
Secur3
Smart Contract Security Audit

Prepared by ShellBoxes

May 26th, 2022 -May 30th, 2022

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Secur3

Version 1.0

Classification Public

Scope

TheSecur3 Contract in the Secur3 Repository

Repo Commit Hash

https://github.com/lowkeycoders/secur3 545b1099afa2d5b2a5b410c398dc022daa452d18

https://github.com/lowkeycoders/secur3/
tree/audited

0e95bbfde27fd9585baafecd8014d967dfe9474e

Files MD5Hash

contracts/Ownable.sol dd71db3f99a7946125f4f4b70839ff68

contracts/TwoFactor.sol 86b10451ecf839b21549582d21466d52

contracts/TwoFactorFactory.sol b9fd292210b5ff95e77373121d0e5e16

2

https://github.com/lowkeycoders/secur3
https://github.com/lowkeycoders/secur3/tree/audited
https://github.com/lowkeycoders/secur3/tree/audited

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

3

mailto:contact@shellboxes.com

Contents
1 Introduction 5

1.1 About Secur3 . 5

1.2 Approach&Methodology . 5

1.2.1 RiskMethodology . 6

2 FindingsOverview 7

2.1 Summary . 7

2.2 Key Findings . 7

3 FindingDetails 8

A TwoFactor.sol . 8

A.1 Possible Front-Run On The Withdraw Process if private keys have

already been compromised [MEDIUM] 8

A.2 Missing Transfer Verification [MEDIUM] 9

A.3 Floating Pragma [LOW] . 11

B TwoFactorFactory.sol . 11

B.1 MissingAddress Verification [LOW] 11

B.2 Floating Pragma [LOW] . 12

4 Best Practices 14

BP.1 Unnecessary Initializations . 14

5 Static Analysis (Slither) 15

6 Conclusion 23

4

1 Introduction
Secur3 engagedShellBoxes to conduct a security assessment on theSecur3 beginning on

May 26th, 2022 and endingMay 30th, 2022. In this report, we detail ourmethodical approach

to evaluate potential security issues associated with the implementation of smart

contracts, by exposing possible semantic discrepancies between the smart contract code

and design document, and by recommending additional ideas to optimize the existing code.

Our findings indicate that the current version of smart contracts can still be enhanced

further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Secur3

Secur3 is the world’s first decentralised 2FA solution for your self custody wallets. It

provides an added authentication layer for the crypto &NFT assets.

Issuer Secur3

Website www.secur3.xyz

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

5

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment

technique that considers both the LIKELIHOOD and IMPACT of a security incident. This

framework is effective at conveying the features and consequences of technological

vulnerabilities.

Its quantitative paradigm enables repeatable and precise measurement, while also

revealing the underlying susceptibility characteristics thatwere used to calculate theRisk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5

indicating the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which

correspond to high, medium, and low, respectively. Severity is determined by probability

and impact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6

2 FindingsOverview
2.1 Summary

The following is a synopsis of our conclusions from our analysis of the

Secur3 implementation. During the first part of our audit, we examine the smart contract

source code and run the codebase via a static code analyzer. The objective here is to find

known coding problems statically and then manually check (reject or confirm) issues

highlighted by the tool. Additionally, we check business logics, system processes, and

DeFi-related componentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 2

medium-severity, 3 low-severity vulnerabilities.

Vulnerabilities Severity Status

Possible Front-Run On The Withdraw Process if private keys

have already been compromised

MEDIUM Mitigated

Missing Transfer Verification MEDIUM Fixed

Floating Pragma LOW Fixed

MissingAddress Verification LOW Fixed

Floating Pragma LOW Fixed

7

3 FindingDetails

A TwoFactor.sol

A.1 Possible Front-Run On The Withdraw Process if private

keys have already been compromised [MEDIUM]

Description:

The contract provides a vault to the users where they can send and withdraw assets from

it using a One-Time Password. However, this mechanism does not provide an extra layer

of security due to the transparency of the blockchain, anyone can front-run the transaction

and extract the password before it gets changed.

