
Bullshot

Smart Contract Security Audit

Prepared by ShellBoxes

Nov 21st, 2024 -Dec 3rd, 2024

Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Okratech

Version 1.0

Classification Public

Scope

Files MD5Hash

bullshot-contracts/BCToken.sol 1f066e6f90e4b02bfc253a0af334e5a5

bullshot-contracts/BondingCurve.sol d86ebc1229bd6c96cd653fe83a52bd2c

bullshot-contracts/BullshotFactory.sol 18cad8b001ba75bc43019b964fb34ebf

Re-Audit

Files MD5Hash

contracts/BCToken.sol e3c6ca2b31a27ea78a0e946ba2ba3923

contracts/BondingCurve.sol 86c8a30448d52e5ff73f485560e13d80

contracts/BullshotFactory.sol 19855ccca0f2c4f135769d34fa20a13b

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

mailto:contact@shellboxes.com

Contents

1 Introduction 5

1.1 About Okratech . 5

1.2 Approach&Methodology . 5

1.2.1 RiskMethodology . 6

2 FindingsOverview 7

2.1 Summary . 7

2.2 Key Findings . 7

3 FindingDetails 9

SHB.1 Disabling SlippageProtection in buy invocation in createToken 9

SHB.2 The AmountOut Transferred to User Can Be Less Than the Minimum

Amount Out . 10

SHB.3 User CanBypass buyFee . 12

SHB.4 ApproveRaceCondition in BCTokenContract 13

SHB.5 Owner CanRenounceOwnership . 14

SHB.6 Potential Loss of Precision in FeeCalculations 15

SHB.7 MissingReturn Value Verification for addLiquidityETH in buy Function . . . 17

SHB.8 Potential Reentrancy in buy and sell Functions 18

SHB.9 Missing FeePercentage andAmount Verification in setFee Function 20

SHB.10 MissingAddress Verification . 21

SHB.11 Floating Pragma . 23

SHB.12 init Function in BondingCurve Contract Declared as payable 24

SHB.13 Launch FeeChargedMultiple Times for Already Launched Tokens 26

4 Best Practices 28

BP.1 Store Only TokenAddresses in tokensArray in BullshotFactory Contract . 28

BP.2 Pass deadline frombuy Function to addLiquidityETHCall 28

BP.3 RemoveUnused Factory Address Variable in BondingCurve Contract . . . 29

BP.4 Write Clear ErrorMessages . 30

BP.5 RemoveHardhat Console Comment . 30

BP.6 Public Functions CanBeDeclared as External 31

5 Tests 32

3

6 Conclusion 33

7 Disclaimer 34

4

1 Introduction

Okratech engaged ShellBoxes to conduct a security assessment on the Bullshot begin-

ning onNov 21st, 2024 and ending Dec 3rd, 2024. In this report, we detail ourmethodical ap-

proach to evaluate potential security issues associated with the implementation of smart

contracts, by exposing possible semantic discrepancies between the smart contract code

and design document, and by recommending additional ideas to optimize the existing code.

Our findings indicate that the current version of smart contracts can still be enhanced fur-

ther due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Okratech

Bullshot is ameme token launcher built on theBase chain, offering a streamlined platform

for users to create and deploymeme tokens efficiently. The project is designed to simplify

the token creation process and provide tools for users to kickstart their meme token

journey. The platform incorporates features aimed at supporting token deployment and

liquidity management, with a focus on fostering accessibility and usability for creators

within the ecosystem.

Issuer Okratech

Website https://bullshot.org

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

5

https://bullshot.org

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6

2 FindingsOverview

2.1 Summary

The following isasynopsisof ourconclusions fromouranalysisof theBullshot implemen-

tation. During the firstpartofouraudit,weexamine thesmartcontractsourcecodeandrun

the codebase via a static code analyzer. The objective here is to find known coding prob-

lems statically and thenmanually check (reject or confirm) issues highlighted by the tool.

