
Kommunitas

Bridge

Smart Contract Security Audit

Prepared by ShellBoxes

June 24th, 2025 - June 27th, 2025

Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Kommunitas

Version 1.0

Classification Public

Scope

Repository Commit Hash

https://github.com/Kommunitas-net/
core-contract

80d62b358371b9e1ef5a0769b426b7d06d929111

Re-Audit

Repository Commit Hash

https://github.com/Kommunitas-net/
core-contract

0c36201b5e0a75619566b096926e61cf2a06ea50

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://github.com/Kommunitas-net/core-contract
https://github.com/Kommunitas-net/core-contract
https://github.com/Kommunitas-net/core-contract
https://github.com/Kommunitas-net/core-contract
mailto:contact@shellboxes.com

Contents

1 Introduction 4

1.1 About Kommunitas . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Summary . 6

2.2 Key Findings . 6

3 FindingDetails 7

SHB.1 Self-Call to releaseKomLocks Funds or EnablesMint-Without-Proof . . . 7

SHB.2 Unchecked Token burnReturn Value . 8

SHB.3 Re-Entrancy in bridge() via TokenCallback 9

SHB.4 Same-Chain Replay –DuplicateMint . 10

SHB.5 NoExecutors Initialised –Bridge Inoperable 11

SHB.6 Owner CanSwapSource / Destination Tokens 12

SHB.7 Unbounded srcTxHashSize EnablesGasGriefing 13

SHB.8 Bridge Transfers 100%of User BalanceOnly 13

4 Best Practices 15

BP.1 Cache _srcTokenStoragePointer Once . 15

BP.2 Replace StringRevertMessageswith CustomErrors 16

BP.3 Micro-Optimise togglePause()Branch . 17

5 Conclusion 18

6 Scope Files 19

6.1 Audit . 19

6.2 Re-Audit . 19

7 Disclaimer 20

3

1 Introduction

Kommunitas engaged ShellBoxes to conduct a security assessment on the Kommunitas

Bridge beginningonJune24th, 2025 andendingJune27th, 2025. In this report,wedetail our

methodical approach to evaluate potential security issues associated with the implemen-

tationof smart contracts, by exposingpossible semantic discrepanciesbetween thesmart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Kommunitas

Kommunitas is a decentralized and tier-less Launchpad. Kommunitas is the solution for

Multi Chain oriented projects. Kommunitas welcomes project from various blockchain

like Polygon, BSC, Ethereum, Avalance, Solana, etc...

Issuer Kommunitas

Website https://www.kommunitas.net

Type Solidity Smart Contract

Documentation KommunitasDocs

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

https://www.kommunitas.net
https://docs.kommunitas.net

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview

2.1 Summary

The following is a synopsis of our conclusions fromour analysis of theKommunitasBridge

implementation. During the first part of our audit, we examine the smart contract source

code and run the codebase via a static code analyzer. The objective here is to find known

coding problems statically and thenmanually check (reject or confirm) issues highlighted

by the tool. Additionally, we check business logics, system processes, and DeFi-related

componentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 1

high-severity, 5medium-severity, 2 low-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Self-Call to releaseKom Locks Funds or En-

ablesMint-Without-Proof

HIGH Fixed

SHB.2. Unchecked Token burnReturn Value MEDIUM Acknowledged

SHB.3. Re-Entrancy in bridge() via TokenCallback MEDIUM Fixed

SHB.4. Same-Chain Replay –DuplicateMint MEDIUM Acknowledged

SHB.5. No Executors Initialised –Bridge Inoperable MEDIUM Acknowledged

SHB.6. Owner CanSwapSource / Destination Tokens MEDIUM Acknowledged

SHB.7. Unbounded srcTxHashSize Enables GasGrief-

ing

LOW Fixed

SHB.8. Bridge Transfers 100%of User BalanceOnly LOW Acknowledged

6

3 FindingDetails

SHB.1 Self-Call to releaseKom Locks Funds or EnablesMint-

Without-Proof

• Severity : HIGH

• Status : Fixed

• Likelihood : 3

• Impact : 2

Description:

On theBNBChain branch of bridge() (L 83–98) the contract calls this.releaseKom(…).

• If address(this) is not whitelisted as an executor (default), the call reverts, burning

the user’s KOMbutminting nothing onBSC— funds are permanently lost.

• If the owner does add address(this) as an executor to “fix” the revert, the bridge can

later invoke releaseKomwith arbitrary parameters andmintKOMonBSCwithout any

cross-chain proof.

