
Kambria’s
VestingModule
Smart Contract Security Audit

Prepared by ShellBoxes

Jan 12th, 2022 - Jan 13th, 2022

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Kambria

Version 1.0

Classification Public

Scope

Contract Name Contract Address

VestingModule 0x3a26A3cB0f850070EB7bb97300A7adCD518E2CE5

Re-Audit

Contract Name Contract Address

VestingModule 0xD973331c3Ae062070621A3D218dd5A8a4da08104

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://polygonscan.com/address/0x3a26A3cB0f850070EB7bb97300A7adCD518E2CE5#code
https://polygonscan.com/address/0xD973331c3Ae062070621A3D218dd5A8a4da08104#code
mailto:contact@shellboxes.com

Contents

1 Introduction 4

1.1 About Kambria . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

SHB.1 The user can lose his funds due to rounding errors 7

SHB.2 The contract is not guaranteed to be funded 9

SHB.3 The admin canwithdraw the allocated amounts 10

SHB.4 The initialize function can be front-run . 12

SHB.5 Owner can renounce ownership . 13

SHB.6 Unchecked arrays lengths . 14

SHB.7 Missing address and value verification . 15

SHB.8 Floating pragma . 17

4 Best Practices 18

BP.1 Remove duplicated checks . 18

BP.2 Change the initialize function frompublic to external 19

BP.3 Remove unnecessary loops . 20

5 Tests 21

6 Conclusion 23

7 Scope Files 24

7.1 Audit . 24

7.2 Re-Audit . 24

8 Disclaimer 25

3

1 Introduction
Kambria engaged ShellBoxes to conduct a security assessment on the Kambria’s Vesting

Module beginning on Jan 12th, 2022 and ending Jan 13th, 2022. In this report, we detail our

methodical approach to evaluate potential security issues associated with the implemen-

tationof smart contracts, by exposingpossible semantic discrepanciesbetween thesmart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Kambria

Kambria, an open innovation platform for Deep Tech.

Issuer Kambria

Website https://kambria.io

Type Solidity Smart Contract

Documentation Kambria DAO LP token Vesting con-
tract document

uditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

https://kambria.io
https://drive.google.com/file/d/1DQtIlbO3-LU9H2t2ZabN7lTyystPawYp/view
https://drive.google.com/file/d/1DQtIlbO3-LU9H2t2ZabN7lTyystPawYp/view

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview
2.1 Summary

The following is a synopsis of our conclusions from our analysis of the Kambria’s Vesting

Module implementation. During the first part of our audit, we examine the smart contract

source code and run the codebase via a static code analyzer. The objective here is to find

knowncodingproblemsstaticallyand thenmanually check (rejectorconfirm) issueshigh-

lighted by the tool. Additionally, we check business logics, system processes, and DeFi-

related componentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include 2

critical-severity, 1 high-severity, 1medium-severity, 4 low-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. The user can lose his funds due to rounding er-

rors

CRITICAL Fixed

SHB.2. The contract is not guaranteed to be funded CRITICAL Fixed

SHB.3. Theadmincanwithdrawtheallocatedamounts HIGH Fixed

SHB.4. The initialize function can be front-run MEDIUM Fixed

SHB.5. Owner can renounce ownership LOW Fixed

SHB.6. Unchecked arrays lengths LOW Fixed

SHB.7. Missing address and value verification LOW Fixed

SHB.8. Floating pragma LOW Fixed

6

3 FindingDetails
SHB.1 The user can lose his funds due to rounding errors

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

The releasable function determines the amount that can be made available at a particu-

lar time, using the timestamp of the function call, the vesting duration, and the allocated

amount and timestamp of the previous release function call. However, there is a chance

of encountering rounding errors,whichmay result in a loss of funds for the user.

Exploit Scenario:

As an example, consider a vesting period of 1000 seconds and a user allocation of 100:

• The user calls the release function after 19 seconds from the start

• The expected releasable amountwould be 19 * 100 / 1000 = 1.9

However, Solidity does not support floating points, so this value will round to one. This

means that the lastClaimedTimestamp[claimer] timestamp will be updated with the new

value of block.timestamp, resulting in a permanent loss of funds for the user, which is 0.9

in this case. This vulnerability can have a greater impact and result in the loss of

substantial amounts from the user’s end if the vesting term is longer.