Additionally, we check business logics, system processes, and DeFi-related components

manually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 2

high-severity, 3 medium-severity, 6 low-severity, 1 informational-severity, 1

undetermined-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Disabling Slippage Protection in buy invocation

in createToken

HIGH Fixed

SHB.2. The AmountOut Transferred to User Can Be

Less Than theMinimumAmount Out

HIGH Fixed

SHB.3. User CanBypass buyFee MEDIUM Fixed

SHB.4. ApproveRaceCondition in BCTokenContract MEDIUM Fixed

SHB.5. Owner CanRenounceOwnership MEDIUM Fixed

SHB.6. Potential Loss of Precision in FeeCalculations LOW Partially Fixed

SHB.7. Missing Return Value Verification for addLiq-

uidityETH in buy Function

LOW Fixed

7

SHB.8. Potential Reentrancy in buy and sell Functions LOW Fixed

SHB.9. Missing Fee Percentage and Amount Verifica-

tion in setFee Function

LOW Fixed

SHB.10. MissingAddress Verification LOW Fixed

SHB.11. Floating Pragma LOW Fixed

SHB.12. init Function in BondingCurve Contract De-

clared as payable

INFORMATIONAL Acknowledged

SHB.13. Launch Fee Charged Multiple Times for Al-

ready Launched Tokens

UNDETERMINED Fixed

8

3 FindingDetails

SHB.1 Disabling Slippage Protection in buy invocation in cre-

ateToken

• Severity : HIGH

• Status : Fixed

• Likelihood : 3

• Impact : 2

Description:

In the createToken function, when invoking the buy function, the amountOutMin parameter

is set to 0. This effectively disables the slippage protection, meaning that there is no guar-

antee that the buyer will receive at least the minimum amount of tokens they expect. By

setting amountOutMin to 0, the user is not protected against price slippage, which can lead

to receiving a significantly lower amount of tokens than expected. This could be exploited

bymalicious actors, resulting in unfair or unanticipated losses for the user.

Files Affected:

SHB.1.1: BullshotFactory.sol

105 if (initAmountIn > 0) bondingCurve.buy{ value: msg.value -

↪→ creationFeeAmount }(initAmountIn, 0, msg.sender, block.

↪→ timestamp);

Recommendation:

It is recommended to ensure that the amountOutMin parameter is always set to anon-zero

value based on the user’s expected amount of tokens. This would enable slippage protec-

tion and guarantee that the user receives at least the expected amount of tokens.

9

Updates

The teamhas resolved the issue by adding a newparameter, amountOutMin, to the create-

Token function. Thisparameterdynamicallycalculates theminimumacceptable tokensre-

ceived based on the bonding curve logic. The amountOutMin is utilized in the buy invocation

to enforce slippage tolerance effectively. This ensures that slippage protection is properly

implemented during the buy operation.

SHB.2 The AmountOut Transferred to User Can Be Less Than

theMinimumAmount Out

• Severity : HIGH

• Status : Fixed

• Likelihood : 3

• Impact : 2

Description:

In the sell function, the BondingCurve contract performs a validation to ensure that the

amount the user will receive (amountOut) is greater than or equal to the specified

amountOutMin. However, after this validation, a sell fee is deducted from the amountOut.

Thismeans the user could receive an amount less than the validatedminimumamount out

because the fee is subtracted after the validation. The issue occurs because the

amountOut is validated before the fee is applied, which violates the logic that ensures

users receive at least theminimumamount they expect.

