SHELLBOX

Kambria's
Vesting Modu

le

Smart Contract Security Audit

Prepared by ShellBoxes
Jan12t", 2022 - Jan13t", 2022
Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Kambria
Version 1.0
Classification Public
Scope

Contract Name

Contract Address

VestingModule

0x3a26A3cB0f850070EB7bb97300A7adCD518E2CES

Re-Audit

Contract Name

Contract Address

VestingModule

0xD973331c3Ae062070621A3D218dd5A8a4da08104

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

https://polygonscan.com/address/0x3a26A3cB0f850070EB7bb97300A7adCD518E2CE5#code
https://polygonscan.com/address/0xD973331c3Ae062070621A3D218dd5A8a4da08104#code
mailto:contact@shellboxes.com

Contents

1 Introduction

1.1
1.2

AboutKambria
Approach &Methodology

121 RiskMethodology

2 Findings Overview

2.1
2.2

SUMMaArY e e e
KeyFindings

3 Finding Details

SHB.1

SHB.2
SHB.3
SHB.4
SHB.5
SHB.6
SHB.7
SHB.8

The user can lose his funds due to roundingerrors
The contractis not guaranteedtobefunded
The admin can withdraw the allocatedamounts
The initialize function canbe front-run
Owner canrenounceownership
Uncheckedarrayslengths.
Missing address and value verification
Floatingpragma

4 Best Practices

BP.1
BP.2
BP.3

5 Tests

Removeduplicatedchecks
Change theinitialize function from publictoexternal
Remove unnecessaryloops

6 Conclusion

7 ScopeFiles

1.
1.2

Audit . .
Re-Audit

8 Disclaimer

g N &~ B

18
18
19
20

21

23

24
24
24

25

1 Introduction

Kambria engaged ShellBoxes to conduct a security assessment on the Kambria's Vesting
Module beginning on Jan 12", 2022 and ending Jan 13", 2022. In this report, we detail our
methodical approach to evaluate potential security issues associated with the implemen-

tation of smart contracts, by exposing possible semantic discrepancies between the smart

contract code and design document, and by recommending additionalideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence of many security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Kambria

Kambria, an open innovation platform for Deep Tech.

Issuer Kambria
Website https://kambria.io
Type Solidity Smart Contract

Documentation

Kambria DAO LP token Vesting con-
tract document

udit Method

Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not comply with security best practices.

https://kambria.io
https://drive.google.com/file/d/1DQtIlbO3-LU9H2t2ZabN7lTyystPawYp/view
https://drive.google.com/file/d/1DQtIlbO3-LU9H2t2ZabN7lTyystPawYp/view

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-

pact and is categorized into four levels, namely Critical, High, Medium, and Low.

Impact

High
Medium

Critical

Low

High Medium Low

Likelihood

2 Findings Overview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the Kambria’'s Vesting
Module implementation. During the first part of our audit, we examine the smart contract
source code and run the codebase via a static code analyzer. The objective here is to find
known coding problems statically and then manually check (reject or confirm) issues high-
lighted by the tool. Additionally, we check business logics, system processes, and DeFi-

related components manually to identify potential hazards and/or defects.

2.2 KeyFindings

In general, these smart contracts are well-designed and constructed, but their
implementation might be improved by addressing the discovered flaws, which include

critical-severity, 1 high-severity, 1 medium-severity, 4 low-severity vulnerabilities.

Vulnerabilities Severity | Status
SHB.1. The user can lose his funds due to rounding er- | CRITICAL | Fixed
rors

SHB.2. The contract is not guaranteed to be funded CRITICAL | Fixed
SHB.3. The admin can withdraw the allocated amounts Fixed
SHB.4. The initialize function can be front-run Fixed
SHB.5. Owner can renounce ownership Fixed
SHB.6. Unchecked arrays lengths Fixed
SHB.7. Missing address and value verification Fixed
SHB.8. Floating pragma Fixed

3 Finding Details

SHB.1 The user can lose his funds due to rounding errors

- Severity: CRITICAL - Likelihood: 3

- Status: Fixed - Impact: 3

The releasable function determines the amount that can be made available at a particu-
lar time, using the timestamp of the function call, the vesting duration, and the allocated
amount and timestamp of the previous release function call. However, there is a chance
of encountering rounding errors, which may result in a loss of funds for the user.

As an example, consider a vesting period of 1000 seconds and a user allocation of 100:
- The user calls the release function after 19 seconds from the start
- The expected releasable amount would be 19 *100 /1000=1.9

However, Solidity does not support floating points, so this value will round to one. This
means that the lastClaimedTimestamp[claimer] timestamp will be updated with the new
value of block.timestamp, resulting in a permanent loss of funds for the user, which is 0.9
in this case. This vulnerability can have a greater impact and result in the loss of
substantial amounts from the user’'s end if the vesting term is longer.

