
Block-Rank
Smart Contract Security Audit

Prepared by ShellBoxes

May 18th, 2022 - July 4th, 2022

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client BlockRank Ltd

Version 1.0

Classification Public

Scope

TheBlock-Rank Contract in theBlock-Rank Repository

Repo Commit Hash

https://github.com/blockrank/
reach-contracts

2a40c75098a376c30b50f53ae72d7a99136c574f

Files MD5Hash

blockrank/delegated-airdrop.rsh 2966f75dc435b8bf8e8c22b734a58293

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://github.com/blockrank/reach-contracts
https://github.com/blockrank/reach-contracts
mailto:contact@shellboxes.com

Contents
1 Introduction 4

1.1 Disclaimer . 4

1.2 About BlockRank Ltd . 4

1.3 Approach&Methodology . 4

1.3.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

A delegated-airdrop.rsh . 7

A.1 CentralizationRisk [HIGH] . 7

A.2 TheAdminAnd TheDelegate CanSteal In The payAPI [MEDIUM] . . 8

A.3 Redundant checks [LOW] . 10

A.4 TheArchitectureUsed IsNot SecureByDesign [UNDETERMINED] . 11

B lambda/src/index.ts . 12

B.1 TheMnemomicOf ThePayoutManager Is Exposed [MEDIUM] 12

B.2 Missmatch Between The Documentation And The

Code [INFORMATIONAL] . 13

4 Best Practices 14

BP.1 ErrorsWhile Running The Tests . 14

5 Tests 14

6 Conclusion 16

7 Disclaimer 17

3

1 Introduction
BlockRank Ltd engaged ShellBoxes to conduct a security assessment on the

Block-Rank beginning onMay 18th, 2022 and ending July 4th, 2022. In this report, we detail

our methodical approach to evaluate potential security issues associated with the

implementation of smart contracts, by exposing possible semantic discrepancies

between the smart contract code and design document, and by recommending additional

ideas to optimize the existing code. Our findings indicate that the current version of smart

contracts can still be enhanced further due to the presence of many security and

performance concerns.

This document summarizes the findings of our audit.

1.1 Disclaimer

TheBlock-rankprojecthasbeenterminated.Hence, thefollowingprojectdidn’tundergoour

re-audit process.The report herewith contains the findings and results of the initial audit

report as is.

1.2 About BlockRank Ltd

Block-rank mission is to develop a new layer of accountability in anonymous web3

ecosystems. Transaction network security, airdropmanagement, andmore.

Issuer BlockRank Ltd

Website https://block-rank.com

Type ReachSmart Contract

AuditMethod Whitebox

1.3 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

4

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

1.3.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview
2.1 Summary

The following is a synopsis of our conclusions from our analysis of the Block-Rank imple-

mentation. During the first part of our audit, we examine the smart contract source code

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 1

high-severity, 2 medium-severity, 1 low-severity, 1 informational-severity, 1

undetermined-severity vulnerabilities.

Vulnerabilities Severity Status

CentralizationRisk HIGH Not Fixed

TheAdminAnd TheDelegate CanSteal In The payAPI MEDIUM Not Fixed

TheMnemomicOf ThePayoutManager Is Exposed MEDIUM Not Fixed

Redundant checks LOW Not Fixed

MissmatchBetween TheDocumentationAnd TheCode INFORMATIONAL Not Fixed

TheArchitectureUsed IsNot SecureByDesign UNDETERMINED Not Fixed

6

3 FindingDetails

A delegated-airdrop.rsh

A.1 CentralizationRisk [HIGH]

Description:

Theadminandthedelegateaccountcansendanyamount fromthecontract toanyuser. This

represents a significant centralization risk due to the amount of power that these entities

have. This can be comprehensible knowing that the admin will fund the contract, however

fromauser perspective, he should trust the admin.

Code:

Listing 1: delegated-airdrop.rsh

141 .api(
142 adminAPI.pay,
143 (who, howMuch) => {
144 const authorized = this == Delegate || this == Admin;
145 check(authorized, UNAUTHORIZED);
146 check(
147 who !== Delegate && who !== Admin,
148 "Stealing is naughty and disallowed"
149);
150 check(howMuch > 0 && howMuch <= maxPayout, "Invalid user allocation");
151 check(howMuch <= balance(token), LOW_CTC_BALANCE);
152 },
153 (_, _) => [0, [0, token]],
154 (whom, howMuch, notify) => {
155 const authorized = this == Delegate || this == Admin;
156 check(authorized, UNAUTHORIZED);
157 check(howMuch > 0 && howMuch <= maxPayout, "Invalid user allocation");
158 check(howMuch <= balance(token), LOW_CTC_BALANCE);

7

159

160 transfer(howMuch, token).to(whom);
161 events.payout(whom, howMuch);
162 notify(null);
163

164 return [keepGoing];
165 }
166);

Risk Level:

Likelihood – 3

Impact - 5

Recommendation:

This issue requires a change in the architecture to be remediated, the suggested architec-

ture is stated in the issueA4.

