
Kommunitas

Token

Smart Contract Security Audit

Prepared by ShellBoxes

June 3rd, 2025 - June 7th, 2025

Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Kommunitas

Version 1.0

Classification Public

Scope

Repository Commit Hash

https://github.com/Kommunitas-net/
core-contract

2459b7d1ed02f4249be29bdb80343653d45a8792

Re-Audit

Repository Commit Hash

https://github.com/Kommunitas-net/
core-contract

fc4fbdd1c4a5ad7eae597987509368431ac6ad30

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://github.com/Kommunitas-net/core-contract
https://github.com/Kommunitas-net/core-contract
https://github.com/Kommunitas-net/core-contract
https://github.com/Kommunitas-net/core-contract
mailto:contact@shellboxes.com

Contents

1 Introduction 5

1.1 About Kommunitas . 5

1.2 Approach&Methodology . 5

1.2.1 RiskMethodology . 6

2 FindingsOverview 7

2.1 Summary . 7

2.2 Key Findings . 7

3 FindingDetails 9

SHB.1 WrongmaxSupplymaths caps supply at only 1600 tokens 9

SHB.2 mint() is restricted to the admin ofMINTER_ROLE, not to theminter itself . 10

SHB.3 Empty_authorizeUpgrade()makesupgradesafetydependonanexternal

modifier . 11

SHB.4 Hard-revert on transfers to the token contract breaks integrations and

loses funds . 12

SHB.5 pause() does not stopminting / burning . 13

SHB.6 setMaxSupply() can raise the cap to an arbitrary value 13

SHB.7 KommunitasTokenSelfTransferreduses thespender insteadof the token-

owner . 14

SHB.8 No storage-gap reserved for future upgrades 15

SHB.9 Noway to rescue accidentally sent ERC-20 or Ether 15

SHB.10 ERC20Permit cached domain-separator breaks on chain-ID fork 16

SHB.11 Self-transfer guard can be bypassed via increaseAllowance() 17

4 Best Practices 18

BP.1 decimals() can bemarked pure . 18

BP.2 Shorten custom-error names . 18

BP.3 Use unchecked arithmetic once bounds are proven 19

BP.4 Cache address(this) in an immutable . 19

5 Conclusion 21

6 Scope Files 22

6.1 Audit . 22

3

6.2 Re-Audit . 22

7 Disclaimer 23

4

1 Introduction

Kommunitas engaged ShellBoxes to conduct a security assessment on the Kommunitas

Token beginning on June 3rd, 2025 and ending June 7th, 2025. In this report, we detail our

methodical approach to evaluate potential security issues associated with the implemen-

tationof smart contracts, by exposingpossible semantic discrepanciesbetween thesmart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Kommunitas

Kommunitas is a decentralized and tier-less Launchpad. Kommunitas is the solution for

Multi Chain oriented projects. Kommunitas welcomes project from various blockchain

like Polygon, BSC, Ethereum, Avalance, Solana, etc...

Issuer Kommunitas

Website https://www.kommunitas.net

Type Solidity Smart Contract

Documentation KommunitasDocs

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

5

https://www.kommunitas.net
https://docs.kommunitas.net

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6

2 FindingsOverview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the Kommunitas Token

implementation. During the first part of our audit, we examine the smart contract source

code and run the codebase via a static code analyzer. The objective here is to find known

coding problems statically and thenmanually check (reject or confirm) issues highlighted

by the tool. Additionally, we check business logics, system processes, and DeFi-related

componentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include 2

critical-severity, 4 high-severity, 1medium-severity, 4 low-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Wrong maxSupply maths caps supply at only

