SHELLBOX

CAP V4

Smart Contract Security Audit

Prepared by ShellBoxes
Feb 7t", 2023 - Feb 13t", 2023
Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Cap

Version 1.0

Classification Public

Scope

Repository

Commit Hash

https://github.com/capofficial/contracts/

tree/audit

6b7945b2a6f4c8db1d101700afldb275ed94fd56

Re-Audit

Repository

Commit Hash

https://github.com/beskay/cap-contracts

e41c4e5755171a370826ee3d1ac2d2a0f5041311

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

https://github.com/capofficial/contracts/tree/audit%20
https://github.com/capofficial/contracts/tree/audit%20
https://github.com/beskay/cap-contracts
mailto:contact@shellboxes.com

Contents

1 Introduction 5
11 AboutCap e 5
1.2 Approach &Methodology, 5

121 RiskMethodology, 6

2 Findings Overview 7
YA SUMMaArY e e 7
2.2 KeyFindings 7

3 Finding Details 9
SHB.1 Missing expiry updateintheTPandSLorders 9
SHB.2 Stakers may lose theirrewards due toroundingerrors [l
SHB.3 Feescanbebypassed 13
SHB.4 Keeper's nativetokenscangetlocked 14
SHB.5 Excessive Privileges Granted to the Governance Account 16
SHB.6 Blocked Contract Features Due to Missing Link FunctionCall 17
SHB.7 Uncheckedreturnvalueingrantingroles 18
SHB.8 Missingvalueverification 20
SHB.9 Lack of Contract Verification for Granting the CONTRACTRole 23
SHB.10 Lack of Two-Factor Verification for UpdatinggovAddress 24
SHB.11 Transaction Order Dependency & Potential Loss of Precisionin Fee Calcu-

lation 25
SHB.12 Potential Reentrancy Attack 28
SHB.13 FloatingPragma 30

4 Best Practices 31
BP.1 Removing Roles WithoutMembers 31
BP.2 Use EnumerableSet.AddressSet for Assetlist 32

5 Tests
6 Conclusion

7 ScopeFiles

1.1 Audit . .
1.2 Re-Audit

8 Disclaimer

33

36

37

37
38

40

1 Introduction

Cap engaged ShellBoxestoconduct asecurity assessmentonthe CAP V4 beginningon Feb
7th, 2023 and ending Feb 13!, 2023. In this report, we detail our methodical approach to
evaluate potential security issues associated with the implementation of smart contracts,
by exposing possible semantic discrepancies between the smart contract code and design
document, and by recommending additional ideas to optimize the existing code. Our find-
ings indicate that the current version of smart contracts can still be enhanced further due
to the presence of many security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Cap

CAP is decentralized trading protocol designed to be powerful and easy to use.lt allows
you to trade crypto and forex perpetuals directly from your Web3 wallet, pool funds to
make realyield ,and stake CAP, the protocol’s native token.

Issuer Cap

Website https://cap.io

Type Solidity Smart Contract

Documentation https://docs.cap.io/intro/
whats-cap

Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

https://cap.io
https://docs.cap.io/intro/whats-cap
https://docs.cap.io/intro/whats-cap

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-

pact and is categorized into four levels, namely Critical, High, Medium, and Low.

Impact

High
Medium

Critical

Low

High Medium Low

Likelihood

2 Findings Overview

2.1 Summary

Thefollowingis a synopsis of our conclusions from our analysis of the CAP V4 implementa-
tion. During the first part of our audit, we examine the smart contract source code and run
the codebase via a static code analyzer. The objective here is to find known coding prob-
lems statically and then manually check (reject or confirm) issues highlighted by the tool.
Additionally, we check business logics, system processes, and DeFi-related components
manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include
critical-severity, 1 high-severity, 4 medium-severity, 7 low-severity vulnerabilities.

Vulnerabilities Severity | Status

SHB.1. Missing expiry update in the TP and SL orders CRITICAL | Fixed

SHB.2. Stakers may lose their rewards due to round- Fixed

ing errors

SHB.3. Fees can be bypassed Fixed

SHB.4. Keeper’s native tokens can get locked Fixed

SHB.5. Excessive Privileges Granted to the Gover- Acknowledged
nance Account

SHB.6. Blocked Contract Features Due to Missing Link Acknowledged
Function Call

SHB.7. Unchecked return value in granting roles Fixed

SHB.8. Missing value verification Fixed

SHB.9. Lack of Contract Verification for Granting the Acknowledged
CONTRACT Role

SHB.10. Lack of Two-Factor Verification for Updating Acknowledged
gov Address

SHB.11. Transaction Order Dependency & Potential
Loss of Precision in Fee Calculation

SHB.12. Potential Reentrancy Attack

Partially Fixed

SHB.13. Floating Pragma

Fixed

Fixed

3 Finding Details

SHB.1 Missing expiry updateinthe TP and SL orders

- Severity: CRITICAL - Likelihood: 3

. Status: Fixed - Impact:3

The submitOrder function is used to submit an order that will be executed later by the
Keeper, the expiry attribute is the timestamp at which the order expires. The function
accepts as arguments the tpPrice and the slPrice. If any of these arguments is different
from zero, the contract creates a separate stop/limit reduce-only order depending on the
arguments. However, to create these orders, the function makes use of the same
parameters that were used to create the initial order without updating the expiry attribute.
This represents a huge risk to the user’s position.