Files Affected:

SHB.2.1: BondingCurve.sol

176 virtualTokenReserve += amountIn;

177 uint256 newVirtualEthReserve = correlation / virtualTokenReserve;

178 amountOut = virtualEthReserve - newVirtualEthReserve;

179 virtualEthReserve = newVirtualEthReserve;

10

180

181 require(amountOut >= amountOutMin, "! amountOut >= amountOutMin")

↪→ ;

182 require(amountOut <= ethReserve, "! amountOut >= ethReserve");

183

184 tokenReserve += amountIn;

185 ethReserve -= amountOut;

186

187 emit Sell(msg.sender, amountIn, amountOut);

188

189 if (sellFeePercent > 0 && amountOut >= FEE_DENOMINATOR) {

190 uint256 fee = amountOut * sellFeePercent / FEE_DENOMINATOR;

191 feeRecipient.transfer(fee);

192 amountOut -= fee;

193 }

194

195 payable(msg.sender).transfer(amountOut);

Recommendation:

To address this issue, the contract should apply the fee deduction before the validation of

amountOut >= amountOutMin. Thiswill ensure that the final amount after the fee deduction

is still guaranteed tomeet or exceed the specified amountOutMin.

Updates

The team has addressed the issue by reordering the logic in the sell function. They now

deduct fees before performing the require checks for amountOutMin. This ensures that the

validatedamount takes intoaccountanyfeesdeducted, thuspreservingtheminimumtoken

amount requirementwhen transferring tokens to the user.

11

SHB.3 User CanBypass buyFee

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 2

• Impact : 2

Description:

The buy function calculates the buyFee only when amountIn is greater than or equal to

FEE_DENOMINATOR, using the condition if (buyFeePercent > 0 && amountIn >=

FEE_DENOMINATOR). This logic allows users to bypass the buyFee by setting amountIn to

a value less than FEE_DENOMINATOR, which skips the fee calculation and transfer. This

can result in reduced revenue for the protocol and inconsistent behavior for different

transaction sizes.

Files Affected:

SHB.3.1: BondingCurve.sol

94 uint256 buyFee;

95 if (buyFeePercent > 0 && amountIn >= FEE_DENOMINATOR) {

96 buyFee = amountIn * buyFeePercent / FEE_DENOMINATOR;

97 feeRecipient.transfer(buyFee);

98 }

99 require(msg.value == amountIn + buyFee, "Wrong value");

Recommendation:

Remove the amountIn >= FEE_DENOMINATOR condition from the buyFee calculation. In-

stead, always apply the fee when buyFeePercent > 0. To prevent abuse through extremely

small transactions, consider introducing aminimumamountIn threshold or scaling the fee

proportionally for smaller transactions.

12

Updates

The team has fixed the issue by removing the conditional check amountIn >=

FEE_DENOMINATOR for fee application in the buy function. The fee is now always

calculated whenever buyFeePercent > 0 for any amountIn. Additionally, a minimum

transaction threshold (MIN_AMOUNT) has been introduced to prevent abuse through

extremely small transactions, ensuring that the fee is applied consistently and

appropriately.

SHB.4 ApproveRaceCondition in BCTokenContract

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

Description:

TheBCTokencontract implementsanapprovefunctionthatallowstokenholders tograntor

modify a spender’s allowance. However, this implementation is vulnerable to aknownrace

condition. Ifaspendertransferstokensusinganoldallowancewhile thetokenholder isup-

dating the allowance, the spender could exploit this to transfermore tokens than intended.

This vulnerability stems from overwriting the allowance directly in the approve function

without considering ongoing transactions. This issue exists in the allowancemapping and

is common to approvalmechanisms that do not account for concurrent operations.

Files Affected:

SHB.4.1: BCToken.sol

89 function approve(address spender, uint256 amount) public returns (

↪→ bool) {

90 allowance[msg.sender][spender] = amount;

91 emit Approval(msg.sender, spender, amount);

92 return true;

13

93 }

Recommendation:

Tomitigate this issue:

• Adopt an increase/decrease allowance pattern: Replace the approve function with

increaseAllowance and decreaseAllowance methods to incrementally adjust

allowances rather than overwriting them. This prevents race conditions caused by

allowance updates.

• Addsafeguards for re-approval: Consider requiring theallowance tobeexplicitly set

to zero before it can be updated to a newvalue, ensuring a clean reset.

