
GiantMammoth

Smart Contract Security Audit

Prepared by ShellBoxes

April 3rd, 2023 -April 10th, 2023

Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client GiantMammothChain

Version 1.0

Classification Public

Scope

Repository Commit Hash

https://github.com/MammothDevMaster/
giantmammoth/tree/main/genesis/contracts

aef463d43ee7a1026d50e44d85b7c628f42ea62c

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://github.com/MammothDevMaster/giantmammoth/tree/main/genesis/contracts
https://github.com/MammothDevMaster/giantmammoth/tree/main/genesis/contracts
mailto:contact@shellboxes.com

Contents

1 Introduction 5

1.1 About GiantMammothChain . 5

1.2 Approach&Methodology . 6

1.2.1 RiskMethodology . 6

2 FindingsOverview 7

2.1 Disclaimer . 7

2.2 Summary . 7

2.3 Key Findings . 7

3 FindingDetails 9

SHB.1 Lost Shares In The advanceStakingRewardsModifier 9

SHB.2 Potential DesynchronizationBetweenStaking andStakingPool Contracts . 11

SHB.3 Division Before Multiplication Can Cause a Precision Loss in Reward Cal-

culation . 14

SHB.4 MismatchBetweenWhitepaperandCode ImplementationonRewardAllo-

cation . 15

SHB.5 Front run attack vector . 17

SHB.6 BannedDeployer CanStill Deploy Contracts 21

SHB.7 Usage of .transfer() to Transfer Ether . 22

SHB.8 MismatchBetweenWhitepaperandCode ImplementationonValidatorSe-

lection . 24

SHB.9 Missing Value Verification . 25

SHB.10 Lack of Check for Contract Address . 27

SHB.11 Inaccurate Comparison in _claimSystemFee Function 29

SHB.12 Floating Pragma . 30

SHB.13 Missing Setter For The _systemTreasury . 31

4 Best Practices 33

BP.1 RemoveUnusedContract GovernorVotes 33

BP.2 Optimize Struct Storage . 33

BP.3 RemoveUnnecessary Initializations . 34

BP.4 Avoid UnnecessaryUpdates toMappings . 35

BP.5 Remove Tautologies . 36

3

5 Conclusion 38

6 Scope Files 39

6.1 Audit . 39

6.2 Re-Audit . 39

7 Disclaimer 41

4

1 Introduction

Giant Mammoth Chain engaged ShellBoxes to conduct a security assessment on the Giant

Mammoth beginning on April 3rd, 2023 and ending April 10th, 2023. In this report, we detail

our methodical approach to evaluate potential security issues associated with the imple-

mentation of smart contracts, by exposing possible semantic discrepancies between the

smart contract code and design document, and by recommending additional ideas to opti-

mize theexistingcode. Our findings indicate that thecurrentversionofsmartcontractscan

still be enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About GiantMammothChain

Giant Mammoth Chain solves the problem of scalability and security and builds a

high-level network. It is designed for applications that build their own chain, including

higher speeds and lower network gas costs than before, EVM compatibility, and risk

mitigation.

GMMT is a project that started with inspiration from the Layer 1 and Layer 2 solutions that

are currently attracting a lot of attention. It is designed to go beyond the limitations of a

Layer 2 chain belonging to one Layer 1 chain, and ultimately build a true multi-chain by

belonging tomultiple Layer 1 chains.

Issuer GiantMammothChain

Website https://www.mmtchain.io/

Type Solidity Smart Contract

Whitepaper https://gmmtchain.io/whitepaper/giant_
mammoth_whitepaper_en.pdf

AuditMethod Whitebox

5

https://www.mmtchain.io/
https://gmmtchain.io/whitepaper/giant_mammoth_whitepaper_en.pdf
https://gmmtchain.io/whitepaper/giant_mammoth_whitepaper_en.pdf

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6

2 FindingsOverview

2.1 Disclaimer

During the audit, it was noted that the RuntimeUpgrade contract performs external calls

to another contract called the RuntimeUpgradeEvmHook. It is important to note that the

RuntimeUpgradeEvmHook contract is out of scope for this audit and was not reviewed as

part of this assessment.

