRevertBelowMinLeverage() (gas: 103512)
[PASS] testRevertBelowMinSize() (gas: 67814)
[PASS] testRevertExpiry() (gas: 340924)
[PASS] testRevertOrdersPaused() (gas: 73099)
[PASS] testRevertUnsupportedAsset() (gas: 84117)
[PASS] testRevertValue() (gas: 127636)
[PASS] testSubmitOrder() (gas: 504033)
[PASS] testSubmitOrderAssetUSDC() (gas: 549487)
Test result: ok. 13 passed; 0 failed; finished in 72.66ms

Running 2 tests for test/foundry/Funding.t.sol:FundingTest
[PASS] testFundingTrackerLong() (gas: 1771017)
[PASS] testFundingTrackerShort() (gas: 1707408)
Test result: ok. 2 passed; 0 failed; finished in 75.84ms

Running 4 tests for test/foundry/RiskStore.t.sol:RiskStoreTest
[PASS] testMaxOI() (gas: 1089752)
[PASS] testMaxPoolDrawdown() (gas: 1505028)
[PASS] testProfitTracker() (gas: 1552667)
[PASS] testProfitTrackerNegative() (gas: 1576304)
Test result: ok. 4 passed; 0 failed; finished in 86.15ms

Running 12 tests for test/foundry/Positions.t.sol:PositionsTest
[PASS] testAddMargin() (gas: 1092328)

33

[PASS] testAddMarginUSDC() (gas: 1131972)
[PASS] testClosePositionWithoutProfit() (gas: 1110899)
[PASS] testCreditFee() (gas: 1073156)
[PASS] testCreditFeeAssetUSDC() (gas: 1117742)
[PASS] testDecreasePosition() (gas: 2494982)
[PASS] testDecreasePositionReduceOnly() (gas: 1519096)
[PASS] testIncreasePosition() (gas: 1069740)
[PASS] testRemoveMargin() (gas: 1099159)
[PASS] testRevertAddMargin() (gas: 1090203)
[PASS] testRevertClosePositionWithoutProfit() (gas: 1095736)
[PASS] testRevertRemoveMargin() (gas: 1124907)
Test result: ok. 12 passed; 0 failed; finished in 114.54ms

Running 11 tests for test/foundry/Processor.t.sol:ProcessorTest
[PASS] testCancelReduceOnlyOrder() (gas: 574428)
[PASS] testChainlinkDeviation() (gas: 737791)
[PASS] testExecuteLimitOrder() (gas: 1077137)
[PASS] testExecuteMarketOrder() (gas: 1831522)
[PASS] testExecuteStopOrder() (gas: 1076644)
[PASS] testLiquidatePosition() (gas: 1235012)
[PASS] testProtectedOrder() (gas: 645932)
[PASS] testSelfExecuteOrder() (gas: 938264)
[PASS] testSelfLiquidatePosition() (gas: 1190715)
[PASS] testSkipOrderStale() (gas: 707592)
[PASS] testSkipOrderTooEarly() (gas: 703074)
Test result: ok. 11 passed; 0 failed; finished in 374.15ms

Running 4 tests for test/foundry/Pool.t.sol:PoolTest
[PASS] testCreditTraderLoss() (gas: 3268902)
[PASS] testDebitTraderProfit() (gas: 3320660)
[PASS] testFuzzDepositAndWithdraw(uint256) (runs: 256, �: 142626, ~:

,! 142838)
[PASS] testFuzzDepositAndWithdrawUSDC(uint256) (runs: 256, �: 164379, ~:

,! 165874)

34

Test result: ok. 4 passed; 0 failed; finished in 388.16ms

Running 1 test for test/foundry/Staking.t.sol:StakingTest
[PASS] testFuzzStakeAndUnstake(uint256) (runs: 256, �: 163821, ~:

,! 163822)
Test result: ok. 1 passed; 0 failed; finished in 409.41ms

35

6 Conclusion
In this audit, we examined the design and implementation of CAP V4 contracts and discov-

ered several issues of varying severity. Cap team addressed 8 issues raised in the initial

report and implemented the necessary fixes, while classifying the rest as a risk with low-

probability of occurrence. Shellboxes’ auditors advised Cap Team to maintain a high level

of vigilance and to keep those findings inmind in order to avoid any future complications.