Updates

The teamhas resolved the issuebyadding the increaseAllowanceanddecreaseAllowance

functions. Additionally, theapprove functionwasupdated torequire theallowance tobeex-

plicitly set to zero before it can be updated to a new value. This change effectively prevents

potential race conditions that could arise fromsimultaneous approval operations.

SHB.5 Owner CanRenounceOwnership

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

Description:

The BullshotFactory contract inherits from OpenZeppelin’s Ownable contract allow the

owner to renounce ownership. Renouncing ownership leaves the contract without an

owner, effectively disabling any functionality exclusively available to the owner.

14

Files Affected:

SHB.5.1: BullshotFactory.sol

4 import "@openzeppelin/contracts/access/Ownable.sol";

5 import "@openzeppelin/contracts/proxy/Clones.sol";

6 import "./BCToken.sol";

7 import "./BondingCurve.sol";

8

9 contract BullshotFactory is Ownable {

Recommendation:

It isrecommendedtooverridetherenounceOwnership function intheBullshotFactorycon-

tract and disable its functionality. This ensures ownership is preserved and critical admin-

istrative controls remain intact throughout the contract’s lifecycle.

Updates

The team has fixed the issue by overriding the renounceOwnership function in the

BullshotFactory contract to disable its functionality. This ensures that the contract retains

an owner for performing critical administrative operations, preventing the loss of

ownership andmaintaining control over essential contractmanagement tasks.

SHB.6 Potential Loss of Precision in FeeCalculations

• Severity : LOW

• Status : Partially Fixed

• Likelihood : 1

• Impact : 2

Description:

In the current implementation, the fee calculations for transactions (buy, sell, etc.) use a

small FEE_DENOMINATOR (e.g., 1000).

15

Thiscanleadtoa lossofprecision,particularlywhencalculatingsmall feesfor lowtransac-

tion amounts. The result is that feesmay be incorrectly rounded down to zero, which could

lead to unexpected behavior or loss of fee collection.

Files Affected:

SHB.6.1: BondingCurve.sol

190 uint256 fee = amountOut * sellFeePercent / FEE_DENOMINATOR;

191 feeRecipient.transfer(fee);

SHB.6.2: BondingCurve.sol

129 uint256 fee = ethAmount * launchFeePercent /

↪→ FEE_DENOMINATOR;

SHB.6.3: BondingCurve.sol

96 buyFee = amountIn * buyFeePercent / FEE_DENOMINATOR;

SHB.6.4: BullshotFactory.sol

73 require(msg.value == initAmountIn + (initAmountIn * buyFeePercent

↪→ / FEE_DENOMINATOR) + creationFeeAmount, "Wrong value");

Recommendation:

Tomitigate the lossof precision in feecalculations, it is recommended to increase thevalue

of FEE_DENOMINATOR to a larger value. This will allow for greater granularity in the fee

calculations, ensuring that evensmall transactionamountscontributeappropriately to the

fee pool. Additionally, to avoid scenarioswhere very small transaction amounts could lead

to unintended behavior due to truncation, introduce aminimum threshold check for trans-

action amounts.

Updates

The teamhaspartially addressed the issueby adding the logic for aminimum fee threshold

(MIN_AMOUNT) in the buy function.

16

SHB.7 Missing Return Value Verification for addLiquidityETH

in buy Function

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

In thebuy functionof theBondingCurve contract, the addLiquidityETH function is invoked to

addliquidity toUniswap. However, thereturnvalues(amountToken,amountETH,and liquid-

ity) from this call are not checked. Failing to verify these values can lead to undetected er-

rors,suchasinsufficient liquiditybeingaddedormismatchesinthetokenandETHamounts.

This could result in unexpectedbehavior, suchas incorrect liquidity provisioningorwasted

gas,without the contract taking correctivemeasures.