« The user submits a market order A at 3:10pm with an expiry set to 3:14pm, in addition
toaslPrice that will create an order to protect his position if the price drops to a limit.

- The market order gets executed at 3:13pm and the price decreases significantly and
passes the limit set in the SL order at 3:20pm.

- The SL order is expired by the time, therefore the Keepers will not be able to execute
the SL order.

Thisresultsin a hugerisk onthe user’s position where a price decrease can directly re-
sultin the position’s liquidation, bypassing the SL order protection. The same thing applies
on TP orders.

SHB.1.1: Orders.sol

128

1

N

9

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

152

// submit take profit order
if (tpPrice > 0) {

params.price = tpPrice;
params.orderType = 1;

params.isReduceOnly = true;

// Order is reduce-only so valueConsumed is always zero

(tpOrderId,) = _submitOrder(params);

// submit stop loss order

if (slPrice > 0) {

params.price = slPrice;
params.orderType = 2;

params.isReduceOnly = true;

// Order is reduce-only so valueConsumed is always zero

(slOrderId,) = _submitOrder(params);

// Update orders to cancel each other

if (tpOrderId > O && slOrderId > 0) {

orderStore.updateCancelOrderId(tpOrderId, slOrderId);
orderStore.updateCancelOrderId(sl0rderId, tpOrderId);

Consider resetting the expiry timestamp of the TP and SL orders when these options are

enabled.

10

The CAP team resolved the issue by setting the expiry to zero before creating the TP and SL
orders.

SHB.1.2: Orders.sol

s // reset order expiry for TP/SL orders

9 if (params.expiry > 0) params.expiry = O0;

SHB.2 Stakersmaylosetheirrewardsduetoroundingerrors

- Severity: [HIGH - Likelihood: 2

- Status: Fixed « Impact: 3

By staking CAP, the users receive a portion of protocol fees directly in ETH and USDC. The
feesaredistributedamongstakers based ontheir share of the staking pooland can be with-
drawn at any time. However, there is a possibility of a rounding error in the incrementRe-
wardPerToken. Ifthe pendingReward[asset] *UNITis lowerthanthe totalSupply the amount
variable will round to zero. This results in the stakers losing a part of their rewards since
pendingReward[asset] is set to zero afterwards and the rewardPerTokenSuml[asset] is not
incremented. There is also a precision loss even in the case where the amount is different
from zero, this will occur whenever the pendingReward[asset] * UNITis not divisible by the
totalSupply. The UNIT multiplier reduces the risk but it does not solve the issue. The prob-
ability of this issue depends on the collected fees by the protocol, and it increases by the
increase of the CAP tokens staked.

SHB.2.1: StakingStore.sol

e /// @notice Increments “asset’ reward per token

¢ /// @dev Only callable by other protocol contracts

1

9 function incrementRewardPerToken(address asset) external onlyContract {

70 if (totalSupply == 0) return;

7 uint256 amount = (pendingReward[asset] * UNIT) / totalSupply;
72 rewardPerTokenSum[asset] += amount;

73 pendingReward[asset] = 0;

%}

Consider using the following code to update the reward per token:

SHB.2.2: StakingStore.sol

/// @notice Increments ~asset” reward per token
/// @dev Only callable by other protocol contracts
function incrementRewardPerToken(address asset) external onlyContract {
if (totalSupply == 0) return;
uint256 nonWithdrawableFunds = (pendingReward[asset] * UNIT) %
— totalSupply;
uint256 amount = (pendingReward[asset] * UNIT - nonWithdrawableFunds
—) / totalSupply;
rewardPerTokenSum[asset] += amount;

pendingReward[asset] = nonWithdrawableFunds/UNIT;

The CAP team resolved the issue by using the following code:

SHB.2.3: StakingStore.sol

n function incrementRewardPerToken(address asset) external onlyContract {

7 if (totalSupply == 0) return;

73 uint256 amount = (pendingReward[asset] * UNIT) / totalSupply;

7% rewardPerTokenSum[asset] += amount;

75 // due to rounding errors a fraction of fees stays in the contract

12

7 // pendingReward is set to the amount which is left over, and will
— be distributed later

7 pendingReward[asset] -= (amount * totalSupply) / UNIT;
78 }

SHB.3 Feescanbebypassed

- Severity: [HIEBIEN - Likelihood: 1

. Status: Fixed « Impact: 3

The withdraw is utilized to withdraw funds from the pool, calling this function costs a with-
drawal fee that is capped at 5% of the amount to be withdrawn. However, the fees can be
bypassed by the caller by withdrawing his amount over multiple rounds of small amounts.
The amount to be withdrawn in each step should be less than 100 units to be able to cause a
roundingerrorinline 205tobe able to bypass the withdrawalfee. Itis worth mentioning that
thisis only possible if the gas fees are low, which is possible in a layer 2 chain (Arbitrum).