36

7 Scope Files

7.1 Audit

Files MD5Hash

contracts/stores/RoleStore.sol 0a324954878e91f51ac506934be09e9c

contracts/stores/RiskStore.sol 705faa2db8b2dee9974f699fc2df2978

contracts/stores/AssetStore.sol fb536f3e26ab34bf89f78e44b3c88281

contracts/stores/FundStore.sol e3708b8cb573fbb2558467bb1957ace3

contracts/stores/FundingStore.sol bd38b3fc0833bdc5dc3042a20329db2d

contracts/stores/DataStore.sol 359e13898de8c423d8a7a3d9f142d77c

contracts/stores/MarketStore.sol d9a7071d921ef78bedebaeec370a378a

contracts/stores/StakingStore.sol 9d3a268e7027d028befafdd592975aae

contracts/stores/PoolStore.sol c527d632aa857d8c2fad908a3fc24b3f

contracts/stores/OrderStore.sol 43dccffda93f2c64656307070bc9a499

contracts/stores/PositionStore.sol 5ae78c4e6523478628f124509f5502e3

contracts/api/Staking.sol 96a59cbd6c733c2baa53eb97634f458f

contracts/api/Orders.sol 3065e5fb1e1f90c789a55e9348acd5d3

contracts/api/Positions.sol 3f062788efae2e24e6834f11fde4e21b

contracts/api/Pool.sol c00ae3d9134d7a4026fe01f23bdf3124

contracts/api/Processor.sol adc05a585da53f666c3171328273bcfc

contracts/api/Funding.sol 4b17a68d0de303a92775cb9ef57626e7

37

contracts/utils/Roles.sol 0345a7568f52c44240742d7382c38bb1

contracts/utils/Governable.sol 19eff15601e393bb7024937b7a4c11ff

contracts/utils/Chainlink.sol 2e8029a1b108fb7a77ff73e8f974699e

7.2 Re-Audit

Files MD5Hash

contracts/utils/Chainlink.sol 2e8029a1b108fb7a77ff73e8f974699e

contracts/utils/Governable.sol f7344c65b08f8ad392a6a97425318ccc

contracts/utils/Roles.sol 5bad220d7fbd65cbc710c6ac9746de33

contracts/stores/AssetStore.sol 8777fdc137859c87196db12bc4c485fc

contracts/stores/DataStore.sol f30c824754a397ae885fbc7809f8c332

contracts/stores/FundingStore.sol b2171793a1c33760d57f8fbd8eebd31a

contracts/stores/FundStore.sol 81eba8e45f23de90081851f76fc19c13

contracts/stores/MarketStore.sol a01b7206ba3cb201aefd3f79de8ad510

contracts/stores/OrderStore.sol 1dd93706ed89a21cc35260b9e7e7888e

contracts/stores/PoolStore.sol cbf31be5b4e4b743b1f036b0c4934054

contracts/stores/PositionStore.sol 2e29f828c9574b0c411521b2191c33a8

contracts/stores/RiskStore.sol f08526becb4a19841baa5e96a80f6b32

contracts/stores/RoleStore.sol 61dedc8c242e4f3507205ad6886fb75e

contracts/stores/StakingStore.sol 8c25e559daa55fad64cafe302e37ff12

38

contracts/api/Funding.sol 4ae63f93472cb05a3f7e55bb886532b3

contracts/api/Orders.sol 5304f923cfb1450322fe1cd001afd255

contracts/api/Pool.sol 0287404b1a219e70de4dac71256f26c3

contracts/api/Positions.sol 415219f4ae748f47d0a36b57ee61b14c

contracts/api/Processor.sol 541ceeadb0511fe5c02370489fcefb88

contracts/api/Staking.sol cfcdf1d74e85ff0f1e43e1a68da9b2f2

39

8 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject that engagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

40

For a Contract Audit, contact us at contact@shellboxes.com

41

mailto:contact@shellboxes.com

	Introduction
	About Cap
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Missing expiry update in the TP and SL orders
	Stakers may lose their rewards due to rounding errors
	Fees can be bypassed
	Keeper's native tokens can get locked
	Excessive Privileges Granted to the Governance Account
	Blocked Contract Features Due to Missing Link Function Call
	Unchecked return value in granting roles
	Missing value verification
	Lack of Contract Verification for Granting the CONTRACT Role
	Lack of Two-Factor Verification for Updating gov Address
	Transaction Order Dependency & Potential Loss of Precision in Fee Calculation
	Potential Reentrancy Attack
	Floating Pragma

	Best Practices
	Removing Roles Without Members
	Use EnumerableSet.AddressSet for Asset List

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