1600 tokens

CRITICAL Fixed

SHB.2. mint() is restricted to the admin of

MINTER_ROLE, not to theminter itself

CRITICAL Fixed

SHB.3. Empty _authorizeUpgrade() makes upgrade

safety depend on an externalmodifier

HIGH Acknowledged

SHB.4. Hard-revert on transfers to the token contract

breaks integrations and loses funds

HIGH Fixed

SHB.5. pause() does not stopminting / burning HIGH Fixed

SHB.6. setMaxSupply() can raise the cap to an arbi-

trary value

HIGH Fixed

7

SHB.8. No storage-gap reserved for future upgrades MEDIUM Fixed

SHB.7. KommunitasTokenSelfTransferred uses the

spender instead of the token-owner

LOW Fixed

SHB.9. No way to rescue accidentally sent ERC-20 or

Ether

LOW Fixed

SHB.10. ERC20Permit cached domain-separator

breaks on chain-ID fork

LOW Mitigated

SHB.11. Self-transfer guard can be bypassed via

increaseAllowance()

LOW Fixed

8

3 FindingDetails

SHB.1 Wrong maxSupply maths caps supply at only 1600 to-

kens

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

init() tries to fall back to 2 billion tokens with 8 decimals, yet it multiplies instead of expo-

nentiating.2 × 10**9 × 10 × 8 = 160 000 000 000 base-units which is 1600whole tokens. Once

that amount isminted every furthermint() reverts, freezing any dependent protocol.

Files Affected:

SHB.1.1: KommunitasToken.sol

50 if (maxSupply_ == 0) maxSupply_ = 2 * 1e9 * 10 * decimals();

Recommendation:

Replacewith

maxSupply_ = 2_000_000_000 * 10 ** decimals();

and add a unit-test that assertsmaxSupply()==2_000_000_000 * 10 ** 8.

Updates

TheKommunitas team fixed this issue by changing themax supply to the correct value.

9

SHB.2 mint() is restricted to the admin of MINTER_ROLE, not

to theminter itself

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

The modifier is: onlyRole(getRoleAdmin(MINTER_ROLE)) (line 101). With OpenZeppelin’s

AccessControl, the admin of MINTER_ROLE defaults to DEFAULT_ADMIN_ROLE. Result: the

designatedminter cannot call mint()while the deployer (or any later admin) can.

Files Affected:

SHB.2.1: KommunitasToken.sol

98 function mint(address account, uint256 value)

99 public virtual override

100 onlyRole(getRoleAdmin(MINTER_ROLE))

Recommendation:

Change the modifier to onlyRole(MINTER_ROLE) or document clearly that only the admin

maymint.

Updates

The Kommunitas team fixed the issue by updating the modifier to the correct one

onlyRole(MINTER_ROLE).

10

SHB.3 Empty _authorizeUpgrade() makes upgrade safety

depend on an externalmodifier

• Severity : HIGH

• Status : Acknowledged

• Likelihood : 3

• Impact : 2

Description:

UUPS proxies rely on _authorizeUpgrade() to block arbitrary callers. The body is empty

and security is delegated solely to the proxied modifier from

ProxyAdminManagerUpgradeable, whose code is not in scope. If that modifier is ever

bypassed (e.g., via re-entrancy) an attacker can upgrade the implementation.

Files Affected:

SHB.3.1: KommunitasToken.sol

30 function _authorizeUpgrade(address newImplementation)

31 internal virtual override proxied {}

Recommendation:

Add an explicit check such as onlyRole(UPGRADER_ROLE) or

onlyRole(DEFAULT_ADMIN_ROLE) and grant that role exclusively to the on-chain

proxy-admin.

Updates

The Kommunitas team acknowledged the issue and stated that in the modifier, the sender

is validated against proxyAdminAddres

11

SHB.4 Hard-revert on transfers to the token contract breaks

integrations and loses funds

• Severity : HIGH

• Status : Fixed

• Likelihood : 2

• Impact : 3

Description:

transfer, transferFrom, and approve revert if the destination (or spender) is

address(this). Many DeFi protocols legitimately send tokens to the token contract itself

(e.g., staking, sushi-bar, burn-and-mint bridges). Accidental transfers are irrecoverable

and the token is unusable in such protocols. increaseAllowance() is not overridden, so

the guard can be bypassed.