While theRuntimeUpgradeEvmHookcontract isoutofscope, it isassumedthat thecon-

tract has been thoroughly tested and will always act as intended. However, it is important

tokeep inmind thatany issuesorvulnerabilitieswithin theRuntimeUpgradeEvmHookcon-

tract could potentially affect the security and reliability of theRuntimeUpgrade contract.

2.2 Summary

The following is a synopsis of our conclusions fromouranalysis of theGiantMammoth im-

plementation. During the first part of ouraudit,weexamine thesmart contract sourcecode

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.3 Key Findings

In general, the genesis smart contracts are well-designed and constructed, but their im-

plementationmightbe improvedbyaddressing thediscovered flaws,which include , 1 high-

severity, 5medium-severity, 6 low-severity, 1 informational-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Lost Shares In The advanceStakingRewards

Modifier

HIGH Acknowledged

SHB.2. Potential Desynchronization Between Staking

andStakingPool Contracts

MEDIUM Acknowledged

7

SHB.3. DivisionBeforeMultiplicationCanCauseaPre-

cision Loss in RewardCalculation

MEDIUM Fixed

SHB.4. Mismatch Between Whitepaper and Code Im-

plementation onRewardAllocation

MEDIUM Fixed

SHB.5. Front run attack vector MEDIUM Acknowledged

SHB.6. BannedDeployer CanStill Deploy Contracts MEDIUM Fixed

SHB.7. Usage of .transfer() to Transfer Ether LOW Fixed

SHB.8. Mismatch Between Whitepaper and Code Im-

plementation on Validator Selection

LOW Acknowledged

SHB.9. Missing Value Verification LOW Fixed

SHB.10. Lack of Check for Contract Address LOW Fixed

SHB.11. Inaccurate Comparison in _claimSystemFee

Function

LOW Fixed

SHB.12. Floating Pragma LOW Acknowledged

SHB.13. Missing Setter For The _systemTreasury INFORMATIONAL Fixed

8

3 FindingDetails

SHB.1 Lost Shares In The advanceStakingRewardsModifier

• Severity : HIGH

• Status : Acknowledged

• Likelihood : 3

• Impact : 2

Description:

The advanceStakingRewards modifier is responsible for re-delegating previous rewards,

but it has been identified that the StakingPool contract does not provide the staker with

shares as it does in the stake function implementation.

This issue can result in incorrect calculation of the staked amount and the rewards,

leading to discrepancies between the actual rewards and the rewards distributed to the

staker. Additionally, it can lead to confusion for users who will need to call the Staking

contract directly to undelegate or claim their rewards.

Files Affected:

SHB.1.1: StakingPool.sol

71 modifier advanceStakingRewards(address validator) {

72 {

73 ValidatorPool memory validatorPool = _getValidatorPool(validator)

↪→ ;

74 // claim rewards from staking contract

75 (uint256 stakedAmount, uint256 dustRewards) =

↪→ _calcUnclaimedDelegatorFee(validatorPool);

76 _stakingContract.claimDelegatorFee(validator);

77 // re-delegate just arrived rewards

78 if (stakedAmount > 0) {

79 _stakingContract.delegate{value : stakedAmount}(validator);

80 }

9

81 // increase total accumulated rewards

82 validatorPool.totalStakedAmount += stakedAmount;

83 validatorPool.dustRewards = dustRewards;

84 // save validator pool changes

85 _validatorPools[validator] = validatorPool;

86 }

87 _;

88 }

SHB.1.2: StakingPool.sol

118 function stake(address validator) external payable advanceStakingRewards

↪→ (validator) override {

119 ValidatorPool memory validatorPool = _getValidatorPool(validator);

120 uint256 shares = msg.value * _calcRatio(validatorPool) / 1e18;

121 // increase total accumulated shares for the staker

122 _stakerShares[validator][msg.sender] += shares;

123 // increase staking params for ratio calculation

124 validatorPool.totalStakedAmount += msg.value;

125 validatorPool.sharesSupply += shares;

126 // save validator pool

127 _validatorPools[validator] = validatorPool;

128 // delegate these tokens to the staking contract

129 _stakingContract.delegate{value : msg.value}(validator);

130 // emit event

131 emit Stake(validator, msg.sender, msg.value);

132 }

Recommendation:

To address this issue, we recommend modifying the code to include the calculation of

shares when redeeming rewards in the advanceStakingRewards modifier. This can be

achieved by including the same calculation of shares as in the stake function

implementation, ensuring consistency across the contract.

