SHELLBOXE

Block-Rank

Smart Contract Security Audit

Prepared by ShellBoxes
May 18", 2022 - July 4'", 2022
Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client BlockRank Ltd
Version 1.0
Classification Public
Scope

The Block-Rank Contractin the Block-Rank Repository

Repo

Commit Hash

https://github.com/blockrank/

reach-contracts

2a40c75098a376c30b50f53ae72d7a99136c574f

Files

MD5 Hash

blockrank/delegated-airdrop.rsh

2966f75dc435b8bf8e8c22b734a58293

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

https://github.com/blockrank/reach-contracts
https://github.com/blockrank/reach-contracts
mailto:contact@shellboxes.com

Contents

1 Introduction 4
11 Disclaimer 4
1.2 AboutBlockRankLtd 4
1.3 Approach &Methodology 4

1.31 RiskMethodology, 5

2 Findings Overview
21 SUMMArY . . . e
22 KeyFindings. e

3 Finding Details 7
A delegated-airdrop.rsh 7

Al CentralizationRisk|[HIGH) 7
A2 The Admin And The Delegate Can Steal In The pay AP! || IEBISNN 8
A3 Redundantchecks- 10
A.4 The Architecture Used Is Not Secure By Design [UNDETERMINED] . 1
B lambda/src/index.ts 12
B.1 The Mnemomic Of The Payout Manager Is Exposed- S Vi

B.2 Missmatch Between The Documentation And L
Code [INFORMATIONAL] 13

4 Best Practices 14
BP.1 Errors While RunningTheTests 14

5 Tests 14

6 Conclusion 16

7 Disclaimer 17

1 Introduction

BlockRank Ltd engaged ShellBoxes to conduct a security assessment on the
Block-Rank beginning on May 18", 2022 and ending July 4'", 2022. In this report, we detail
our methodical approach to evaluate potential security issues associated with the
implementation of smart contracts, by exposing possible semantic discrepancies
between the smart contract code and design document, and by recommending additional
ideas to optimize the existing code. Our findings indicate that the current version of smart
contracts can still be enhanced further due to the presence of many security and
performance concerns.
This document summarizes the findings of our audit.

1.1 Disclaimer

The Block-rankprojecthasbeenterminated.Hence, the followingprojectdidntundergo our
re-audit process.The report herewith contains the findings and results of the initial audit
reportasis.

1.2 About BlockRank Ltd

Block-rank mission is to develop a new layer of accountability in anonymous web3
ecosystems. Transaction network security, airdrop management, and more.

Issuer BlockRank Ltd

Website https://block-rank.com
Type Reach Smart Contract
Audit Method Whitebox

1.3 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s

4

scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

1.3.1 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pactandis categorizedinto four levels, namely Critical, High, Medium, and Low.

o High Critical
S Medium
S
— Low
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the Block-Rank imple-

mentation. During the first part of our audit, we examine the smart contract source code

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nents manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 1

high-severity, 2 medium-severity, 1 low-severity,

undetermined-severity vulnerabilities.

informational-severity, 1

Vulnerabilities

Severity

Centralization Risk

The Admin And The Delegate Can Steal In The pay API

The Mnemomic Of The Payout Manager Is Exposed

Redundant checks

Missmatch Between The Documentation And The Code

INFORMATIONAL

Status

Not Fixed
Not Fixed
Not Fixed
Not Fixed
Not Fixed

The Architecture Used Is Not Secure By Design

UNDETERMINED

Not Fixed

3 Finding Details

A delegated-airdrop.rsh

A.1 Centralization Risk-

Theadminandthe delegate account can send anyamountfromthe contractto anyuser. This

represents a significant centralization risk due to the amount of power that these entities

have. This can be comprehensible knowing that the admin will fund the contract, however

from a user perspective, he should trust the admin.