Files Affected:

SHB.7.1: BondingCurve.sol

134 uniswapV2Router.addLiquidityETH{ value: ethAmount }(

135 address(token),

136 tokenAmount,

137 tokenAmount,

138 ethAmount,

139 address(0),

140 block.timestamp

141);

142

143 emit Launch(tokenAmount, ethAmount);

17

Recommendation:

Always validate the return values of the addLiquidityETH function to ensure that liquidity is

added as expected. Implement checks to verify that:

1. The amountToken and amountETHmatch the expected values.

2. The liquidity amount is non-zero andwithin acceptable bounds.

Updates

The team has fixed the issue by capturing and validating the return values (amountToken,

amountETH, liquidity) from the addLiquidityETH call in the buy function.

SHB.8 Potential Reentrancy in buy and sell Functions

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

Thebuyandsell functions intheBondingCurvecontract lackprotectionsagainstreentrancy

attacks. These functions modify critical state variables such as virtualEthReserve, virtu-

alTokenReserve, ethReserve, and tokenReserve, and also involve external calls such as

transferring fees to feeRecipient. Without proper reentrancy protection, a malicious con-

tract could exploit this vulnerability by repeatedly calling these functions before the state

changes are finalized. This could lead to double-spending, bypassing fee deductions, or

draining reserves.

Files Affected:

SHB.8.1: BondingCurve.sol

97 feeRecipient.transfer(buyFee);

18

SHB.8.2: BondingCurve.sol

189 if (sellFeePercent > 0 && amountOut >= FEE_DENOMINATOR) {

190 uint256 fee = amountOut * sellFeePercent / FEE_DENOMINATOR;

191 feeRecipient.transfer(fee);

192 amountOut -= fee;

193 }

194

195 payable(msg.sender).transfer(amountOut);

Recommendation:

Tomitigate the risk of reentrancy:

• Introduce a reentrancy guard by utilizing OpenZeppelin’s ReentrancyGuard contract

and applying the nonReentrantmodifier to the buy and sell functions.

• Ensure that all state variable updates occur before any external calls aremade (e.g.,

feeRecipient.transfer).

Updates

The team has resolved the issue by adding OpenZeppelin’s ReentrancyGuard to the Bond-

ingCurve contract and applying the nonReentrant modifier to both the buy and sell func-

tions.

19

SHB.9 Missing Fee Percentage and Amount Verification in

setFee Function

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

ThesetFee function in theBullshotFactorycontractallowstheowner toupdateseveral fee-

related parameters: creationFeeAmount_, buyFeePercent_, sellFeePercent_, and launch-

FeePercent_. However, there are no checks to validate that the provided values fall within

reasonable and secure limits. For example, fee percentages could be set higher than the

FEE_DENOMINATOR, which would break the logic of fee calculations. Similarly, missing

checks for non-zero and appropriate ranges can lead to undesirable ormalicious configu-

rations that harmusers or the contract’s financial stability.

Files Affected:

SHB.9.1: BullshotFactory.sol

60 function setFee(uint256 creationFeeAmount_, uint8 buyFeePercent_,

↪→ uint8 sellFeePercent_, uint8 launchFeePercent_, address

↪→ payable feeRecipient_) public onlyOwner {

61 creationFeeAmount = creationFeeAmount_;

62 buyFeePercent = buyFeePercent_;

63 sellFeePercent = sellFeePercent_;

64 launchFeePercent = launchFeePercent_;

65 feeRecipient = feeRecipient_;

66 }

Recommendation:

It is recommended to validate the input values in the setFee function:

20

• Ensure buyFeePercent_, sellFeePercent_, and launchFeePercent_ are within a spe-

cific range (e.g., between 0 and FEE_DENOMINATOR to represent 0% to 100%).

• Validate creationFeeAmount_ to be greater than zero and within an appropriate

range.

These validations should be implemented using require statements to ensure only logical

and secure values are set for the fees. Thiswill helpmaintain the contract’s functionality.

Updates

The team has addressed the issue by adding require checks in the setFee function. These

checks validate that the fee percentages arewithin the range [0, FEE_DENOMINATOR] and

ensure that the creationFeeAmount is greater than zero. This prevents invalid fee values

frombeing set, ensuring proper fee configuration in the contract.