Code:

Listing 1: TwoFactor.sol

97 modifier passwordMatchAndNewUpdated(
98 string memory _oldSignedPassword,
99 bytes32 _newEncryptedPassword
100) {
101 //TODO: string _oldPassword = "Fetch from signed of only owner";
102 bytes32 _passwordSent = keccak256(abi.encodePacked(_oldSignedPassword));
103 require(
104 _passwordSent != _newEncryptedPassword,
105 "New password should be different"
106);
107 require(_passwordSent == encryptedPassword, "Passwords don't match");
108 _;
109 }

8

Risk Level:

Likelihood – 4

Impact - 2

Recommendation:

Consider removing the One-Time Password implementation, as it does not provide any

additional value to the contract.

Status -Mitigated

The Secur3 team has mitigated the risk by adding methods that allow the user to transfer

his assets to a backupwallet in case the user forgot his password.

A.2 Missing Transfer Verification [MEDIUM]

Description:

The ERC20 standard token implementation functions return the transaction status as a

Boolean. It is a good practice to check for the return status of the function call to ensure

that the transaction was successful. It is the developer’s responsibility to enclose these

function calls with require() to ensure that when the intended ERC20 function call returns

false, the caller transaction also fails. However, it is mostly missed by developers when

they carry out checks in effect, the transaction would always succeed, even if the token

transfer did not.

Code:

Listing 2: TwoFactor.sol

147 function _transferERC721FundsToAddress(
148 address toAddress,
149 address tokenAddress,
150 uint256 tokenId
151) private {

9

152 IERC721(tokenAddress).transferFrom(address(this), toAddress, tokenId);
153 }

Listing 3: TwoFactor.sol

175 function _transferERC20FundsToAddress(
176 address toAddress,
177 address[] memory tokenAddressList
178) private {
179 require(tokenAddressList.length != 0, "Assets list cannot be empty");
180 for (uint256 i = 0; i < tokenAddressList.length; i++) {
181 uint256 balance = IERC20(tokenAddressList[i]).balanceOf(
182 address(this)
183);
184 if (balance > 0) {
185 IERC20(tokenAddressList[i]).transfer(toAddress, balance);
186 }
187 }
188 }

Recommendation:

It is recommended to use the safeTransfer function from the safeERC20 implementation or

put the transfer call inside an assert or require to verify that the transfer has passed

successfully.

Status - Fixed

TheSecur3 teamhas fixed the issuebyusing the safeTransfer function from thesafeERC20

implementation.

10

A.3 Floating Pragma [LOW]

Description:

The contract makes use of the floating-point pragma 0.8.0. Contracts should be deployed

using the same compiler version. Locking the pragma helps ensure that contracts are not

unintentionally deployed using another pragma, such as an obsolete version, that may

introduce issues in the contract system.

Code:

Listing 4: TwoFactor.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.0;

Recommendation:

Consider locking the pragma version. It is advised that the floating pragma should not be

used inproduction. Both truffle-config.js andhardhat.config.js support locking thepragma

version.

Status - Fixed

TheSecur3 teamhas fixed the issue by locking the pragma version to 0.8.7.

B TwoFactorFactory.sol

B.1 MissingAddress Verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type argument should

include a zero-address test, otherwise, some of the contract’s functionality may become

inaccessible. The _firstChildAddress argument should be verified to be different from the

address(0).

11

Code:

Listing 5: TwoFactorFactory.sol

60 constructor(address _firstChildAddress) {
61 firstChildAddress = _firstChildAddress;
62 }

Recommendation:

It is recommendedtoverify that theaddressesprovided in theargumentsaredifferent from

the address(0).

Status - Fixed

TheSecur3teamhasfixedthe issuebyaddingarequirestatement tomakesuretheaddress

provided in the argument is different from the address(0).

B.2 Floating Pragma [LOW]

Description:

The contract makes use of the floating-point pragma 0.8.0. Contracts should be deployed

using the same compiler version. Locking the pragma helps ensure that contracts are not

unintentionally deployed using another pragma, such as an obsolete version, that may

introduce issues in the contract system.

Code:

Listing 6: TwoFactorFactory.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.0;

12

Recommendation:

Consider locking the pragma version. It is advised that the floating pragma should not be

used inproduction. Both truffle-config.js andhardhat.config.js support locking thepragma

version.