Listing 1: delegated-airdrop.rsh

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

.api(
adminAPI.pay,
(who, howMuch) => {

const authorized = this == Delegate || this == Admin;
check(authorized, UNAUTHORIZED) ;
check(

who !== Delegate && who !== Admin,

"Stealing is naughty and disallowed"
¥
check(howMuch > 0 && howMuch <= maxPayout, "Invalid user allocation");
check (howMuch <= balance(token), LOW_CTC_BALANCE);

(.,) => [0, [0, token]],
(whom, howMuch, notify) => {

const authorized = this == Delegate || this == Admin;

check (authorized, UNAUTHORIZED) ;

check(howMuch > 0 && howMuch <= maxPayout, "Invalid user allocation");
check (howMuch <= balance(token), LOW_CTC_ BALANCE);

159

160 transfer (howMuch, token).to(whom) ;

161 events.payout (whom, howMuch) ;
162 notify(null);
163
164 return [keepGoing];
165 }
66)
Likelihood - 3
Impact-5

This issue requires a change in the architecture to be remediated, the suggested architec-
tureis stated intheissue A4.

- Not Fixed

A2 The Admin And The Delegate Can Steal In The pay

P IS

The pay API contains a restriction that is supposed to prevent the admin and the delegate
from withdrawing the airdrop. However, the admin/delegate can withdraw funds to a dif-
ferent wallet, therefore bypassing this restriction.

Listing 2: delegated-airdrop.rsh

141 .api(

142 adminAPI.pay,
143 (who, howMuch) => {

164 const authorized = this == Delegate || this == Admin;

145 check (authorized, UNAUTHORIZED) ;

m check(

147 who !== Delegate && who !== Admin,

148 "Stealing is naughty and disallowed"

149 K

150 check(howMuch > 0 && howMuch <= maxPayout, "Invalid user allocation");
151 check(howMuch <= balance(token), LOW_CTC_BALANCE);

152 },

153 (.,) => [0, [0, token]],
154 (whom, howMuch, notify) => {

155 const authorized = this == Delegate || this == Admin;
156 check(authorized, UNAUTHORIZED) ;

157 check(howMuch > 0 && howMuch <= maxPayout, "Invalid user allocation");
158 check (howMuch <= balance(token), LOW_CTC_BALANCE);

159

160 transfer (howMuch, token).to(whom) ;

11 events.payout (whom, howMuch) ;

162 notify(null);

163

164 return [keepGoing];

s}

66) ;

Likelihood -2

Impact - 4

This issue requires a change in the architecture to be remediated, the suggested architec-
ture is stated in the issue A4.

- Not Fixed

A.3 Redundant checks-

The local part of the fund API contains several checks to prevent integer overflows. How-
ever, the checks that exist in L118, L121 and L123 are redundant and can be reduced to one
check.

Listing 3: delegated-airdrop.rsh

m .api(
n2 adminAPI.fund,
13 (amt) => {

i check(this == Admin, UNAUTHORIZED);

115

116 const bal = balance(token);

7 check(bal < minBalance, "Contract balance exceeds minimum");
18 check(bal < Ulnt.max - amt, BALANCE LIMIT);

119

120 const newBal = bal + amt;

121 check(newBal <= UInt.max, BALANCE LIMIT);

122 check(amt > O &% amt >= minBalance, MIN BALANCE);
123 check(amt < UInt.max - bal, "Invalid amount");

124 },

Likelihood - 2

Impact - 2

10

Itisrecommendedtoremovetheredundantchecks andleave onlyonethat preventsinteger

overflows.

- Not Fixed

A4 The Architecture Used 1Is Not Secure By
Design [UNDETERMINED]

The current architecture is not secure by design, causing several risks, mainly centraliza-
tionissues but also the fact that the majority of the actions are triggered by the admin or the
delegate open a large surface of attacks.

Itisrecommended to change the architecture to contain the following APIs:

- An APl where the admin willinitialize the contract.

- An APl where the airdrop creator will submit the Merkle Root to the contract.

- An APl where the airdrop creator will fund the contract.

- An APl where the airdrop creator will change the status of airdrop to be OPEN. Thus, any-
one can claim his tokens.

- An APl where the user can withdraw his amount of the airdrop after passing the Merkle
Proofto ensure that he is whitelisted.

- An APl where the admin can close the contract and return the rest of the funds to the air-
drop creator.

Note that the admin should not be able to change the Merkle root, to ensure that the admin
will not alter the list of recipients.

1

- Not Fixed

B lambda/src/index.ts

B.1 The Mnemomic Of The Payout Manager Is

Exposed _

The mnemonic of the payout manager is used to perform actions in the DApp, this can lead
to the mnemonic getting exposed to multiple parties if the serveris hacked.