Files Affected:

SHB.1.1: KommunitasBridge.sol

83 } else if (srcChainID == 56) { // BSC branch

84 (success,) = _srcToken.call(

85 abi.encodeWithSignature(

86 "burn(address,uint256)", address(this), komBalance

87)

88);

89 require(success, "!burnToken");

90

91 // �self-call, requires contract to be executor

92 this.releaseKom(srcChainID, new bytes(0),

7

93 komBalance, sender);

94 }

Recommendation:

Remove the self-call entirely and rely on the normal relayer path, or enforce srcChainID

!= block.chainid inside releaseKom. If same-chain minting is required, track a unique

per-user nonce or burn-hash beforeminting.

Updates

The team resolved the issue by adding a new internal function named _releaseKom. When

the bridge function is called fromchain ID 56 (BSC), it will redirect the call to _releaseKom.

SHB.2 Unchecked Token burnReturn Value

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 3

• Impact : 1

Description:

Both burn paths (L 107–131) perform a low-level call and only test success. A malicious or

misconfiguredKOM implementation can returnfalse, keep theuser’s tokens, yetmake the

bridge believe the burn succeeded.

Files Affected:

SHB.2.1: KommunitasBridge.sol

108 (success,) = _srcToken.call(

109 abi.encodeWithSignature("burn(uint256)", komBalance)

110);

111 require(success, "!burnToken"); // �only checks low-level success

8

Recommendation:

Use a typed interface IKommunitasToken(address).burn(komBalance) and require the

boolean return value, or switch to OpenZeppelin’s IERC20Burnable.

Updates

TheKommunitas teamacknowledged the issuesince their tokenbehavesdifferently in dif-

ferent chains.

SHB.3 Re-Entrancy in bridge() via TokenCallback

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 3

• Impact : 1

Description:

bridge() is not nonReentrant, yet it externally invokes an upgradable KOM proxy before

finishing state changes and emitting the event. A hostile burn implementation can reen-

ter bridge()while the user’s allowance is still in place and generate multiple KomBridged

events or inconsistent internal accounting.

Files Affected:

SHB.3.1: KommunitasBridge.sol

100 IERC20Metadata(_srcToken).safeTransferFrom(

101 sender, address(this), komBalance

102);

103 (success,) = _srcToken.call(...); // external callback into KOM

9

Recommendation:

Add nonReentrant to bridge() and, if possible,move the burn after local state is finalised.

Updates

TheKommunitas team fixed the issue by adding the nonReentrant guard.

SHB.4 Same-Chain Replay –DuplicateMint

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 3

• Impact : 1

Description:

releaseKom (L 149–166) skips the _isBridgeExecuted mapping when _srcChainID ==

block.chainid. On BSC this lets an authorised executor mint unlimited KOM simply by

re-sending the call with an empty or new _srcTxHash.

Files Affected:

SHB.4.1: KommunitasBridge.sol

149 if (block.chainid != _srcChainID) {

150 require(!_isBridgeExecuted[_srcChainID][_srcTxHash], "executed");

151 _isBridgeExecuted[_srcChainID][_srcTxHash] = true;

152 }

Recommendation:

Always mark a transfer as executed: hash the tuple

(_srcChainID, _srcTxHash, _amount, _receiver) or maintain a per chain incremental

nonce.

10

Updates

The Kommunitas team acknowledged this issue by stating that When bridging occurs on

BSC, they do not require the txHash since theminting happens on the same smart contract

at a single transaction (burn-mint). they also added a validation to ensure _srcChainID is

not BSC.

SHB.5 NoExecutors Initialised –Bridge Inoperable

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 3

• Impact : 1

Description:

After init (L 64–96) the contract starts with _executorNumber == 0. Without at least one

executor, releaseKom cannever be called, permanently locking all cross-chain transfers.

Recommendation:

Inside init add an initial executor, e.g. the owner or amultisig:

_isExecutor[sender] = true; _executorNumber = 1;

Updates

The Kommunitas team acknowledged this issue andwill ensure it is addressed before the

bridge starts.

11

SHB.6 Owner CanSwapSource / Destination Tokens

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 2

• Impact : 2

Description:

setSrcToken and setDstToken are unrestricted onlyOwner calls. A compromised or im-

patient owner can redirect burns to a fake token or mint unlimited KOM on the destination

chain.

Files Affected:

SHB.6.1: KommunitasBridge.sol

119 function setDstToken(address dstToken_) external onlyOwner {

120 _dstToken = dstToken_;

121 }

Recommendation:

Emit explicit events, add a time-lock / multisig, and verify that the new token implements

the expected interface& decimals.

Updates

The Kommunitas team acknowledged this issue and ensured the safety of the contract

owner by using amultisignaturewallet.

12

SHB.7 Unbounded srcTxHashSize EnablesGasGriefing

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 1

Description:

srcTxHash is an arbitrary-length bytes. An attacker may pass a 32 kB value, forcing the

executor to pay >500 k gas for a single SSTORE.