SHB.3.1: Pool.sol

9 function withdraw(address asset, uint256 amount) public {

190 require (amount > 0, ''amount');

191 require (assetStore.isSupported(asset), ''asset');
192

193 address user = msg.sender;

194

195 // check pool balance and clp supply

196 uint256 balance = poolStore.getBalance(asset);

197 uint256 clpSupply = poolStore.getClpSupply(asset);
198 require(balance > 0 && clpSupply > O, ''empty');

13

199

200 // check user balance

20 uint256 userBalance = poolStore.getUserBalance(asset, user);

202 if (amount > userBalance) amount = userBalance;

203

204 // calculate pool withdrawal fee

205 uint256 feeAmount = (amount * poolStore.getWithdrawalFee(asset)) /

<> BPS_DIVIDER;

206 uint256 amountMinusFee = amount - feeAmount;

Considerimplementing arestriction on the amount to be withdrawn and settinga minimum
value that will prevent any fee bypass caused by rounding errors.

The CAP team resolved the issue by verifying the amount argument to be greater than
BPS_DIVIDER.

SHB.3.2: Pool.sol

19 function withdraw(address asset, uint256 amount) public {
190 require (amount > BPS_DIVIDER, ''amount');

" require (assetStore.isSupported(asset), 'l!asset');

SHB.4 Keeper's native tokens can get locked

- Severity: [HIEBIENN - Likelihood:1

- Status: Fixed « Impact: 3

14

The executeOrdersis used by the Keeper to execute submitted orders, the Keeper needs to
pay a fee that will be transferred to pyth. However, the require statement makes sure that
the msg.value is greater than the fee. Therefore, if the keeper deposits a msg.value that is

higher than fee, the msg.value - fee will not be used, and the keeper will not be able to get it
back.

SHB.4.1: Processor.sol

122 function executelrders(

123 uint256[] calldata orderlds,

124 bytes[] calldata priceUpdateData

s) external payable nonReentrant ifNotPaused {

126 // updates price for all submitted price feeds

127 uint256 fee = pyth.getUpdateFee(priceUpdateData) ;
128 require(msg.value >= fee, '!fee');

129 pyth.updatePriceFeeds{value: fee}(priceUpdateData);

Consider verifying the msg.value to be equal to the fee, or to transfer back the msg.value -
fee.

The CAP team resolved the issue by refunding the diff to the sender.

SHB.4.2: Processor.sol

e // Refund msg.value excess, if any

w9 if (msg.value > fee) {

160 uint256 diff = msg.value - fee;
161 payable(msg.sender) .sendValue(diff) ;
162 }

15

SHB.5 Excessive Privileges Granted to the Governance

Account

. Severity: |IEBIN . Likelihood: 1

- Status: Acknowledged - Impact: 3

The Governable contract is designed to have the governance account have excessive priv-
ileges within the project business logic. The onlyGov modifier is used to restrict access to
certain functions and enforce that they can only be called by the governance account. How-
ever, this creates a centralized risk as the governance account has control over many crit-
ical functions such as setting assets in the AssetStore contract, setting funding intervals
in the FundingStore, updating markets in the MarketStore contract, setting the maxMar-
ketOrderTTL, maxTriggerOrderTTL and chainlinkCooldown using the OrderStore functions
and all functions within the storage contract DataStore. This concentration of power in a
single accountincreases the risk of a single point of failure and goes against the principles
of decentralization.

SHB.5.1: Governable.sol

12 constructor() {

13 _setGov(msg.sender) ;

16 }

15

16 /// @dev Reverts if called by any account other than gov
1 modifier onlyGov() {

18 require(msg.sender == gov, '!gov');

19 _

20 }

[

To mitigate the centralization risk, it is recommended to implement a more robust gover-
nance structure, such as a multi-sig or an on-chain voting mechanism. This would ensure
that there is no single point of failure and that the system is more resilient to attacks. Addi-
tionally, it may be a good idea to limit the scope of the onlyGov modifier to only those func-
tions that truly require governance-level access.

The CAP team acknowledged the risk stating that they are planning to set the gov to a multi-
sig.

SHB.6 Blocked Contract Features Due to Missing Link Func-
tion Call

- Severity: [HIEBIEN - Likelihood: 1

- Status: Acknowledged - Impact:3

The API Contracts, including Finding, Orders, Pool, Positions, Processor, and Staking, re-
quires communication with the store contracts. If the link function that initializes proto-
col contractsis not calledimmediately after contract deployment, the features of these API
Contracts will be blocked.