Files Affected:

SHB.1.1: VestingModule.sol

2171 function releasable(address claimer) public view returns (uint256) {
2172 //Before the vesting begins
2173 if (block.timestamp <= start) {

7

2174 return 0;
2175 }
2176

2177 uint256 lastClaimedTimestamp_ = lastClaimedTimestamp[claimer];
2178 uint256 totalAllocation_ = totalAllocation[claimer];
2179

2180 if (lastClaimedTimestamp_ == 0) {
2181 lastClaimedTimestamp_ = start;
2182 }
2183

2184 // After the end of vesting
2185 if (block.timestamp >= start + duration) {
2186 return
2187 ((start + duration - lastClaimedTimestamp_) *
2188 totalAllocation_) / duration;
2189 }
2190

2191 // During the vesting period
2192 return
2193 ((block.timestamp - lastClaimedTimestamp_) * totalAllocation_) /
2194 duration;
2195 }

Recommendation:

The main issue is updating the lastClaimedTimestamp[claimer] to block.timestamp. After

doing themath,we found that the lastClaimedTimestamp[claimer] shouldbeupdatedusing

the following code:

- In the release function:

SHB.1.2: VestingModule.sol

uint256 timeElapsed = block.timestamp - lastClaimedTimestamp[msg.sender
,!];

uint256 divisionRest = timeElapsed * totalAllocation[msg.sender] %
,! duration;

8

lastClaimedTimestamp[msg.sender] =lastClaimedTimestamp[msg.sender] +
,! timeElapsed - divisionRest / totalAllocation[msg.sender];

- In the releaseTo function:

SHB.1.3: VestingModule.sol

uint256 timeElapsed = block.timestamp - lastClaimedTimestamp[receiver];
uint256 divisionRest = timeElapsed * totalAllocation[receiver] %

,! duration;
lastClaimedTimestamp[receiver] =lastClaimedTimestamp[receiver] +

,! timeElapsed - divisionRest / totalAllocation[receiver];

This implementation assures that theuser doesnot lose any fundsof his allocations in-

dependently ofwhen he calls the release or the releaseTo functions.

Updates

TheKambria team resolved the issue by implementing the use of the recommended code.

SHB.2 The contract is not guaranteed to be funded

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

The addAllocations function is used by the admin to allocate a specific amount to each one

of the users. However, the contract is not guaranteed to be funded before allocation,which

means theuserswhohaveallocatedamounts in the contractmight not beable towithdraw

their releasable amounts.

Files Affected:

9

SHB.2.1: VestingModule.sol

2198 function addAllocations (
2199 address[] memory addresses,
2200 uint256[] memory allocations
2201) external onlyRole(ADMIN_ROLE) {
2202 for (uint256 i = 0; i < addresses.length; i++) {
2203 // Check if added allocation
2204 //uint256 totalAllocation_ = totalAllocation(addresses[i]);
2205 require(totalAllocation[addresses[i]] == 0, "VestingModule: There

,! are a addressed has been added allocation already");
2206 }
2207 for (uint256 i = 0; i < addresses.length; i++) {
2208 totalAllocation[addresses[i]] = allocations[i];
2209

2210 }

Recommendation:

Consider approving the sum of the allocations array’s elements prior to running addAllo-

cations and adding a safeTransform call to the function to claim the approved funds. Thus,

userswill be able towithdraw their releasable funds at any timewith a high guarantee.

Updates

The Kambria team resolved the issue by verifying the contract’s balance to be sufficient to

fulfill all the allocations.

SHB.3 The admin canwithdraw the allocated amounts

• Severity : HIGH

• Status : Fixed

• Likelihood : 2

• Impact : 3

10

Description:

Thewithdrawfunctionallowstheadmin towithdrawany tokenandanyamountof that token

from the contract, this represents a significant issue, as it enables the admin to withdraw

funds allocated to users, thereby disrupting the vesting functionality and preventing users

fromclaiming their vested amounts.

Files Affected:

SHB.3.1: VestingModule.sol

2242 function withdraw(IERC20Upgradeable tokenToWD, uint256 amount) public
,! onlyRole(ADMIN_ROLE) returns (bool) {

2243 tokenToWD.safeTransfer(msg.sender, amount);
2244 return true;
2245 }

Recommendation:

Consideraddingavariablecalled totalAllocationswhichwill contain thesumofallocations

of all the users, and change thewithdraw to the following implementation:

SHB.3.2: VestingModule.sol

2242 function withdraw(IERC20Upgradeable tokenToWD, uint256 amount) public
,! onlyRole(ADMIN_ROLE) returns (bool) {

2243 require(tokenToWD != token totalAllocations + amount <= tokenToWD.
,! balanceOf(address(this)),"Insuficient balance");

2244 tokenToWD.safeTransfer(msg.sender, amount);
2245 return true;
2246 }

Thisway, all funds that areallocated to theuserswill beprotected frombeingwithdrawnby

the admin.

11

Updates

TheKambria teamresolved the issuebyonly allowing theowner towithdraw the funds that

are not allocated to the vesting.

SHB.4 The initialize function can be front-run

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

Description:

Thecontract initializes itsstateusingan initialize function insteadofaconstructor to imple-

ment upgradability, leaving the initialization vulnerable to being front-run by an attacker.