Files Affected:

SHB.4.1: KommunitasToken.sol

78 if (to == address(this)) {

79 revert KommunitasTokenSelfTransferred(_msgSender(), value);

80 }

Recommendation:

Either allow such transfers or provide an owner-gated sweep()/rescue() function. If the

guard is retained,wrap it in a library-wide policy.

Updates

The Kommunitas team resolved this issue by removing all the reverts and adding the res-

cuable feature.

12

SHB.5 pause() does not stopminting / burning

• Severity : HIGH

• Status : Fixed

• Likelihood : 2

• Impact : 3

Description:

transfer() functions use whenNotPaused, but mint(), burn(), and burnFrom() (inherited)

donot. Duringan incidentanattackerwithminterprivilegescouldstill changetotalsupply.

Recommendation:

Add whenNotPaused to all supply-changing functions, or include the pause check in

_beforeTokenTransfer().

Updates

The Kommunitas team resolved the issue by adding the whenNotPaused modifier in the

burn andmint functions.

SHB.6 setMaxSupply()canraise thecaptoanarbitraryvalue

• Severity : HIGH

• Status : Fixed

• Likelihood : 2

• Impact : 3

Description:

There is no upper bound; an admin could inflate supply far beyond what token holders ex-

pect.

13

Files Affected:

SHB.6.1: KommunitasToken.sol

116 function setMaxSupply(uint256 newMaxSupply_)

117 public virtual

118 onlyRole(getRoleAdmin(DEFAULT_ADMIN_ROLE))

Recommendation:

Either remove the setter or enforce a project-approved hard limit (e.g., newMaxSupply_ <=

2_000_000_000 * 10**8).

Updates

TheKommunitas teamhas resolved this issue by adding a verification in the setMaxSupply

function. If the condition is notmet, the revertMaxSupplyReached is triggered.

SHB.7 KommunitasTokenSelfTransferred uses the spender

instead of the token-owner

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

transferFrom() reverts with KommunitasTokenSelfTransferred(_msgSender(),

value). The error’s first parameter ismeant to be the from address, not the spender.

Recommendation:

Change to KommunitasTokenSelfTransferred(from, value).

14

Updates

The Kommunitas team has resolved this issue by removing the revert if

destination/spender is address(this).

SHB.8 No storage-gap reserved for future upgrades

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

Description:

Upgradeable contracts should end with uint256[50] private __gap; to avoid storage-

layout collisions in later versions.

Recommendation:

Append the gap array at the end of the contract.

Updates

The Kommunitas teamhasmitigated this risk by implementing the upgrade in a newsmart

contract that inherits from the existing parent contract. This approach ensures safety and

prevents storage collisions.

SHB.9 Noway to rescue accidentally sent ERC-20 or Ether

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

15

Description:

Users (or integrations) may mistakenly send assets to the contract; they are locked for-

ever.

Recommendation:

Provide admin-gated rescueERC20() and rescueETH() functions.

Updates

TheKommunitas team resolved this issue by adding the rescuable feature.

SHB.10 ERC20Permit cached domain-separator breaks on

chain-ID fork

• Severity : LOW

• Status : Mitigated

• Likelihood : 1

• Impact : 2

Description:

ERC20PermitUpgradeablestores the initialchainId forever. If thechainhard-forks, allpre-

fork permits become invalid.

Recommendation:

Override DOMAIN_SEPARATOR() per OZ 4.9 guidelines to recompute the separator if

block.chainid changes.

Updates

The Kommunitas team stated that they are already using OZ 5.3.0 and have already con-

structed theDOMAIN_SEPARATORon the fly.

16

SHB.11 Self-transfer guard can be bypassed via

increaseAllowance()

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

approve() is guarded, but increaseAllowance() and decreaseAllowance() are inherited

unmodified, allowing the user to set a non-zero allowance for address(this).