All link functions in the Finding.sol, Orders.sol, Pool.sol, Positions.sol, Processor.sol, and
Staking.sol contracts.

17

Consider calling the link function in the contract’'s constructor or implementing a fail-safe
mechanism that automatically gets the required store contract address from the DataS-
tore, ifit has not already been set through the link function.

The CAP team acknowledged the risk stating that they will be using a deployment script to
solve theissue.

SHB.7 Uncheckedreturnvalueingrantingroles

- Severity: [EOW] - Likelihood: 2

. Status: Fixed - Impact:1

The RoleStore contract makes use of the EnumerableSet contract from OpeenZepplin. The
add and remove functions return a boolean value that represents the status of the call. This
boolean value is not being checked in the contract. This makes the grantRole and revoke-
Role calls succeedin all cases, even if the add and remove fail.

SHB.7.1: RoleStore.sol

s /// @notice Grants “role” to “account’
2% /// @dev Only callable by governance

2 function grantRole(address account, bytes32 role) external onlyGov {

2 roles.add(role);

29 roleMembers[role] .add(account) ;

18

2 /// @notice Revokes “role™ from “account’
s /// @dev Only callable by governance
s function revokeRole(address account, bytes32 role) external onlyGov {

35 roleMembers[role] .remove (account) ;

%

Recommendation:

Consider wrapping the add and remove calls inside a require to make sure the transaction
status accurately represents the state changes.

Updates

The CAP team resolved the issue by wrapping the add and remove calls inside a require.

zn function grantRole(address account, bytes32 role) external onlyGov {

28 // add role if not already present

29 if (!roles.contains(role)) roles.add(role);
20

3 require(roleMembers[role] .add(account));

2 }

s function revokeRole(address account, bytes32 role) external onlyGov {

37 require(roleMembers[role] .remove(account));

38

39 // Remove role if it has no longer any members
40 if (roleMembers[role].length() == 0) {

a roles.remove(role) ;

4 }

s}

SHB.8 Missing value verification

- Severity: [EOW] - Likelihood: 2

- Status: Fixed « Impact:1

Certain functions lack a value safety check. The values of the arguments should be verified
to allow only the ones that comply with the contract’s logic.

« Inthe OrderStore contract, the setMaxMarketOrderTTL and setMaxTriggerOrderTTL
functions are called by the gov to set the maxMarketOrderTTL and
maxTriggerOrderTTL variables. By default, maxMarketOrderTTL is set to 5 minutes
and maxTriggerOrderTTL is set to 180 days. However, there is no verification to
ensure that the amount parameter passed to these functions is not equal to zero and
the maxMarketOrderTTL should be verified to be lower than the maxTriggerOrderTTL
argument. This can result in the submitOrder process being blocked, as the
_submitOrder function requires that ttl must be less than or equal to the value of
maxMarketOrderTTL() or maxTriggerOrderTTL(). The same requirement is present
inthe _executeOrder function in the Processor contract.

« In the OrderStore contract, the setChainlinkCooldown function takes the amount
parameter, which is the duration in seconds. However, there is no verification
performed to ensure that the amount parameter is not equal to zero, which can
resultinthe _executeOrder functioninthe Processor contract being blocked as if the
order was submitted less than chainlinkCooldown seconds ago, this function will
return false with an error message.

- In the FundingStore contract, there is no verification to ensure that the amount pa-
rameter passed to the setFundinglnterval function is not equal to zero. This can re-
sult in the updateFundingTracker function in the Funding contract failing as the cal-
culation lastUpdated + fundingStore.fundingInterval() may exceed the value of _now
if fundingIntervalis set to zero.

20

- The setFeeShare function from PoolStore and StakingStore contracts is missing a
limitation over the value of the fee.

- The same issue in the setRemoveMarginBuffer and setKeeperFeeShare functions
from PositionStore contract

» Thesameissue in the setPoolProfitLimit function in the RiskStore contract.

Files Affected:

64 function setMaxMarketOrderTTL(uint256 amount) external onlyGov {
65 maxMarketOrderTTL = amount;

) }

67

6 /// @notice Set duration until trigger orders expire

6 /// @dev Only callable by governance

70 /// @param amount Duration in seconds

m function setMaxTriggerOrderTTL(uint256 amount) external onlyGov {
72 maxTriggerOrderTTL = amount;

73 }

78 function setChainlinkCooldown(uint256 amount) external onlyGov {
79 chainlinkCooldown = amount;
80 }

23 function setFundingInterval(uint256 amount) external onlyGov {
2% fundingInterval = amount;

25 }

function setFeeShare(uint256 bps) external onlyGov {
feeShare = bps;