Status - Fixed

TheSecur3 teamhas fixed the issue by locking the pragma version to 0.8.7.

13

4 Best Practices

BP.1 Unnecessary Initializations

Description:

When a variable is declared in solidity, it gets initialized with its type’s default value. Thus,

there is no need to initialize a variablewith the default value.

Code:

Listing 7: TwoFactor.sol

15 bool private isInitialized = false;

14

5 Static Analysis (Slither)
Description:

ShellBoxes expanded the coverage of the specific contract areas using automated testing

methodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be

used to test mathematical relationships between Solidity instances statically and

variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs

throughout the entire codebase.

Results:

TwoFactor._transferNativeFundsToAddress(address) (TwoFactor.sol#190-195) se
nds eth to arbitrary user

Dangerous calls:
- toAddress.transfer(balance) (TwoFactor.sol#193)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#fu
nctions-that-send-ether-to-arbitrary-destinations

TwoFactor._transferERC20FundsToAddress(address,address[]) (TwoFactor.sol#17
5-188) ignores return value by IERC20(tokenAddressList[i]).transfer(toAddre
ss,balance) (TwoFactor.sol#185)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#un
checked-transfer

TwoFactor._transferERC20FundsToAddress(address,address[]) (TwoFactor.sol#17
5-188) has external calls inside a loop: balance = IERC20(tokenAddressList[
i]).balanceOf(address(this)) (TwoFactor.sol#181-183)
TwoFactor._transferERC20FundsToAddress(address,address[]) (TwoFactor.sol#17
5-188) has external calls inside a loop: IERC20(tokenAddressList[i]).transf
er(toAddress,balance) (TwoFactor.sol#185)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation/#c
alls-inside-a-loop

15

TwoFactor.init(address,bytes32) (TwoFactor.sol#17-22) compares to a boolean
constant:

-require(bool,string)(isInitialized == false,Contract already initi
alized) (TwoFactor.sol#18)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#bo
olean-equality

Context._msgData() (../../openzeppelin-contracts/contracts/utils/Context.so
l#20-22) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#de
ad-code

Pragma version^0.8.0 (Ownable.sol#2) necessitates a version too recent to b
e trusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (TwoFactor.sol#2) necessitates a version too recent to
be trusted. Consider deploying with 0.6.12/0.7.6

Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/token/ERC1155/
IERC1155.sol#3) necessitates a version too recent to be trusted. Consider d
eploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/token/ERC1155/
IERC1155Receiver.sol#3) necessitates a version too recent to be trusted. Co
nsider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/token/ERC1155/
utils/ERC1155Holder.sol#3) necessitates a version too recent to be trusted.
Consider deploying with 0.6.12/0.7.6

Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/token/ERC1155/
utils/ERC1155Receiver.sol#3) necessitates a version too recent to be truste
d. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/token/ERC20/IE
RC20.sol#3) necessitates a version too recent to be trusted. Consider deplo
ying with 0.6.12/0.7.6
Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/token/ERC721/I
ERC721.sol#3) necessitates a version too recent to be trusted. Consider dep

16

loying with 0.6.12/0.7.6
Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/token/ERC721/I
ERC721Receiver.sol#3) necessitates a version too recent to be trusted. Cons
ider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/token/ERC721/u
tils/ERC721Holder.sol#3) necessitates a version too recent to be trusted. C
onsider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/utils/Context.
sol#3) necessitates a version too recent to be trusted. Consider deploying
with 0.6.12/0.7.6
Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/utils/introspe
ction/ERC165.sol#3) necessitates a version too recent to be trusted. Consid
er deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/utils/introspe
ction/IERC165.sol#3) necessitates a version too recent to be trusted. Consi
der deploying with 0.6.12/0.7.6
solc-0.8.6 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#in
correct-versions-of-solidity

Parameter TwoFactor.init(address,bytes32)._sender (TwoFactor.sol#17) is not
in mixedCase