SHB.1.1: VestingModule.sol

am function releasable(address claimer) public view returns (uint256) {
2m //Before the vesting begins
213 if (block.timestamp <= start) {

2174

2175

2176

2177

2178

2179

2180

2181

2182

pALK]

2184

yALE)

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

return O;

uint256 lastClaimedTimestamp_ = lastClaimedTimestamp[claimer];

uint256 totalAllocation_ = totalAllocation[claimer];

if (lastClaimedTimestamp_ == 0) {

lastClaimedTimestamp_ = start;

// After the end of vesting
if (block.timestamp >= start + duration) {
return
((start + duration - lastClaimedTimestamp_) *

totalAllocation) / duration;

// During the vesting period
return
((block.timestamp - lastClaimedTimestamp_) * totalAllocation_) /

duration;

The main issue is updating the lastClaimedTimestamp[claimer] to block.timestamp. After

doing the math, we found that the lastClaimedTimestamp|[claimer] should be updated using

the following code:

- Inthe release function:

SHB.1.2: VestingModule.sol

uint256 timeElapsed = block.timestamp - lastClaimedTimestamp[msg.sender

— 1;

uint256 divisionRest = timeElapsed * totalAllocation[msg.sender] %

<~ duration;

lastClaimedTimestamp[msg.sender] =lastClaimedTimestamp[msg.sender] +
— timeElapsed - divisionRest / totalAllocation[msg.sender];

- Inthe releaseTo function:
SHB.1.3: VestingModule.sol

uint256 timeElapsed = block.timestamp - lastClaimedTimestamp [receiver];

uint256 divisionRest = timeElapsed * totalAllocation[receiver] Y%

<— duration;

lastClaimedTimestamp[receiver] =lastClaimedTimestamp[receiver] +

< timeElapsed - divisionRest / totalAllocation[receiver];

Thisimplementation assures that the user does not lose any funds of his allocations in-
dependently of when he calls the release or the releaseTo functions.

The Kambria team resolved the issue by implementing the use of the recommended code.

SHB.2 The contractis not guaranteed to be funded

- Severity: CRITICAL - Likelihood: 3

. Status: Fixed « Impact: 3

The addAllocations function is used by the admin to allocate a specific amount to each one
of the users. However, the contractis not guaranteed to be funded before allocation, which

means the users who have allocated amounts in the contract might not be able to withdraw
their releasable amounts.

SHB.2.1: VestingModule.sol

a8 function addAllocations (

2199 address[] memory addresses,

2200 uint256[] memory allocations

20) external onlyRole(ADMIN_ROLE) {

2202 for (uint256 i = 0; i < addresses.length; i++) {

2203 // Check if added allocation

2204 //uint256 totalAllocation_ = totalAllocation(addresses[i]);

2205 require(totalAllocation[addresses[i]] == 0, "VestingModule: There

< are a addressed has been added allocation already");

2206 }

2207 for (uint256 i = 0; i < addresses.length; i++) {
2208 totalAllocation[addresses[i]] = allocations[i];
2209

2210 }

Consider approving the sum of the allocations array’s elements prior to running addAllo-
cations and adding a safeTransform call to the function to claim the approved funds. Thus,
users will be able to withdraw their releasable funds at any time with a high guarantee.

The Kambria team resolved the issue by verifying the contract’s balance to be sufficient to
fulfillall the allocations.

SHB.3 The admincan withdraw the allocated amounts
- Severity: [HIGH - Likelihood: 2

- Status: Fixed « Impact: 3

10

The withdraw function allows the adminto withdraw any token and any amount of that token
from the contract, this represents a significant issue, as it enables the admin to withdraw
funds allocated to users, thereby disrupting the vesting functionality and preventing users
from claiming their vested amounts.

SHB.3.1: VestingModule.sol

222 function withdraw(IERC20Upgradeable tokenToWD, uint256 amount) public
— onlyRole (ADMIN_ROLE) returns (bool) {

2243 tokenToWD.safeTransfer(msg.sender, amount);
2244 return true;
2245 }

Consider adding a variable called totalAllocations which will contain the sum of allocations
of all the users, and change the withdraw to the following implementation:

SHB.3.2: VestingModule.sol

222 function withdraw(IERC20Upgradeable tokenToWD, uint256 amount) public
— onlyRole (ADMIN_ROLE) returns (bool) A{
2243 require(tokenToWD != token totalAllocations + amount <= tokenToWD.

— balance0f (address(this)),"Insuficient balance");

2244 tokenToWD.safeTransfer(msg.sender, amount);
2245 return true;
266}

This way, all funds that are allocated to the users will be protected from being withdrawn by
the admin.

1

The Kambriateamresolved the issue by only allowing the owner to withdraw the funds that
are not allocated to the vesting.