SHB.8.5: RiskStore.sol

s« function setPoolProfitLimit(address asset, uint256 bps) external onlyGov

57

— A{
require(bps <= MAX_POOL_PROFIT LIMIT, '!profit-limit');
poolProfitLimit[asset] = bps;

SHB.8.6: PositionStore.sol

48

49

50

51

52

53

54

55

56

57

58

function setRemoveMarginBuffer (uint256 bps) external onlyGov {

removeMarginBuffer = bps;

/// @notice Sets keeper fee share

/// @dev Only callable by governance

/// Q@param bps new “keeperFeeShare™ in bps

function setKeeperFeeShare(uint256 bps) external onlyGov {
require(bps <= MAX_KEEPER _FEE SHARE, '!keeper-fee-share');
keeperFeeShare = bps;

- It is recommended that the OrderStore contract be updated to include a check that

verifies that the amount parameter passed to the setMaxMarketOrderTTL and
setMaxTriggerOrderTTL functions is not equal to zero.Additionally, the
maxMarketOrderTTL should be verified to be lower than the maxTriggerOrderTTL

argument.

- Itisrecommended to add a verification to ensure that the amount parameter passed

to the setChainlinkCooldown function is not equal to zero, in order to avoid potential
issues with the _executeOrder function.

- Itisrecommendedtoaddaverificationcheckinthe setFundingintervalfunctiontoen-

sure that the amount parameteris not equal to zero.

22

The CAP team resolved the issue by verifying the values as recommended.

SHB.9 Lack of Contract Verification for Granting the

CONTRACT Role
- Severity: [EOW| - Likelihood: 1
- Status: Acknowledged - Impact: 2

In the Roles contract, the onlyContract modifier is used to ensure that the calling account
hasthe CONTRACT role.Inthe RoleStore contract, the grantRole functionis only accessible
by the gov, butthereis no condition to ensure that the account being granted the CONTRACT
roleisasmartcontract. This lack of verification can lead to security risks, as anon-contract
account could potentially be grantedthe CONTRACT role and have access to sensitive func-
tionality within the system.

SHB.9.1: RoleStore.sol

2 function grantRole(address account, bytes32 role) external onlyGov {
28 roles.add(role);

2 roleMembers [role] .add(account) ;

30 }

Consider adding aconditiontothe grantRole functioninthe RoleStore contract to verify that
the account being granted the CONTRACT role is a smart contract.

23

The CAP team acknowledged the risk stating that verifying the account to be a smart con-
tract will not reduce the risk.

SHB.10 Lack of Two-Factor Verification for Updating gov Ad-

dress
- Severity: [EOW] - Likelihood: 1
- Status: Acknowledged - Impact: 2

The setGov function is used by the governance in order to change the governance address,
there is a risk of the governance being set to address(0) or a wrong address by accident,
which can lead to a denial of service in all the functions protected by the onlyGov modifier.

SHB.10.1: Governable.sol

24 /// Onotice Sets a new governance address
s /// @dev Only callable by governance

2 function setGov(address _gov) external onlyGov {

2 _setGov(_gov);

Consider changing the gov address over two steps, where the first is setting up a pending-

Gov and the second call is done by the pendingGov where they can take the ownership and
be the new gov.

24

The CAP team acknowledged the risk as they decided to keep it a one step modification.

SHB.11 Transaction Order Dependency & Potential Loss of

Precisionin Fee Calculation

- Severity: [EOW| - Likelihood: 1

- Status: Partially Fixed - Impact: 2

The creditFee function in the Position contract calculates fees based on the
keeperFeeShare and feeShare set in the store contracts. However, these fees are
modifiable by the governance and there is an order dependency between the calculation of
the fee and the modification of the fee share, which may lead to an unexpected result. In
addition to that, the fee calculation can result in a precision loss due to the percentages
that are taken from the trading fees, which depend on the order size.

SHB.11.1: Positions.sol

466 function creditFee(

467 uint256 orderld,

468 address user,

469 address asset,

470 string memory market,
4n uint256 fee,

472 bool isLiquidation,
473 address keeper

414) public onlyContract {
475 if (fee == 0) return;

25

476
477 uint256 keeperFee;

418

419 if (keeper != address(0)) {

480 keeperFee = (fee * positionStore.keeperFeeShare()) /

— BPS_DIVIDER;

i +

482

483 // Calculate fees

484 uint256 netFee = fee - keeperFee;

485

486 uint256 feeToStaking = (netFee * stakingStore.feeShare()) /
— BPS_DIVIDER;

487 uint256 feeToPool = (netFee * poolStore.feeShare()) / BPS_DIVIDER
=

488 uint256 feeToTreasury = netFee - feeToStaking - feeToPool;

Consider improving the precision in the fees calculation, also adding the modifiable vari-
ables as arguments and verifying that they match the values stored in the contracts.