SHB.10 MissingAddress Verification

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The BullshotFactory contract’s constructor takes several address parameters

(uniswapV2Factory, uniswapV2Router, and feeRecipient_), but none of these are verified to

ensure that they point to valid, deployed contract addresses or non-zero addresses. This

introduces a security risk as the contract can be initialized with invalid or malicious

addresses, leading to unexpected behaviors or vulnerabilities. Specifically, the contract

could interact with non-existent or malicious contracts, and fees could be sent to a zero

address, potentially causing financial losses or failing to properly process fees.

Files Affected:

21

SHB.10.1: BullshotFactory.sol

26 constructor(

27 address uniswapV2Factory_,

28 address uniswapV2Router_,

29 uint256 creationFeeAmount_,

30 uint8 buyFeePercent_,

31 uint8 sellFeePercent_,

32 uint8 launchFeePercent_,

33 address payable feeRecipient_

34) {

35 setFee(creationFeeAmount_, buyFeePercent_, sellFeePercent_,

↪→ launchFeePercent_, feeRecipient_);

36 uniswapV2Factory = uniswapV2Factory_;

37 uniswapV2Router = uniswapV2Router_;

Recommendation:

It is recommended to validate all addresses passed to the constructor, specifically ensur-

ing that:

• uniswapV2FactoryanduniswapV2Routerpoint tovalidcontractaddresses(usingAd-

dress.isContract or a similar check).

• feeRecipient_ is a valid, non-zero address.

This canbedonewith require statements to ensure theaddressesarenot the zeroaddress

and that they are contractswhere applicable.

Updates

The team has resolved the issue by adding require checks in the constructor of the Bull-

shotFactory contract. These checks ensure that uniswapV2Factory and uniswapV2Router

are valid contract addresses, and that feeRecipient is a non-zero address. This prevents

the use of invalid addresses and ensures proper contract initialization.

22

SHB.11 Floating Pragma

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

All the contracts use a floating Solidity pragma of 0.8.19, indicating that they can be

compiled with any compiler version from 0.8.19 (inclusive) up to, but not including, version

0.9.0.This flexibility could potentially introduce unexpected behavior if the contracts are

compiledwith a newer compiler version that includes breaking changes.

Files Affected:

SHB.11.1: BCToken.sol

2 pragma solidity ^0.8.19;

SHB.11.2: BondingCurve.sol

2 pragma solidity ^0.8.19;

SHB.11.3: BullshotFactory.sol

2 pragma solidity ^0.8.19;

Recommendation:

It is generally recommended to lock the pragma statement to a specific Solidity compiler

version to ensure consistent behavior across different compiler versions. To achieve this,

consider removing the caret (^) from the pragma statement and specifying a fixed version,

such as pragma solidity 0.8.19;.

23

Updates

The team has fixed the issue by updating the pragma statements in all contracts to lock

the Solidity version to 0.8.19. This ensures that the contracts will not be affected by any fu-

ture compiler updates, preventing potential unexpected behavior andmaintaining consis-

tent contract functionality.

SHB.12 init Function in BondingCurve Contract Declared as

payable

• Severity : INFORMATIONAL

• Status : Acknowledged

• Likelihood : 3

• Impact : 0

Description:

The init function of theBondingCurve contract is declared as payable,whichmeans it is ex-

pected to receive Ether when it is called. However, when the createToken function is exe-

cuted, no Ether is being passed to the init function during initialization. This creates an in-

consistency between the contract’s function signature and its actual usage.