Recommendation:

Cap the length:

require(_srcTxHash.length == 32, "bad tx-hash");

Updates

TheKommunitas teamhasresolved this issuebyadding theverificationon the lengthof the

transaction hash.

SHB.8 Bridge Transfers 100%of User BalanceOnly

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 1

Description:

bridge() always fetches balanceOf(sender); users cannot choose an amount. Mistakes

or custodywalletswithmixed funds risk sending all KOMunintentionally.

13

Recommendation:

Add an _amount parameter, require 0 < _amount ≤ balanceOf(sender), and leave the re-

maining balance untouched.

Updates

The Kommunitas team acknowledged this issue and stated that this is a business decision

to ensure that noKOM tokens circulate outsideBSC in userwallets.

14

4 Best Practices

BP.1 Cache _srcTokenStoragePointer Once

Description:

Inside bridge() the contract dereferences _srcToken three times. Each read incurs an

SLOAD (2100 gas). Caching the address in a local variable reduces the cost by two SLOAD

about 400 gas per user transaction.

Files Affected:

BP.1.1: KommunitasBridge.sol

98 function bridge() external whenNotPaused {

99 address sender = _msgSender();

100 uint256 komBalance = IERC20Metadata(_srcToken).balanceOf(sender);

101

102 IERC20Metadata(_srcToken).safeTransferFrom(// 2nd SLOAD

103 sender, address(this), komBalance

104);

105 ...

106 }

Recommendation:

1 function bridge() external whenNotPaused nonReentrant {

2 address sender = _msgSender();

3 IERC20Metadata src = IERC20Metadata(_srcToken); // cache once

4 uint256 komBalance = src.balanceOf(sender);

5

6 src.safeTransferFrom(sender, address(this), komBalance);

7 ...

8 }

15

Status - Fixed

TheKommunitas teamhas resolved the issue by caching the address in a local variable.

BP.2 ReplaceStringRevertMessageswithCustom

Errors

Description:

Literal revert strings like "!burnToken" and "!chainID" are embedded in bytecode (64

gas/byte) and cost an extra 260 gas on each failure. Custom errors move the data to

calldata and refund 1 800 gas per revert.

Files Affected:

BP.2.1: KommunitasBridge.sol

185 require(success, "!burnToken");

186 ...

187 else { revert("!chainID"); }

Recommendation:

1 error BurnFailed();

2 error UnsupportedChain();

3

4 if (!success) revert BurnFailed();

5 ...

6 else {

7 // no valid branch →abort

8 revert UnsupportedChain();

9 }

16

Status - Acknowledged

The team acknowledged the issue, as they want a clearer message for revert purposes in

UX.

BP.3 Micro-Optimise togglePause()Branch

Description:

togglePause() contains two brancheswith identical cost; however a conditional operator

combinedwith anunchecked{}blockshaves200gasbyavoidingone redundantJUMPDEST.

Files Affected:

BP.3.1: KommunitasBridge.sol

181 function togglePause() external onlyOwner {

182 if (paused()) {

183 _unpause();

184 } else {

185 _pause();

186 }

187 }

Recommendation:

1 function togglePause() external onlyOwner {

2 unchecked {

3 paused() ? _unpause() : _pause();

4 }

5 }

Status - Fixed

The team fixed the issue by using a conditional operator.

17

5 Conclusion

In this audit, we examined the design and implementation of Kommunitas Bridge contract

and discovered several issues of varying severity. Kommunitas team addressed 9 issues

raised in the initial report and implemented the necessary fixes, while classifying the rest

as a risk with low-probability of occurrence. Shellboxes’ auditors advised Kommunitas

Team to maintain a high level of vigilance and to keep those findings in mind in order to

avoid any future complications.

18

6 Scope Files

6.1 Audit

Files MD5Hash

bridge/KommunitasBridge.sol 2845b59f8394aa2777c28f05081e25e3

6.2 Re-Audit

Files MD5Hash

bridge/KommunitasBridge.sol 79981b35919e6f9c20744daf28974813

19

7 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject thatengagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

20

For a Contract Audit, contact us at contact@shellboxes.com

21

mailto:contact@shellboxes.com

	Introduction
	About Kommunitas
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Self-Call to releaseKom Locks Funds or Enables Mint-Without-Proof
	Unchecked Token burn Return Value
	Re-Entrancy in bridge() via Token Callback
	Same-Chain Replay – Duplicate Mint
	No Executors Initialised – Bridge Inoperable
	Owner Can Swap Source / Destination Tokens
	Unbounded srcTxHash Size Enables Gas Griefing
	Bridge Transfers 100 % of User Balance Only

	Best Practices
	Cache _srcToken Storage Pointer Once
	Replace String Revert Messages with Custom Errors
	Micro-Optimise togglePause() Branch

	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