Listing 4: lambda/src/index.ts

22 if (Imnm) {
3 // Check for (funded!) account which will call contract API

u return errorHandler (400, “Payout Manager account is not configured’);

35 }

Likelihood -2
Impact - 4

Consider using a one time generated signatures for the payout manager instead of the
mnemonic to perform actions in the DApp, therefore even if someone has managed to
steal the signature, he will be able to use it since itis expired.

12

- Not Fixed

B.2 Missmatch Between The Documentation And The
Code [INFORMATIONAL]

The codeinthe lambda function acceptsthe passphrase andthe adminAddress as parame-
ters, butinthe lambda/src/index.tsitaccepts onlythe recipient, ctcinfo and tokenDecimals.
In addition to that, the commands to run the tests in the documentation are incorrect, the

command should be npm run airdrop-action instead of npm run airdrop:action.

Listing 5: lambda/src/index.ts

s type Data = {
9 ctcInfo: string | number;
w recipients: [addr: string, amt: number][];

1 tokenDecimals: number;};

Listing 6: README.md

ss. interface Data {

) ctcInfo: string | number;

0 recipients: [addr: string, amt: number][];
61 adminAddress: string;

&2 passphrase: string;

63 tokenDecimals?: number;}

Itisrecommendedto adaptthe documentationto match accurately what existsinthe code.

- Not Fixed

13

4 Best Practices

BP.1 Errors While Running The Tests

There are multiple errors encountered while running the tests. As a best practice, itisrec-
ommendedto addressthese errorstomakethe process simpler. We alsorecommend test-
ing the edges cases including calling the close APl with the delegate account.

5 Tests

* Automated Delegate Drop
* Connected to ALGO
* Cost: 20 UNO

:key: Checking for Mnemonic ...

:key: Found Mnemonic!
* Create AirDrop Contract

* Connected to ALGO
Deploying Aidrop contract ...
Contract deployed at 98237545

* Admin paid 10 #98174026
Admin done!

Contract deployed at 98237545
Run AirDrop (ctc 98237545)
Connected to ALGO
Attaching Admin account ...
Beginning airdrop ...
0x86656c0f4bbed90f449eel10aabc9fe3dcf4862a2be6341ff0ae0d89a80ae2c60b
received 10

Airdrop complete! Funding for second run ...

14

Fund AirDrop (ctc 98237545)

* Connected to ALGO
Attaching Admin account ...

* Amount Due: 10 VAR
Funding airdrop contract
Added 10 UNO to contract!
Airdrop funded!
Run AirDrop (ctc 98237545)
Connected to ALGO
Attaching Admin account ...
Beginning airdrop ...
Airdrop complete! Closing contract
Close AirDrop Ctc (98237545)
Connected to ALGO
Attaching Admin account ...
Closing airdrop contract
0x86656c0f4bbed90f449ee10aabc9fe3cf4862a2be6341ff0ae0d89a80ae2c60b
received 10

Contract closed! Exiting ...

6 Conclusion

We examined the design and implementation of Block-Rank in this audit and found several
issues of various severities. We advise BlockRank Ltd team to implement the recommen-
dations contained in all 6 of our findings to further enhance the code’s security. It is of ut-
most priority to start by addressing the most severe exploit discovered by the auditors then
followed by the remaining exploits, and finally we willbe conducting are-audit following the
implementation of the remediation plan contained in this report.

We would much appreciate any constructive feedback or suggestions regarding our
methodology, audit findings, or potential scope gapsin this report.

[

7 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

17

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

18

mailto:contact@shellboxes.com

	Introduction
	Disclaimer
	About BlockRank Ltd
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	delegated-airdrop.rsh
	Centralization Risk [HIGH]
	The Admin And The Delegate Can Steal In The pay API [MEDIUM]
	Redundant checks [LOW]
	The Architecture Used Is Not Secure By Design [UNDETERMINED]

	lambda/src/index.ts
	The Mnemomic Of The Payout Manager Is Exposed [MEDIUM]
	Missmatch Between The Documentation And The Code [INFORMATIONAL]

	Best Practices
	Errors While Running The Tests

	Tests
	Conclusion
	Disclaimer