Parameter TwoFactor.init(address,bytes32)._encryptedPassword (TwoFactor.sol
#17) is not in mixedCase
Parameter TwoFactor.transferERC20AssetsToWallet(string,bytes32,address[])._
oldSignedPassword (TwoFactor.sol#28) is not in mixedCase
Parameter TwoFactor.transferERC20AssetsToWallet(string,bytes32,address[])._
newEncryptedPassword (TwoFactor.sol#29) is not in mixedCase
Parameter TwoFactor.transferERC721AssetsToWallet(string,bytes32,address,uin
t256)._oldSignedPassword (TwoFactor.sol#42) is not in mixedCase
Parameter TwoFactor.transferERC721AssetsToWallet(string,bytes32,address,uin
t256)._newEncryptedPassword (TwoFactor.sol#43) is not in mixedCase
Parameter TwoFactor.transferERC1155AssetsToWallet(string,bytes32,address,ui
nt256)._oldSignedPassword (TwoFactor.sol#57) is not in mixedCase

17

Parameter TwoFactor.transferERC1155AssetsToWallet(string,bytes32,address,ui
nt256)._newEncryptedPassword (TwoFactor.sol#58) is not in mixedCase
Parameter TwoFactor.transferNativeAssetToWallet(string,bytes32)._oldSignedP
assword (TwoFactor.sol#72) is not in mixedCase
Parameter TwoFactor.transferNativeAssetToWallet(string,bytes32)._newEncrypt
edPassword (TwoFactor.sol#73) is not in mixedCase
Parameter TwoFactor.updatePassword(string,bytes32)._oldSignedPassword (TwoF
actor.sol#86) is not in mixedCase
Parameter TwoFactor.updatePassword(string,bytes32)._newEncryptedPassword (T
woFactor.sol#87) is not in mixedCase
Variable TwoFactor.DAO_MULTI_SIG (TwoFactor.sol#14) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#co
nformance-to-solidity-naming-conventions

TwoFactor.DAO_MULTI_SIG (TwoFactor.sol#14) is never used in TwoFactor (TwoF
actor.sol#12-196)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#un
used-state-variable

TwoFactor.DAO_MULTI_SIG (TwoFactor.sol#14) should be constant
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#st
ate-variables-that-could-be-declared-constant

onERC1155Received(address,address,uint256,uint256,bytes) should be declared
external:

- ERC1155Holder.onERC1155Received(address,address,uint256,uint256,b
ytes) (../../openzeppelin-contracts/contracts/token/ERC1155/utils/ERC1155Ho
lder.sol#11-19)
onERC1155BatchReceived(address,address,uint256[],uint256[],bytes) should be
declared external:

- ERC1155Holder.onERC1155BatchReceived(address,address,uint256[],ui
nt256[],bytes) (../../openzeppelin-contracts/contracts/token/ERC1155/utils/
ERC1155Holder.sol#21-29)
onERC721Received(address,address,uint256,bytes) should be declared external

18

:
- ERC721Holder.onERC721Received(address,address,uint256,bytes) (../

../openzeppelin-contracts/contracts/token/ERC721/utils/ERC721Holder.sol#19-
26)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#pu
blic-function-that-could-be-declared-external

Pragma version>=0.4.22<0.9.0 (Migrations.sol#2) is too complex
solc-0.8.6 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#in
correct-versions-of-solidity

Variable Migrations.last_completed_migration (Migrations.sol#6) is not in m
ixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#co
nformance-to-solidity-naming-conventions

setCompleted(uint256) should be declared external:
- Migrations.setCompleted(uint256) (Migrations.sol#16-18)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#pu
blic-function-that-could-be-declared-external

Context._msgData() (../../openzeppelin-contracts/contracts/utils/Context.so
l#20-22) is never used and should be removed
Context._msgSender() (../../openzeppelin-contracts/contracts/utils/Context.
sol#16-18) is never used and should be removed
Ownable._transferOwnership(address) (Ownable.sol#45-49) is never used and s
hould be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#de
ad-code

Pragma version^0.8.0 (Ownable.sol#2) necessitates a version too recent to b
e trusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../../openzeppelin-contracts/contracts/utils/Context.