10

Updates

The Giant Mammoth Chain team acknowledged the issue, stating that the contract is not

being used, and there have been no transactions on the StakingPool contract for the last

6months.

SHB.2 Potential Desynchronization Between Staking and

StakingPool Contracts

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 3

• Impact : 1

Description:

TheStakingPool contract containsastake function,which isdesigned toallowusers todel-

egate their funds to a validator. This function calls the delegate function in theStaking con-

tract to perform the staking. However, it has been identified that a user can directly call the

delegate function, bypassing the stake function and causing a desynchronization between

the StakingPool andStaking contracts.

This issuecan lead toadesynchronizationof staked funds,whichcancauseaconfusion

for both thestakersand the validators. Thesame issueapplies to theunstake functionwith

the undelegate function.

Files Affected:

SHB.2.1: StakingPool.sol

118 function stake(address validator) external payable advanceStakingRewards

↪→ (validator) override {

119 ValidatorPool memory validatorPool = _getValidatorPool(validator);

120 uint256 shares = msg.value * _calcRatio(validatorPool) / 1e18;

121 // increase total accumulated shares for the staker

122 _stakerShares[validator][msg.sender] += shares;

11

123 // increase staking params for ratio calculation

124 validatorPool.totalStakedAmount += msg.value;

125 validatorPool.sharesSupply += shares;

126 // save validator pool

127 _validatorPools[validator] = validatorPool;

128 // delegate these tokens to the staking contract

129 _stakingContract.delegate{value : msg.value}(validator);

130 // emit event

131 emit Stake(validator, msg.sender, msg.value);

132 }

SHB.2.2: Staking.sol

184 function delegate(address validatorAddress) payable external override {

185 _delegateTo(msg.sender, validatorAddress, msg.value);

186 }

SHB.2.3: StakingPool.sol

134 function unstake(address validator, uint256 amount) external

↪→ advanceStakingRewards(validator) override {

135 ValidatorPool memory validatorPool = _getValidatorPool(validator)

↪→ ;

136 require(validatorPool.totalStakedAmount > 0, "StakingPool:

↪→ nothing to unstake");

137 // make sure user doesn't have pending undelegates (we don't

↪→ support it here)

138 require(_pendingUnstakes[validator][msg.sender].epoch == 0, "

↪→ StakingPool: undelegate pending");

139 // calculate shares and make sure user have enough balance

140 uint256 shares = amount * _calcRatio(validatorPool) / 1e18;

141 require(shares <= _stakerShares[validator][msg.sender], "

↪→ StakingPool: not enough shares");

142 // save new undelegate

143 IChainConfig chainConfig = IInjector(address(_stakingContract)).

↪→ getChainConfig();

12

144 _pendingUnstakes[validator][msg.sender] = PendingUnstake({

145 amount : amount,

146 shares : shares,

147 epoch : _stakingContract.nextEpoch() + chainConfig.

↪→ getUndelegatePeriod()

148 });

149 validatorPool.pendingUnstake += amount;

150 _validatorPools[validator] = validatorPool;

151 // undelegate

152 _stakingContract.undelegate(validator, amount);

153 // emit event

154 emit Unstake(validator, msg.sender, amount);

155 }

SHB.2.4: Staking.sol

188 function undelegate(address validatorAddress, uint256 amount)

↪→ external override {

189 _undelegateFrom(msg.sender, validatorAddress, amount);

190 }

Recommendation:

Tomitigate this issue, we recommendmodifying the code so that the delegate function can

only be invoked by the StakingPool contract. This can be achieved by adding a modifier to

the delegate function that checks if the caller is the StakingPool contract. By doing so, the

integrityandsecurityof thestakingprocesscanbemaintained. Thesamerecommendation

goes for the unstake functionwith the undelegate function.

Updates

TheGiantMammothChain teamacknowledged the issue, stating that thecontract isnotbe-

ing used, and there have been no transactions on the contract for the last 6 months. Fur-

thermore, the team is unable tomigrate existing staked users to StakingPool.