Recommendation:

Override both functionswith the same self-transfer check or remove the guard entirely.

Updates

The Kommunitas team has resolved this issue by removing the revert if

destination/spender is address(this).

17

4 Best Practices

BP.1 decimals() can bemarked pure

Description:

The function decimals() returns the constant value 8 and does not read contract state.

Marking it pure instead of view enables a small byte-code and gas refund.

Files Affected:

BP.1.1: KommunitasToken.sol

70 function decimals() public pure override returns (uint8) {

71 return 8;

72 }

Status - Fixed

TheKommunitas teamhas resolved the issue by adding the ’pure’ keyword.

BP.2 Shorten custom-error names

Description:

Errors like KommunitasTokenMaxSupplyReached and KommunitasTokenSelfTransferred

increase deployment byte-code size. Shorter names (e.g. MaxSupplyReached) give

identical semantics at lower cost. This is style-level but saves ∼50–100 bytes in the

runtime.

Status - Fixed

TheKommunitas teamhas resolved the issue by shorting the error names.

18

BP.3 Use unchecked arithmetic once bounds are

proven

Description:

Inside mint() the code already checks that totalSupply + value ≤ _maxSupply. The

subsequent addition can bewrapped in an unchecked block to save∼25 gas.

Files Affected:

BP.3.1: KommunitasToken.sol

105 unchecked {

106 _totalSupply += value;

107 }

Status - Acknowledged

The teamacknowledged the issue since they are using the _mint() function fromOZ.

BP.4 Cache address(this) in an immutable

Description:

The transfer-to-self guard compares to == address(this) on every transfer. Storing the

contract’s address in an immutable variable TOKEN_ADDRESS once saves∼5 gas per call.

Files Affected:

BP.4.1: KommunitasToken.sol

20 address immutable TOKEN_ADDRESS = address(this); // set in initializer

21 ...

22 if (to == TOKEN_ADDRESS) {

23 revert SelfTransfer(msg.sender, value);

24 }

19

Status - Fixed

The Kommunitas team has resolved this issue by removing the revert if

destination/spender is address(this).

20

5 Conclusion

In this audit, we examined the design and implementation of Kommunitas Token contract

and discovered several issues of varying severity. Kommunitas team addressed 9 issues

raised in the initial report and implemented the necessary fixes, while classifying the rest

as a risk with low-probability of occurrence. Shellboxes’ auditors advised Kommunitas

Team to maintain a high level of vigilance and to keep those findings in mind in order to

avoid any future complications.

21

6 Scope Files

6.1 Audit

Files MD5Hash

token/KommunitasToken.sol 61e55e863c4fdedb05e79217fe30c5cd

6.2 Re-Audit

Files MD5Hash

token/KommunitasToken.sol 9948151e94c9a5e49349de9c48c5471c

22

7 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject thatengagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

23

For a Contract Audit, contact us at contact@shellboxes.com

24

mailto:contact@shellboxes.com

	Introduction
	About Kommunitas
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Wrong maxSupply maths caps supply at only 1600 tokens
	mint() is restricted to the admin of MINTER_ROLE, not to the minter itself
	Empty _authorizeUpgrade() makes upgrade safety depend on an external modifier
	Hard-revert on transfers to the token contract breaks integrations and loses funds
	pause() does not stop minting / burning
	setMaxSupply() can raise the cap to an arbitrary value
	KommunitasTokenSelfTransferred uses the spender instead of the token-owner
	No storage-gap reserved for future upgrades
	No way to rescue accidentally sent ERC-20 or Ether
	ERC20Permit cached domain-separator breaks on chain-ID fork
	Self-transfer guard can be bypassed via increaseAllowance()

	Best Practices
	decimals() can be marked pure
	Shorten custom-error names
	Use unchecked arithmetic once bounds are proven
	Cache address(this) in an immutable

	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