The CAPteamresolvedthe precision lossissue by multiplying the fee by 10'® toincrease the

precision.

SHB.11.2: Positions.sol

ws function creditFee(

467 uint256 orderld,

468 address user,

469 address asset,

470 string memory market,
4 uint256 fee,

472 bool isLiquidation,

26

473

474

475

476

471

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

address keeper
) public onlyContract {

if (fee == 0) return;

// multiply fee by UNIT (10718) to increase position
fee = fee * UNIT;

uint256 keeperFee;
if (keeper != address(0)) {

keeperFee = (fee * positionStore.keeperFeeShare()) / BPS_DIVIDER;

// Calculate fees
uint256 netFee = fee - keeperFee;
uint256 feeToStaking = (netFee * stakingStore.feeShare()) /
— BPS_DIVIDER;
uint256 feeToPool = (netFee * poolStore.feeShare()) / BPS_DIVIDER;
uint256 feeToTreasury = netFee - feeToStaking - feeToPool;

// Increment balances, transfer fees out
// Divide fee by UNIT to get original fee value back
poolStore.incrementBalance(asset, feeToPool / UNIT);
stakingStore.incrementPendingReward(asset, feeToStaking / UNIT);
fundStore.transferOut (asset, DS.getAddress('treasury'),

— feeToTreasury / UNIT);
fundStore.transferOut (asset, keeper, keeperFee / UNIT);

emit FeePaid(
orderId,
user,
asset,
market,
fee / UNIT, // paid by user
feeToPool / UNIT,

27

505 feeToStaking / UNIT,

506 feeToTreasury / UNIT,
507 keeperFee / UNIT,

508 isLiquidation

509);

so }

SHB.12 Potential Reentrancy Attack

- Severity: [EOW] - Likelihood: 1

. Status: Fixed - Impact: 2

The withdraw function allows users to withdraw their balance in a specific asset from the
pool store. The function calls the transferOut function to transfer the withdrawn funds to
the user’'s address. However, the implementation of the transferOut function is vulnerable
to re-entrancy attacks.

The problem with sendValue is that it is a low-level function that sends Ether directly
to the recipient without any protection from re-entrancy attacks. This can lead to potential
security risks and unauthorized funds transfer.

This issue is not limited to the withdraw function, but rather it is a widespread problem
that affects all functions that calls the transferOut function.

SHB.12.1: Pool.sol

215 // transfer funds out

26 fundStore.transferOut (asset, user, amountMinusFee);

SHB.12.2: FundStore.sol

28

3 function transferOut(address asset, address to, uint256 amount)

— external onlyContractOrGov {

32 if (amount == 0 to == address(0)) return;
33 if (asset == address(0)) {

34 payable(to) .sendValue (amount) ;

3 } else {

36 IERC20(asset) .safeTransfer(to, amount);
37 }

38 }

To mitigate this risk, it is recommended to use the nonReentrant modifier from the Reen-

trancyGuard by Openzeppelinin the transferOut function.

The CAP teamresolved the issue by implementing the use of the nonReentrant modifier.

SHB.12.3: FundStore.sol

3 function transferOut(address asset, address to, uint256 amount) external

— onlyContractOrGov {

32 if (amount == 0 to == address(0)) return;
3 if (asset == address(0)) {

34 payable(to) .sendValue (amount) ;

3 } else {

36 IERC20(asset) .safeTransfer(to, amount);
3 }

)

29

SHB.13 Floating Pragma

- Severity: [EOW - Likelihood: 1

- Status: Fixed « Impact:1

The contract makes use of the floating-point pragma 0.8.13. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionallybe deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

All Contracts

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma ver-
sion.

The CAP team resolved the issue by locking the pragma version to 0.8.17.

30

4 Best Practices

BP.1 Removing Roles Without Members

The revokeRole function in the RoleStore contract allows governance to remove a specific
role from a given account by removing the account from the roleMembers mapping for that
role. To maintain a clean and efficient role management system, it is a best practice to also
remove any roles that no longer have any members. This can be done by adding the follow-
ing code to the revokeRole function:

BP.1.1: RoleStore.sol

if (roleMembers[role].isEmpty()) {

roles.remove(role);

}

This will ensure that the getRoleCount function returns the correct number of roles in the
system and prevents the accumulation of unused roles.

BP.1.2: RoleStore.sol

3 function revokeRole(address account, bytes32 role) external onlyGov
— {

35 roleMembers[role] .remove (account) ;

3 }

31

BP.2 Use EnumerableSet.AddressSet for Asset
List

Inthe AssetStore contract, the assetlList array is used to keep track of all assets stored in
the system. To optimize the asset management, itis recommended to use the Enumerable-
Set.AddressSet data structure instead of the standard array. This will ensure that each as-
set is stored only once, avoiding duplication and improving performance. The set function
in the code can be modified to directly use the add function provided by the Enumerable-
Set.AddressSet.