Files Affected:

SHB.12.1: BondingCurve.sol

32 function init(

33 address factory_,

34 address uniswapV2Factory_,

35 address uniswapV2Router_,

36 BCToken token_,

37 uint8 buyFeePercent_,

38 uint8 sellFeePercent_,

39 uint8 launchFeePercent_,

24

40 address payable feeRecipient_

41) public payable returns (address) {

SHB.12.2: BullshotFactory.sol

84 address pair = bondingCurve.init(

85 address(this),

86 uniswapV2Factory,

87 uniswapV2Router,

88 token,

89 buyFeePercent,

90 sellFeePercent,

91 launchFeePercent,

92 feeRecipient

93);

Recommendation:

If the init function ismeant to receiveEtherduring initialization, ensure that theappropriate

value is passed to it when calling createToken. Alternatively, if no Ether is required, con-

sider removing the payable modifier from the init function to avoid confusion and prevent

unnecessary complexity.

Updates

The team has acknowledged the risk, stating that the payable modifier on the init function

is adeliberatedesignchoice. This allows flexibility for developerswhomaywant toprovide

initial liquidity or bootstrap the bonding curvewith an initial buy.

25

SHB.13 Launch Fee Charged Multiple Times for Already

Launched Tokens

• Severity : UNDETERMINED

• Status : Fixed

• Likelihood : 3

• Impact : -

Description:

In the buy function, the launch process is triggered when the ethReserve exceeds the

launchThreshold. This includes transferring a launchFeePercent to the feeRecipient and

adding liquidity to the Uniswap pool. However, the launch function in the BCToken contract

does not validate if the token has already been launched, allowing the fee to be charged

multiple times for tokens that are already live. This design flaw can result in unnecessary

deductions from user funds under specific scenarios where the ethReserve threshold is

met again, despite the token already being in circulation. This may lead to user

dissatisfaction and loss of trust in the system.

Files Affected:

SHB.13.1: BondingCurve.sol

120 if (ethReserve >= launchThreshold) {

121 uint256 tokenAmount = token.balanceOf(address(this));

122

123 token.launch();

124 ethReserve = 0;

125

126 token.approve(address(uniswapV2Router), tokenAmount);

127

128 if (launchFeePercent > 0) {

129 uint256 fee = ethAmount * launchFeePercent /

↪→ FEE_DENOMINATOR;

26

130 feeRecipient.transfer(fee);

131 ethAmount -= fee;

132 }

Recommendation:

1. Implement a condition in the buy function to check the token’s launch status (using

BCToken.launched) before triggering the launch process and charging the launch-

FeePercent.

2. Updatedocumentation toexplicitlyexplain the launchprocesstoendusers toprevent

confusion.

Updates

The team has resolved the issue by adding a check in the buy function to verify the token’s

launch status using token.launched(). This ensures that the launch process is only trig-

gered once, preventing the launch fee from being charged multiple times for tokens that

have already been launched.

27

4 Best Practices

BP.1 StoreOnlyTokenAddresses in tokensArray in

BullshotFactory Contract

Description:

Instead of storing the entire BCToken objects in the tokens array, store only the token ad-

dresses. This reduces thegascosts, asstoringaddresses ismoreefficient thanstoringen-

tire contract objects. It also simplifies the code and enhances the contract’s performance

by reducing unnecessary state variables.

Files Affected:

BP.1.1: BullshotFactory.sol

22 BCToken[] public tokens;

Status - Acknowledged

BP.2 Pass deadline from buy Function to

addLiquidityETHCall

Description:

Instead of hardcoding block.timestamp in the addLiquidityETH function call, pass the

deadline from the buy function’s parameter. This ensures consistency and allows the

caller to specify the exact expiration time for transactions, providingmore control over the

contract’s execution.

Files Affected:

BP.2.1: BondingCurve.sol

28

90 function buy(uint256 amountIn, uint256 amountOutMin, address to,

↪→ uint256 deadline) external payable checkDeadline(deadline)

↪→ returns (uint256 amountOut) {

BP.2.2: BondingCurve.sol

134 uniswapV2Router.addLiquidityETH{ value: ethAmount }(

135 address(token),

136 tokenAmount,

137 tokenAmount,

138 ethAmount,

139 address(0),

140 block.timestamp

141);

Status - Fixed

BP.3 Remove Unused Factory Address Variable in

BondingCurve Contract

Description:

Thefactoryaddressvariable in theBondingCurvecontract isnotbeingusedanywhere,con-

siderremoving it tocleanupthecode. Unusedvariables increasethecomplexityof thecon-

tract and could potentially lead to confusion or errors in the future.