SHB.4 Theinitialize function can be front-run

- Severity: |[HIEBIEN - Likelihood: 1

- Status: Fixed « Impact: 3

The contractinitializesits state usinganinitialize functioninstead of a constructortoimple-
ment upgradability, leaving the initialization vulnerable to being front-run by an attacker.

Theownerdeploysthe contractand performstheinitialize function, thenthe attacker front-

runs the transaction by paying a higher gas price and inputting malicious values into the
contract.

SHB.4.1: VestingModule.sol

a9 function initialize(

2130 IERC20Upgradeable _token,
231 uint256 _start,
2132 uint256 duration

233) public initializer {

2134 __Ownable_init();

2135 __UUPSUpgradeable_init();
213

2137 token = _token;

12

2138 start = _start;
2139 duration = _duration;

2140 }

Consider calling the initialize and the deployment of the contract in the same transaction,
this can be done by using another contract, it can be either a proxy or a new contract, or
consider adding access controltothe functionto preventitfrombeing called by an attacker.

The Kambria team resolved the issue by disabling the contract upgradaebility and moving

the initialize logic to the constructor.

SHB.5 Owner canrenounce ownership

- Severity: [EOW] - Likelihood: 1

. Status: Fixed « Impact: 2

Typically, the account that deploys the contract is also its owner. Consequently, the owner
is able to engage in certain privileged activities in his own name. In smart contracts, the
renounceOwnership function is used to renounce ownership, which means that if the con-
tract’'s ownership has never been transferred, it will never have an Owner, rendering some

owner-exclusive functionality unavailable.

SHB.5.1: VestingModule.sol

13

anw contract VestingModule is Initializable, OwnableUpgradeable,

— UUPSUpgradeable, AccessControlUpgradeable{

We recommend that you prevent the owner from calling renounceOwnership without first
transferring ownership to a different address. Additionally, if you decide to use a multi-
signature wallet, then the execution of the renounceOwnership will require for at least two
or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-
tionality by overriding it.

The Kambria team resolved the issue by disabling the renounceOwnership function.

SHB.6 Unchecked arrays lengths

. Severity: [EOW] - Likelihood: 1

- Status: Fixed « Impact: 2

The addAllocations function is used by the admin to allocate a specific amount to each one
of the users, this function takes as arguments 2 different arrays, one for the addresses and
the other one for the amounts allocated. However, this function does not check the lengths
of the arguments to be the same, which can result in some cases a loss of elements from
one of the arrays.

SHB.6.1: VestingModule.sol

a8 function addAllocations (

14

2199 address[] memory addresses,

2200 uint256[] memory allocations

2o) external onlyRole(ADMIN_ROLE) {

2202 for (uint256 i = 0; i < addresses.length; i++) {

2203 // Check if added allocation

2204 //uint256 totalAllocation_ = totalAllocation(addresses[i]);

2205 require(totalAllocation[addresses[i]] == 0, "VestingModule: There

< are a addressed has been added allocation already");

2206 }

2207 for (uint256 i = 0; i < addresses.length; i++) {
2208 totalAllocation[addresses[i]] = allocations[i];
2209

2210 }

2m

22}

Itisrecommended to verify the array arguments by making sure their lengths are equal.

The Kambria team resolved the issue by verifying the array arguments and making sure
their lengths are equal.

SHB.7 Missing address and value verification

- Severity: - - Likelihood: 1

- Status: Fixed « Impact: 2

15

The initialize function lacks a safety check in the address, the address-type argument _to-
kenshouldinclude azero-addresstest, otherwise, the contract’s functionality may become
inaccessible. In addition to that, the function lacks a value safety check, the _start argu-
ment should be verified to be greater than the block.timestamp and the _duration argument
should be verified to be different from zero.

SHB.7.1: VestingModule.sol

a9 function initialize(

2130 IERC20Upgradeable _token,
231 uint256 _start,
2132 uint256 _duration

233) public initializer {

2134 __Ownable_init();

2135 __UUPSUpgradeable_init();
2136

2137 token = _token;

2138 start = _start;

2139 duration = _duration;

2140 }

Werecommendthatyouverifythe addresses and the values providedinthe arguments. The
issue can be addressed by utilizing require statements.

The Kambriateam resolved the issue by verifying the addresses and the values provided in
the arguments of the constructor.

[

SHB.8 Floating pragma

- Severity: [EOW - Likelihood: 1

- Status: Fixed « Impact:1

The contract makes use of the floating-point pragma 0.8.6. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not

unintentionallybe deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

SHB.8.1: VestingModule.sol

202 pragma solidity ~0.8.6;

Consider locking the pragma version. It is advised that floating pragma should not be used
in production.

The Kambria team resolved the issue by locking the pragma version to 0.8.13.