BP.2.1: AssetStore.sol

16 address[] public assetlist;

” mapping(address => Asset) private assets;

18

19 constructor(RoleStore rs) Roles(rs) {}

20

2 /// @notice Set or update an asset

2 /// @dev Only callable by governance

2 /// @param asset Asset address, e.g. address(0) for ETH

2% /// @param assetInfo Struct containing minSize and chainlinkFeed

25 function set(address asset, Asset memory assetInfo) external onlyGov
— {

2 assets[asset] = assetInfo;

27 for (uint256 i = 0; i < assetList.length; i++) {

28 if (assetlList[i] == asset) return;

2) }

30 assetList.push(asset);

] }

kY.

5 Tests

Running 13 tests for test/foundry/Orders.t.sol:0rderTest
[PASS] testCancelOrder() (gas: 433232)

[PASS] testCancelOrderUSDC() (gas: 467372)

[PASS] testRefundMsgValueExcess() (gas: 535964)

[PASS] testReverTPBelowSLPrice() (gas: 497723)

[PASS] testRevertAboveMaxLeverage() (gas: 103200)

[PASS] testRevertBelowMinLeverage() (gas: 103512)

[PASS] testRevertBelowMinSize() (gas: 67814)

[PASS] testRevertExpiry() (gas: 340924)

[PASS] testRevertOrdersPaused() (gas: 73099)

[PASS] testRevertUnsupportedAsset() (gas: 84117)

[PASS] testRevertValue() (gas: 127636)

[PASS] testSubmitOrder() (gas: 504033)

[PASS] testSubmitOrderAssetUSDC() (gas: 549487)

Test result: ok. 13 passed; O ; finished in 72.66ms

Running 2 tests for test/foundry/Funding.t.sol:FundingTest
[PASS] testFundingTrackerLong() (gas: 1771017)

[PASS] testFundingTrackerShort() (gas: 1707408)

Test result: ok. 2 passed; O ; finished in 75.84ms

Running 4 tests for test/foundry/RiskStore.t.sol:RiskStoreTest
[PASS] testMax0I() (gas: 1089752)

[PASS] testMaxPoolDrawdown() (gas: 1505028)

[PASS] testProfitTracker() (gas: 1552667)

[PASS] testProfitTrackerNegative() (gas: 1576304)

Test result: ok. 4 passed; O ; finished in 86.15ms

Running 12 tests for test/foundry/Positions.t.sol:PositionsTest

[PASS] testAddMargin() (gas: 1092328)

[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

testAddMarginUSDC() (gas: 1131972)
testClosePositionWithoutProfit() (gas: 1110899)
testCreditFee() (gas: 1073156)
testCreditFeeAssetUSDC() (gas: 1117742)
testDecreasePosition() (gas: 2494982)
testDecreasePositionReduceOnly() (gas: 1519096)
testIncreasePosition() (gas: 1069740)
testRemoveMargin() (gas: 1099159)
testRevertAddMargin() (gas: 1090203)
testRevertClosePositionWithoutProfit() (gas: 1095736)
testRevertRemoveMargin() (gas: 1124907)

Test result: ok. 12 passed; O ; finished in 114.54ms

Running 11 tests for test/foundry/Processor.t.sol:ProcessorTest

[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

testCancelReduceOnlyOrder () (gas: 574428)
testChainlinkDeviation() (gas: 737791)
testExecuteLimitOrder () (gas: 1077137)
testExecuteMarketOrder() (gas: 1831522)
testExecuteStopOrder() (gas: 1076644)
testLiquidatePosition() (gas: 1235012)
testProtectedOrder () (gas: 645932)
testSelfExecuteOrder() (gas: 938264)
testSelfLiquidatePosition() (gas: 1190715)
testSkipOrderStale() (gas: 707592)
testSkipOrderTooEarly() (gas: 703074)

Test result: ok. 11 passed; O ; finished in 374.15ms

Running 4 tests for test/foundry/Pool.t.sol:PoolTest

[PASS]
[PASS]
[PASS]

testCreditTraderLoss() (gas: 3268902)
testDebitTraderProfit() (gas: 3320660)
testFuzzDepositAndWithdraw(uint256) (runs: 256, : 142626, ~:

— 142838)

[PASS]
;)

testFuzzDepositAndWithdrawUSDC(uint256) (runs: 256, : 164379, ~:
165874)

34

Test result: ok. 4 passed; O ; finished in 388.16ms

Running 1 test for test/foundry/Staking.t.sol:StakingTest

[PASS] testFuzzStakeAndUnstake(uint256) (runs: 256, : 163821,
— 163822)

Test result: ok. 1 passed; O ; finished in 409.41ms

35

6 Conclusion

In this audit, we examined the design and implementation of CAP V4 contracts and discov-
ered several issues of varying severity. Cap team addressed 8 issues raised in the initial
report and implemented the necessary fixes, while classifying the rest as a risk with low-
probability of occurrence. Shellboxes’ auditors advised Cap Team to maintain a high level
of vigilance and to keep those findings in mind in order to avoid any future complications.