13

SHB.3 Division Before Multiplication Can Cause a Precision

Loss in RewardCalculation

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 2

• Impact : 2

Description:

It has been identified that there is a division beforemultiplication in the reward calculation

in the Staking contract, which can cause a precision loss. This issue can result in inaccu-

rate calculation of rewards, leading to discrepancies between the actual rewards and the

rewards distributed to the staker. It can also lead to confusion for users who may expect

the reward calculation to be accurate.

Files Affected:

SHB.3.1: Staking.sol

452 function _calcValidatorSnapshotEpochPayout(ValidatorSnapshot memory

↪→ validatorSnapshot) internal view returns (uint256 delegatorFee,

↪→ uint256 ownerFee, uint256 systemFee) {

453 uint256 totalDelegatedAmount = 0;

454 for(uint256 i=0; i <_activeValidatorsList.length; i++){

455 address validatorAddress = _activeValidatorsList[i];

456 Validator memory validator = _validatorsMap[validatorAddress];

457 ValidatorSnapshot memory snapshot = _validatorSnapshots[validator.

↪→ validatorAddress][validator.changedAt];

458 totalDelegatedAmount += uint256(snapshot.totalDelegated) *

↪→ BALANCE_COMPACT_PRECISION;

459 }

460 uint256 addEcoReward = validatorSnapshot.totalRewards +

↪→ ECOSYSTEM_REWARD * validatorSnapshot.totalDelegated /

↪→ totalDelegatedAmount * BALANCE_COMPACT_PRECISION ;

14

Recommendation:

To address this issue, we recommendmodifying the code to perform themultiplication be-

fore thedivision, ensuring that theprecision ismaintained, resulting in amoreaccurate re-

ward calculation.

Updates

TheGiantMammothChain teamresolvedthe issuebyperformingthemultiplicationsbefore

the division to preservemore precision in the output.

SHB.4 Mismatch Between Whitepaper and Code Implemen-

tation onRewardAllocation

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 2

• Impact : 2

Description:

TheGiantMammothWhitepaperstates that 1/16of thecompensation fromeach transaction

goes to the system funds, which can be used for system needs, such as applying bridging

costs. However, the code implementation only sends rewards to the system treasury if the

validator is slashed.

This discrepancy can lead to confusion for users and investorswhomay expect the re-

ward allocation tomatch the description in thewhitepaper. Additionally, it can result in in-

correct calculation of rewards and themisallocation of funds.

Files Affected:

SHB.4.1: Staking.sol

452 function _calcValidatorSnapshotEpochPayout(ValidatorSnapshot memory

↪→ validatorSnapshot) internal view returns (uint256 delegatorFee,

↪→ uint256 ownerFee, uint256 systemFee) {

15

https://gmmtchain.io/whitepaper/giant_mammoth_whitepaper_en.pdf

453 uint256 totalDelegatedAmount = 0;

454 for(uint256 i=0; i <_activeValidatorsList.length; i++){

455 address validatorAddress = _activeValidatorsList[i];

456 Validator memory validator = _validatorsMap[validatorAddress];

457 ValidatorSnapshot memory snapshot = _validatorSnapshots[validator.

↪→ validatorAddress][validator.changedAt];

458 totalDelegatedAmount += uint256(snapshot.totalDelegated) *

↪→ BALANCE_COMPACT_PRECISION;

459 }

460 uint256 addEcoReward = validatorSnapshot.totalRewards +

↪→ ECOSYSTEM_REWARD * validatorSnapshot.totalDelegated /

↪→ totalDelegatedAmount * BALANCE_COMPACT_PRECISION ;

461 // detect validator slashing to transfer all rewards to treasury

462 if (validatorSnapshot.slashesCount >= _chainConfigContract.