Files Affected:

BP.3.1: BondingCurve.sol

26 address public factory;

29

Status - Fixed

BP.4 Write Clear ErrorMessages

Description:

Forall requirestatements, ensure that theerrormessagesareclear, concise, anddescrip-

tive. This helps improve the readability andmaintainability of the code, making it easier to

understandwhyaspecific condition failed. This is particularly important for debuggingand

contract interaction.

Status - Fixed

BP.5 RemoveHardhat Console Comment

Description:

Removeanycommented-outhardhat/console.sol linesbeforedeploying theBCTokencon-

tract toproduction. Theseare typicallyused fordebuggingduringdevelopmentandcanun-

necessarily increase the size of the contract or introduce unwanted dependencies in pro-

duction.

Files Affected:

BP.5.1: BCToken.sol

4 //import "hardhat/console.sol";

Status - Fixed

30

BP.6 PublicFunctionsCanBeDeclaredasExternal

Description:

Consider declaring functions as external instead of public in Solidity to reduce gas costs.

External functions aremore restricted, as they cannot be called internally and can only be

called by other contracts and externally-ownedaccounts. This restriction allows the com-

piler tooptimizethefunction’sbytecode, leadingto lowergascosts. Reviewtheprojectcon-

tracts to identify public functions that do not need to be called internally and change their

visibility to external to benefit frompotential gas savings.

Status - Acknowledged

31

5 Tests

Results:

→ TOKEN -BullshotFactory

X buy_full_test

→ TOKEN -SlippageBuy

X slippage_buy

→ TOKEN -SlippageSell

X slippage_sell

X slippage_sell_all

→ TOKEN -SlippageSell All

X slippage_sell_all

Coverage:

The code coverage results were obtained by running npx hardhat coverage in the

Bullshot project. We found the following results :

• Statements Coverage : 75.4%

• BranchesCoverage : 47.73%

• Functions Coverage : 70.97%

• Lines Coverage : 77.27%

32

6 Conclusion

In this audit, we examined the design and implementation of Bullshot contract and discov-

ered several issues of varying severity. Okratech team addressed 11 issues raised in the

initial report and implemented the necessary fixes, while classifying the rest as a riskwith

low-probability of occurrence. Shellboxes’ auditors advised Okratech Team to maintain a

high level of vigilance and to keep those findings in mind in order to avoid any future com-

plications.

33

7 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject thatengagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

34

For a Contract Audit, contact us at contact@shellboxes.com

35

mailto:contact@shellboxes.com

	Introduction
	About Okratech
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Disabling Slippage Protection in buy invocation in createToken
	The AmountOut Transferred to User Can Be Less Than the Minimum Amount Out
	 User Can Bypass buyFee
	Approve Race Condition in BCToken Contract
	Owner Can Renounce Ownership
	Potential Loss of Precision in Fee Calculations
	Missing Return Value Verification for addLiquidityETH in buy Function
	Potential Reentrancy in buy and sell Functions
	Missing Fee Percentage and Amount Verification in setFee Function
	Missing Address Verification
	Floating Pragma
	init Function in BondingCurve Contract Declared as payable
	Launch Fee Charged Multiple Times for Already Launched Tokens

	Best Practices
	Store Only Token Addresses in tokens Array in BullshotFactory Contract
	Pass deadline from buy Function to addLiquidityETH Call
	Remove Unused Factory Address Variable in BondingCurve Contract
	Write Clear Error Messages
	Remove Hardhat Console Comment
	Public Functions Can Be Declared as External

	Tests
	Conclusion
	Disclaimer