19

sol#3) necessitates a version too recent to be trusted. Consider deploying
with 0.6.12/0.7.6
solc-0.8.6 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#in
correct-versions-of-solidity

Reentrancy in TwoFactorFactory.createTwoFactor(bytes32) (TwoFactorFactory.s
ol#64-73):

External calls:
- ITwoFactor(clone).init(msg.sender,_encryptedPassword) (TwoFactorF

actory.sol#70)
State variables written after the call(s):
- eoaToVaultMap[msg.sender] = clone (TwoFactorFactory.sol#71)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#re
entrancy-vulnerabilities-1

TwoFactorFactory.constructor(address)._firstChildAddress (TwoFactorFactory.
sol#60) lacks a zero-check on :

- firstChildAddress = _firstChildAddress (TwoFactorFactory.
sol#61)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#mi
ssing-zero-address-validation

Reentrancy in TwoFactorFactory.createTwoFactor(bytes32) (TwoFactorFactory.s
ol#64-73):

External calls:
- ITwoFactor(clone).init(msg.sender,_encryptedPassword) (TwoFactorF

actory.sol#70)
Event emitted after the call(s):
- TwoFactorCreated(clone) (TwoFactorFactory.sol#72)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#re
entrancy-vulnerabilities-3

CloneFactory.createClone(address) (TwoFactorFactory.sol#5-20) uses assembly

20

- INLINE ASM (TwoFactorFactory.sol#7-19)
CloneFactory.isClone(address,address) (TwoFactorFactory.sol#22-47) uses ass
embly

- INLINE ASM (TwoFactorFactory.sol#28-46)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#as
sembly-usage

CloneFactory.isClone(address,address) (TwoFactorFactory.sol#22-47) is never
used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#de
ad-code

Pragma version^0.8.0 (TwoFactorFactory.sol#2) necessitates a version too re
cent to be trusted. Consider deploying with 0.6.12/0.7.6
solc-0.8.6 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#in
correct-versions-of-solidity

Parameter TwoFactorFactory.createTwoFactor(bytes32)._encryptedPassword (Two
FactorFactory.sol#64) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#co
nformance-to-solidity-naming-conventions

CloneFactory.createClone(address) (TwoFactorFactory.sol#5-20) uses literals
with too many digits:

- mstore(uint256,uint256)(clone_createClone_asm_0,0x3d602d80600a3d3
981f3363d3d373d3d3d363d73000000000000000000000000) (TwoFactorFactory.sol#9-
12)
CloneFactory.createClone(address) (TwoFactorFactory.sol#5-20) uses literals
with too many digits:

- mstore(uint256,uint256)(clone_createClone_asm_0 + 0x28,0x5af43d82
803e903d91602b57fd5bf30000000000000000000000000000000000) (TwoFactorFactory
.sol#14-17)
CloneFactory.isClone(address,address) (TwoFactorFactory.sol#22-47) uses lit

21

erals with too many digits:
- mstore(uint256,uint256)(clone_isClone_asm_0,0x363d3d373d3d3d363d7

300) (TwoFactorFactory.sol#30-33)
CloneFactory.isClone(address,address) (TwoFactorFactory.sol#22-47) uses lit
erals with too many digits:

- mstore(uint256,uint256)(clone_isClone_asm_0 + 0x1e,0x5af43d82803e
903d91602b57fd5bf30000000000000000000000000000000000) (TwoFactorFactory.sol
#35-38)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#to
o-many-digits

createTwoFactor(bytes32) should be declared external:
- TwoFactorFactory.createTwoFactor(bytes32) (TwoFactorFactory.sol#6

4-73)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#pu
blic-function-that-could-be-declared-external
. analyzed (19 contracts with 75 detectors), 62 result(s) found

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

22

6 Conclusion
In this audit, we examined the design and implementation of Secur3 contract and

discovered several issues of varying severity. Secur3 team addressed all the issues

raised in the initial report and implemented the necessary fixes.

The present code base iswell-structured and ready for themainnet.

23

For a Contract Audit, contact us at contact@shellboxes.com

24

mailto:contact@shellboxes.com

	Introduction
	About Secur3
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	TwoFactor.sol
	Possible Front-Run On The Withdraw Process if private keys have already been compromised [MEDIUM]
	Missing Transfer Verification [MEDIUM]
	Floating Pragma [LOW]

	TwoFactorFactory.sol
	Missing Address Verification [LOW]
	Floating Pragma [LOW]

	Best Practices
	Unnecessary Initializations

	Static Analysis (Slither)
	Conclusion