Status -Not Fixed

A.2 The Admin And The Delegate Can Steal In The pay

API [MEDIUM]

Description:

The pay API contains a restriction that is supposed to prevent the admin and the delegate

from withdrawing the airdrop. However, the admin/delegate can withdraw funds to a dif-

ferentwallet, therefore bypassing this restriction.

Code:

Listing 2: delegated-airdrop.rsh

141 .api(

8

142 adminAPI.pay,
143 (who, howMuch) => {
144 const authorized = this == Delegate || this == Admin;
145 check(authorized, UNAUTHORIZED);
146 check(
147 who !== Delegate && who !== Admin,
148 "Stealing is naughty and disallowed"
149);
150 check(howMuch > 0 && howMuch <= maxPayout, "Invalid user allocation");
151 check(howMuch <= balance(token), LOW_CTC_BALANCE);
152 },
153 (_, _) => [0, [0, token]],
154 (whom, howMuch, notify) => {
155 const authorized = this == Delegate || this == Admin;
156 check(authorized, UNAUTHORIZED);
157 check(howMuch > 0 && howMuch <= maxPayout, "Invalid user allocation");
158 check(howMuch <= balance(token), LOW_CTC_BALANCE);
159

160 transfer(howMuch, token).to(whom);
161 events.payout(whom, howMuch);
162 notify(null);
163

164 return [keepGoing];
165 }
166);

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

This issue requires a change in the architecture to be remediated, the suggested architec-

ture is stated in the issueA4.

9

Status -Not Fixed

A.3 Redundant checks [LOW]

Description:

The local part of the fund API contains several checks to prevent integer overflows. How-

ever, the checks that exist in L118, L121 and L123 are redundant and can be reduced to one

check.

Code:

Listing 3: delegated-airdrop.rsh

111 .api(
112 adminAPI.fund,
113 (amt) => {
114 check(this == Admin, UNAUTHORIZED);
115

116 const bal = balance(token);
117 check(bal < minBalance, "Contract balance exceeds minimum");
118 check(bal < UInt.max - amt, BALANCE_LIMIT);
119

120 const newBal = bal + amt;
121 check(newBal <= UInt.max, BALANCE_LIMIT);
122 check(amt > 0 && amt >= minBalance, MIN_BALANCE);
123 check(amt < UInt.max - bal, "Invalid amount");
124 },

Risk Level:

Likelihood – 2

Impact - 2

10

Recommendation:

It isrecommendedtoremovetheredundantchecksandleaveonlyonethatprevents integer

overflows.

Status -Not Fixed

A.4 The Architecture Used Is Not Secure By

Design [UNDETERMINED]

Description:

The current architecture is not secure by design, causing several risks, mainly centraliza-

tion issuesbut also the fact that themajority of theactionsare triggeredby theadminor the

delegate open a large surface of attacks.

Recommendation:

It is recommended to change the architecture to contain the followingAPIs:

- AnAPIwhere the adminwill initialize the contract.

- AnAPIwhere the airdrop creatorwill submit theMerkle Root to the contract.

- AnAPIwhere the airdrop creatorwill fund the contract.

- AnAPIwhere the airdrop creatorwill change the status of airdrop to beOPEN. Thus, any-

one can claimhis tokens.

- An API where the user can withdraw his amount of the airdrop after passing the Merkle

Proof to ensure that he iswhitelisted.

- An API where the admin can close the contract and return the rest of the funds to the air-

drop creator.

Note that the admin should not be able to change theMerkle root, to ensure that the admin

will not alter the list of recipients.

11

Status -Not Fixed

B lambda/src/index.ts

B.1 The Mnemomic Of The Payout Manager Is

Exposed [MEDIUM]

Description:

Themnemonic of the payoutmanager is used to perform actions in the DApp, this can lead

to themnemonic getting exposed tomultiple parties if the server is hacked.