17

4 Best Practices

BP.1 Remove duplicated checks

When calling the release or the releaseTo function, the block.timestamp is verified to be
greater than the start timestamp, and the same check is duplicated inside the releasable
function. It is recommended to remove the check from the release or the releaseTo func-
tions.

BP.1.1: VestingModule.sol

a2z function release() external {

2143 uint256 releasable_ = releasable(msg.sender);

2144

2145 require(releasable_ != 0, "VestingModule: Not eligible for
— release");

2146 require (

2147 block.timestamp > start,

2148 "VestingModule: The vesting has not started"

2149);

2150

2151 lastClaimedTimestamp[msg.sender] = block.timestamp;

2152

2153 token.safeTransfer (msg.sender, releasable);

2154 }

BP.1.2: VestingModule.sol

zss function releaseTo(address receiver) onlyRole(RELEASER_ROLE) external {
2157 uint256 releasable_ = releasable(receiver);

2158

18

2159 require(releasable_ != 0, "VestingModule: Not eligible for

— release");

2160 require(

2161 block.timestamp > start,

2162 "VestingModule: The vesting has not started"
2163) 5

2164

2165 lastClaimedTimestamp[receiver] = block.timestamp;
2166

2167 token.safeTransfer(receiver, releasable);

2168

yALY) }

BP.2 Change the initialize function from public to
external

Since theinitialize functionis only called from outside the contract, we recommend declar-
ing it as externalinstead of publicin order to optimize the gas.

BP.2.1: VestingModule.sol

229 function initialize(

2130 IERC20Upgradeable _token,
2131 uint256 _start,

232 uint256 _duration

2133) public initializer {

19

BP.3 Remove unnecessaryloops

The addAllocations loops first on the addresses array to check if the address is already al-
located, then loops again on the addresses array to map the addresses to their allocations.
This action can be done in a single for loop, making the function more readable and opti-
mized.

BP.3.1: VestingModule.sol

ass function addAllocations (

2199 address[] memory addresses,

2200 uint256[] memory allocations

20) external onlyRole(ADMIN ROLE) {

2202 for (uint256 i = 0; i < addresses.length; i++) {

2203 // Check if added allocation

2204 //uint256 totalAllocation_ = totalAllocation(addresses[i]);

2205 require(totalAllocation[addresses[i]] == 0, "VestingModule: There

< are a addressed has been added allocation already");

2206 }

2207 for (uint256 i = 0; i < addresses.length; i++) {
2208 totalAllocation[addresses[i]] = allocations[i];
2209

2210 }

20

5

SN N N N R N N

«\

Tests

(18 passing)
Should run faily the 'addAllocations’ method
Should return duration as 900
Should return lastClaimedTimestamp as 0x00
Should return owner address (41ms)
Should returnreleasable as 0
Should return start as 1676284624 (129ms)

Should return token as 0xf8fd69502e81A545decf112c87704aD5283
f5628

Should return totalAllocation as 0

Should return admin role as 0xa49807205ce4d355092ef5a8a18f56e8
913cf4a201fbe287825b095693c21775

Should return release role as 0x88f3509f0e42391f2d94ebfb2a3
T7cbd0782b1b8f73715330017f4663290b8117

Should return admin role as 0xa49807205ce4d355092ef5a8
a18f56e8913cf4a201fbe287825b095693c21775

Should return admin hasRole as true
Should return true for the granted account as releaser (38ms)

Should return false for the granted account as releaser (63ms)

21

v~ Should return false for the granted account as releaser (73ms)
v Should release sucessfully
v Should fail renounceOwnership

v Should transferOwnership to 0x2b8be9D1Bc04CE987E5A9eE55337
fE50394f9D3B (108ms)

22

6 Conclusion

Inthis audit, we examined the design and implementation of Kambria’s Vesting Module con-
tractand discovered severalissues of varying severity. Kambriateam addressed all the is-
sues raisedin theinitial report and implemented the necessary fixes.

However Shellboxes’ auditors advised Kambria Team to maintain a high level of vigi-

lance and participate in bounty programs in order to avoid any future complications.

23

7 ScopecFiles

7.1 Audit

Files

MD5 Hash

VestingModule.sol

2c4ff9707a6b6993b4220b9a430d9cdd

7.2 Re-Audit

Files

MD5 Hash

VestingModule.sol

3f9ecc52f158bf60db3alf7383db4077

24

8 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

25

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

26

mailto:contact@shellboxes.com

	Introduction
	About Kambria
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	The user can lose his funds due to rounding errors
	The contract is not guaranteed to be funded
	The admin can withdraw the allocated amounts
	The initialize function can be front-run
	Owner can renounce ownership
	Unchecked arrays lengths
	Missing address and value verification
	Floating pragma

	Best Practices
	Remove duplicated checks
	Change the initialize function from public to external
	Remove unnecessary loops

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