36

7 ScopecFiles

7.1 Audit

Files

MD5 Hash

contracts/stores/RoleStore.sol

0a324954878e91f51ac506934be09%e9c

contracts/stores/RiskStore.sol

705faa2db8b2dee9974f699fc2df2978

contracts/stores/AssetStore.sol

fb536f3e26ab34bf89f78e44b3c88281

contracts/stores/FundStore.sol

e3708b8chb573fbb2558467bb1957ace3

contracts/stores/FundingStore.sol

bd38b3fc0833bdc5dc3042a20329db2d

contracts/stores/DataStore.sol

359e13898de8c423d8a7a3d9f142d77c

contracts/stores/MarketStore.sol

d9a7071d921ef78bedebaeec370a378a

contracts/stores/StakingStore.sol

9d3a268e7027d028befafdd592975aae

contracts/stores/PoolStore.sol

c527d632aa857d8c2fad908a3fc24b3f

contracts/stores/OrderStore.sol

43dccffda93f2c64656307070bc9a499

contracts/stores/PositionStore.sol

5ae78c4eb6523478628f124509f5502e3

contracts/api/Staking.sol

96a59cbd6c733c2baab3eb97634f458f

contracts/api/Orders.sol

3065e5fb1e1f90c789a55e9348acd5d3

contracts/api/Positions.sol

3f062788efae2e24e6834f11fdede2lb

contracts/api/Pool.sol

c00ae3d9134d7a4026fe01f23bdf3124

contracts/api/Processor.sol

adc05a585da53f666c3171328273bcfc

contracts/api/Funding.sol

4b17268d0de303a92775ch9ef57626e7

37

contracts/utils/Roles.sol

0345a7568f52c44240742d7382c38bb1

contracts/utils/Governable.sol

19eff15601e393bb7024937b7a4cliff

contracts/utils/Chainlink.sol

2e8029a1b108fb7a77ff73e8f97469%e

7.2 Re-Audit

Files

MD5 Hash

contracts/utils/Chainlink.sol

2e8029a1b108fb7a77ff73e8f97469%e

contracts/utils/Governable.sol

f71344c65b08f8ad392a6a97425318ccc

contracts/utils/Roles.sol

5bad220d7fbd65cbc710c6ac9746de33

contracts/stores/AssetStore.sol

8777fdc137859c87196db12bc4c485fc

contracts/stores/DataStore.sol

f30c824754a397ae885fbc7809f8¢c332

contracts/stores/FundingStore.sol

b2171793a1c33760d57f8fbd8eebd31a

contracts/stores/FundStore.sol

81ebaBe45f23de90081851f76fc19c13

contracts/stores/MarketStore.sol

a01b7206ba3cb201aefd3f79de8ad510

contracts/stores/OrderStore.sol

1dd93706ed89a21cc35260b9e7e7888e

contracts/stores/PoolStore.sol

cbf31be5b4e4b743b1f036b0c4934054

contracts/stores/PositionStore.sol

2e29f828c9574b0c411521b2191c33a8

contracts/stores/RiskStore.sol

f08526becb4al9841baa5e96a80f6b32

contracts/stores/RoleStore.sol

61dedc8c242e4f3507205ad6886fb75e

contracts/stores/StakingStore.sol

8c25e559daab5fadb4cafe302e37ff12

38

contracts/api/Funding.sol

4aeb3f93472cb05a3f7e55bb886532b3

contracts/api/Orders.sol

5304f923cfb1450322felcd001afd255

contracts/api/Pool.sol

0287404b1a219e70de4dac71256f26c3

contracts/api/Positions.sol

415219f4ae748f47d0a36b57eeblblac

contracts/api/Processor.sol

541ceeadb0511fe5c02370489fcefb88

contracts/api/Staking.sol

cfcdfld74e85ff0fle43elabé8da?b2f2

39

8 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

40

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

41

mailto:contact@shellboxes.com

	Introduction
	About Cap
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Missing expiry update in the TP and SL orders
	Stakers may lose their rewards due to rounding errors
	Fees can be bypassed
	Keeper's native tokens can get locked
	Excessive Privileges Granted to the Governance Account
	Blocked Contract Features Due to Missing Link Function Call
	Unchecked return value in granting roles
	Missing value verification
	Lack of Contract Verification for Granting the CONTRACT Role
	Lack of Two-Factor Verification for Updating gov Address
	Transaction Order Dependency & Potential Loss of Precision in Fee Calculation
	Potential Reentrancy Attack
	Floating Pragma

	Best Practices
	Removing Roles Without Members
	Use EnumerableSet.AddressSet for Asset List

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