Code:

Listing 4: lambda/src/index.ts

32 if (!mnm) {
33 // Check for (funded!) account which will call contract API
34 return errorHandler(400, `Payout Manager account is not configured`);
35 }

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

Consider using a one time generated signatures for the payout manager instead of the

mnemonic to perform actions in the DApp, therefore even if someone has managed to

steal the signature, hewill be able to use it since it is expired.

12

Status -Not Fixed

B.2 Missmatch Between The Documentation And The

Code [INFORMATIONAL]

Description:

Thecode in the lambda functionaccepts thepassphraseand theadminAddressasparame-

ters, but in the lambda/src/index.ts itacceptsonly therecipient, ctcInfoand tokenDecimals.

In addition to that, the commands to run the tests in the documentation are incorrect, the

command should be npm run airdrop-action instead of npm run airdrop:action.

Code:

Listing 5: lambda/src/index.ts

8 type Data = {
9 ctcInfo: string | number;
10 recipients: [addr: string, amt: number][];
11 tokenDecimals: number;};

Listing 6: README.md

58 interface Data {
59 ctcInfo: string | number;
60 recipients: [addr: string, amt: number][];
61 adminAddress: string;
62 passphrase: string;
63 tokenDecimals?: number;}

Recommendation:

It is recommended toadapt thedocumentation tomatchaccuratelywhatexists in thecode.

Status -Not Fixed

13

4 Best Practices

BP.1 ErrorsWhile Running The Tests

Description:

There aremultiple errors encounteredwhile running the tests. As a best practice, it is rec-

ommendedtoaddresstheseerrors tomaketheprocesssimpler. Wealsorecommendtest-

ing the edges cases including calling the closeAPIwith the delegate account.

5 Tests
Results:

* Automated Delegate Drop
* Connected to ALGO
* Cost: 20 UNO

:key: Checking for Mnemonic ...
:key: Found Mnemonic!
* Create AirDrop Contract

* Connected to ALGO
Deploying Aidrop contract ...
Contract deployed at 98237545

* Admin paid 10 #98174026
Admin done!
Contract deployed at 98237545
Run AirDrop (ctc 98237545)
Connected to ALGO
Attaching Admin account ...
Beginning airdrop ...
0x86656c0f4bbe490f449ee10aa5c9fe3cf4862a2be6341ff0ae0d89a80ae2c60b
received 10
Airdrop complete! Funding for second run ...

14

Fund AirDrop (ctc 98237545)
* Connected to ALGO

Attaching Admin account ...
* Amount Due: 10 VAR

Funding airdrop contract ...
Added 10 UNO to contract!
Airdrop funded! ...
Run AirDrop (ctc 98237545)
Connected to ALGO
Attaching Admin account ...
Beginning airdrop ...
Airdrop complete! Closing contract ...
Close AirDrop Ctc (98237545)
Connected to ALGO
Attaching Admin account ...
Closing airdrop contract ...
0x86656c0f4bbe490f449ee10aa5c9fe3cf4862a2be6341ff0ae0d89a80ae2c60b
received 10
Contract closed! Exiting ...

15

6 Conclusion
Weexamined the design and implementation of Block-Rank in this audit and found several

issues of various severities. We advise BlockRank Ltd team to implement the recommen-

dations contained in all 6 of our findings to further enhance the code’s security. It is of ut-

mostpriority tostart byaddressing themost severeexploit discoveredby theauditors then

followedbytheremainingexploits, and finallywewillbeconductingare-audit followingthe

implementation of the remediation plan contained in this report.

We would much appreciate any constructive feedback or suggestions regarding our

methodology, audit findings, or potential scope gaps in this report.

16

7 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject that engagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

17

For a Contract Audit, contact us at contact@shellboxes.com

18

mailto:contact@shellboxes.com

	Introduction
	Disclaimer
	About BlockRank Ltd
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	delegated-airdrop.rsh
	Centralization Risk [HIGH]
	The Admin And The Delegate Can Steal In The pay API [MEDIUM]
	Redundant checks [LOW]
	The Architecture Used Is Not Secure By Design [UNDETERMINED]

	lambda/src/index.ts
	The Mnemomic Of The Payout Manager Is Exposed [MEDIUM]
	Missmatch Between The Documentation And The Code [INFORMATIONAL]

	Best Practices
	Errors While Running The Tests

	Tests
	Conclusion
	Disclaimer