Exploit Scenario:

Theownerdeploysthecontractandperformsthe initialize function, thentheattacker front-

runs the transaction by paying a higher gas price and inputting malicious values into the

contract.

Files Affected:

SHB.4.1: VestingModule.sol

2129 function initialize(
2130 IERC20Upgradeable _token,
2131 uint256 _start,
2132 uint256 _duration
2133) public initializer {
2134 __Ownable_init();
2135 __UUPSUpgradeable_init();
2136

2137 token = _token;

12

2138 start = _start;
2139 duration = _duration;
2140 }

Recommendation:

Consider calling the initialize and the deployment of the contract in the same transaction,

this can be done by using another contract, it can be either a proxy or a new contract, or

consideraddingaccesscontrol to the function toprevent it frombeingcalledbyanattacker.

Updates

The Kambria team resolved the issue by disabling the contract upgradaebility andmoving

the initialize logic to the constructor.

SHB.5 Owner can renounce ownership

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

Typically, the account that deploys the contract is also its owner. Consequently, the owner

is able to engage in certain privileged activities in his own name. In smart contracts, the

renounceOwnership function is used to renounce ownership, whichmeans that if the con-

tract’s ownership has never been transferred, it will never have anOwner, rendering some

owner-exclusive functionality unavailable.

Files Affected:

SHB.5.1: VestingModule.sol

13

2110 contract VestingModule is Initializable, OwnableUpgradeable,
,! UUPSUpgradeable, AccessControlUpgradeable{

Recommendation:

We recommend that you prevent the owner from calling renounceOwnership without first

transferring ownership to a different address. Additionally, if you decide to use a multi-

signaturewallet, then the execution of the renounceOwnershipwill require for at least two

or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-

tionality by overriding it.

Updates

TheKambria team resolved the issue by disabling the renounceOwnership function.

SHB.6 Unchecked arrays lengths

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The addAllocations function is used by the admin to allocate a specific amount to each one

of the users, this function takes as arguments 2 different arrays, one for the addresses and

the other one for the amounts allocated. However, this function does not check the lengths

of the arguments to be the same, which can result in some cases a loss of elements from

one of the arrays.

Files Affected:

SHB.6.1: VestingModule.sol

2198 function addAllocations (

14

2199 address[] memory addresses,
2200 uint256[] memory allocations
2201) external onlyRole(ADMIN_ROLE) {
2202 for (uint256 i = 0; i < addresses.length; i++) {
2203 // Check if added allocation
2204 //uint256 totalAllocation_ = totalAllocation(addresses[i]);
2205 require(totalAllocation[addresses[i]] == 0, "VestingModule: There

,! are a addressed has been added allocation already");
2206 }
2207 for (uint256 i = 0; i < addresses.length; i++) {
2208 totalAllocation[addresses[i]] = allocations[i];
2209

2210 }
2211

2212 }

Recommendation:

It is recommended to verify the array arguments bymaking sure their lengths are equal.

Updates

The Kambria team resolved the issue by verifying the array arguments and making sure

their lengths are equal.

SHB.7 Missing address and value verification

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

15

Description:

The initialize function lacks a safety check in the address, the address-type argument _to-

kenshould includeazero-address test, otherwise, thecontract’s functionalitymaybecome

inaccessible. In addition to that, the function lacks a value safety check, the _start argu-

mentshouldbeverified tobegreater than theblock.timestampand the _durationargument

should be verified to be different fromzero.

Files Affected:

SHB.7.1: VestingModule.sol

2129 function initialize(
2130 IERC20Upgradeable _token,
2131 uint256 _start,
2132 uint256 _duration
2133) public initializer {
2134 __Ownable_init();
2135 __UUPSUpgradeable_init();
2136

2137 token = _token;
2138 start = _start;
2139 duration = _duration;
2140 }

Recommendation:

Werecommendthatyouverify theaddressesandthevaluesprovided in thearguments. The

issue can be addressed by utilizing require statements.

Updates

TheKambria teamresolved the issue by verifying the addresses and the values provided in

the arguments of the constructor.

16

SHB.8 Floating pragma

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 1

Description:

The contract makes use of the floating-point pragma 0.8.6. Contracts should be deployed

using the same compiler version. Locking the pragma helps ensure that contractswill not

unintentionallybedeployedusinganotherpragma,which insomecasesmaybeanobsolete

version, thatmay introduce issues to the contract system.

Files Affected:

SHB.8.1: VestingModule.sol

2102 pragma solidity ^0.8.6;

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production.

Updates

TheKambria team resolved the issue by locking the pragma version to 0.8.13.

17

4 Best Practices

BP.1 Remove duplicated checks

Description:

When calling the release or the releaseTo function, the block.timestamp is verified to be

greater than the start timestamp, and the same check is duplicated inside the releasable

function. It is recommended to remove the check from the release or the releaseTo func-

tions.

Files Affected:

BP.1.1: VestingModule.sol

2142 function release() external {
2143 uint256 releasable_ = releasable(msg.sender);
2144

2145 require(releasable_ != 0, "VestingModule: Not eligible for
,! release");

2146 require(
2147 block.timestamp > start,
2148 "VestingModule: The vesting has not started"
2149);
2150

2151 lastClaimedTimestamp[msg.sender] = block.timestamp;
2152

2153 token.safeTransfer(msg.sender, releasable_);
2154 }

BP.1.2: VestingModule.sol

2156 function releaseTo(address receiver) onlyRole(RELEASER_ROLE) external {
2157 uint256 releasable_ = releasable(receiver);
2158

18

2159 require(releasable_ != 0, "VestingModule: Not eligible for
,! release");

2160 require(
2161 block.timestamp > start,
2162 "VestingModule: The vesting has not started"
2163);
2164

2165 lastClaimedTimestamp[receiver] = block.timestamp;
2166

2167 token.safeTransfer(receiver, releasable_);
2168

2169 }

Status - Acknowledged

BP.2 Change the initialize function from public to

external

Description:

Since the initialize function isonly called fromoutside thecontract,we recommenddeclar-

ing it as external instead of public in order to optimize the gas.

Files Affected:

BP.2.1: VestingModule.sol

2129 function initialize(
2130 IERC20Upgradeable _token,
2131 uint256 _start,
2132 uint256 _duration
2133) public initializer {

19

Status - Fixed

BP.3 Remove unnecessary loops

Description:

The addAllocations loops first on the addresses array to check if the address is already al-

located, then loops again on the addresses array tomap the addresses to their allocations.

This action can be done in a single for loop, making the function more readable and opti-

mized.

Files Affected:

BP.3.1: VestingModule.sol

2198 function addAllocations (
2199 address[] memory addresses,
2200 uint256[] memory allocations
2201) external onlyRole(ADMIN_ROLE) {
2202 for (uint256 i = 0; i < addresses.length; i++) {
2203 // Check if added allocation
2204 //uint256 totalAllocation_ = totalAllocation(addresses[i]);
2205 require(totalAllocation[addresses[i]] == 0, "VestingModule: There

,! are a addressed has been added allocation already");
2206 }
2207 for (uint256 i = 0; i < addresses.length; i++) {
2208 totalAllocation[addresses[i]] = allocations[i];
2209

2210 }

Status - Fixed

20

5 Tests
Results:

! Contract: VestingModule (18 passing)

X Should run faily the ’addAllocations’method

X Should return duration as 900

X Should return lastClaimedTimestampas 0x00

X Should return owner address (41ms)

X Should return releasable as 0

X Should return start as 1676284624 (129ms)

X Should return token as 0xf8fd69502e81A545decf112c87704aD5283

f5628

X Should return totalAllocation as 0

X Should return admin role as 0xa49807205ce4d355092ef5a8a18f56e8

913cf4a201fbe287825b095693c21775

X Should return release role as 0x88f3509f0e42391f2d94ebfb2a3

7cbd0782b1b8f73715330017f4663290b8117

X Should return admin role as 0xa49807205ce4d355092ef5a8

a18f56e8913cf4a201fbe287825b095693c21775

X Should return admin hasRole as true

X Should return true for the granted account as releaser (38ms)

X Should return false for the granted account as releaser (63ms)

21

X Should return false for the granted account as releaser (73ms)

X Should release sucessfully

X Should fail renounceOwnership

X Should transferOwnership to 0x2b8be9D1Bc04CE987E5A9eE55337

fE50394f9D3B (108ms)

22

6 Conclusion
Inthisaudit,weexamined thedesignand implementationofKambria’sVestingModulecon-

tract anddiscoveredseveral issuesof varyingseverity. Kambria teamaddressedall the is-

sues raised in the initial report and implemented the necessary fixes.

However Shellboxes’ auditors advised Kambria Team to maintain a high level of vigi-

lance and participate in bounty programs in order to avoid any future complications.

23

7 Scope Files

7.1 Audit

Files MD5Hash

VestingModule.sol 2c4ff9707a6b6993b4220b9a430d9cdd

7.2 Re-Audit

Files MD5Hash

VestingModule.sol 3f9ecc52f158bf60db3a1f7383db4077

24

8 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject that engagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

25

For a Contract Audit, contact us at contact@shellboxes.com

26

mailto:contact@shellboxes.com

	Introduction
	About Kambria
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	The user can lose his funds due to rounding errors
	The contract is not guaranteed to be funded
	The admin can withdraw the allocated amounts
	The initialize function can be front-run
	Owner can renounce ownership
	Unchecked arrays lengths
	Missing address and value verification
	Floating pragma

	Best Practices
	Remove duplicated checks
	Change the initialize function from public to external
	Remove unnecessary loops

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