↪→ getMisdemeanorThreshold()) {

463 return (delegatorFee = 0, ownerFee = 0, systemFee =

↪→ validatorSnapshot.totalRewards);

464 } else if (validatorSnapshot.totalDelegated == 0) {

465 return (delegatorFee = 0, ownerFee = addEcoReward, systemFee = 0)

↪→ ;

466 }

467 // ownerFee_(18+4-4=18) = totalRewards_18 * commissionRate_4 / 1e4

468 ownerFee = addEcoReward * validatorSnapshot.commissionRate / 1e4 ;

469 // delegatorRewards = totalRewards - ownerFee

470 delegatorFee = addEcoReward - ownerFee;

471 // default system fee is zero for epoch

472 systemFee = 0;

473 }

Recommendation:

To address this issue, we recommend modifying the code to match the description in the

whitepaper. This can be achieved by adding logic to the reward allocation function to allo-

cate 1/16 of the compensation to the system funds for each transaction, as described in the

16

whitepaper. By doing so, the reward allocation will be consistent with the whitepaper, en-

suring accuracy and transparency in the reward distribution process.

Updates

TheGiantMammoth Chain team resolved the issue, stating that the allocation is being per-

formed by themainnet core and not in the contracts.

SHB.5 Front run attack vector

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 3

• Impact : 1

Description:

All the contracts use a function called ctor to initialize the state,which canbe front-runned

by an attacker.

This issuecan result in the initializationof the contract statewithmaliciousor incorrect

values, leadingtopotentialsecurityvulnerabilitiesor incorrect functionalityof thecontract.

The Injector contract also has two functions, namely init and initManually, that are used

to initialize the contract, and both functions are vulnerable to front-run attacks.

Exploit Scenario:

A front-run attack occurswhen an attacker listens to themempool and detects a transac-

tion to the ctor or init functionwith a lowgas price. The attacker then submits a transaction

to thesame functionwithahighergasprice, effectively replacing theoriginal transaction in

themempool. This allows the attacker to control the initialization of the contract statewith

malicious or incorrect values.

The initManually function is particularly susceptible because it requires contract ad-

dresses to be passed as parameters, which can be intercepted and manipulated by an at-

tacker. Asaresult, anattackercouldpotentiallycall the initManually functionaftercontract

17

deploymentand initializeall thecontractswith incorrectormaliciousvalues, leading topo-

tential security vulnerabilities or incorrect functionality of the contract.

Files Affected:

SHB.5.1: ChainConfig.sol

33 function ctor(

34 uint32 activeValidatorsLength,

35 uint32 epochBlockInterval,

36 uint32 misdemeanorThreshold,

37 uint32 felonyThreshold,

38 uint32 validatorJailEpochLength,

39 uint32 undelegatePeriod,

40 uint256 minValidatorStakeAmount,

41 uint256 minStakingAmount

42) external whenNotInitialized {

SHB.5.2: DeployerProxy.sol

41 function ctor(address[] memory deployers) external whenNotInitialized {

42 for (uint256 i = 0; i < deployers.length; i++) {

43 _addDeployer(deployers[i]);

44 }

45 }

SHB.5.3: Governance.sol

17 function ctor(uint256 newVotingPeriod) external whenNotInitialized {

18 _setVotingPeriod(newVotingPeriod);

19 }

SHB.5.4: RuntimeUpgrade.sol

18 function ctor(address evmHookAddress) external whenNotInitialized {

19 _evmHookAddress = evmHookAddress;

20 }

18

SHB.5.5: Staking.sol

86 function ctor(address[] calldata validators, uint256[] calldata

↪→ initialStakes, uint16 commissionRate) external whenNotInitialized

↪→ {

SHB.5.6: SystemRewards.sol

43 function ctor(address[] calldata accounts, uint16[] calldata shares)

↪→ external whenNotInitialized {

SHB.5.7: Injector.sol

62 function init() external initializer {

63 // BSC compatible addresses

64 _stakingContract = IStaking(0

↪→ x0000000000000000000000000000000000001000);

65 _slashingIndicatorContract = ISlashingIndicator(0

↪→ x0000000000000000000000000000000000001001);

66 _systemRewardContract = ISystemReward(0

↪→ x0000000000000000000000000000000000001002);

67 // BAS defined addresses

68 _stakingPoolContract = IStakingPool(0

↪→ x0000000000000000000000000000000000007001);

69 _governanceContract = IGovernance(0

↪→ x0000000000000000000000000000000000007002);

70 _chainConfigContract = IChainConfig(0

↪→ x0000000000000000000000000000000000007003);

71 _runtimeUpgradeContract = IRuntimeUpgrade(0

↪→ x0000000000000000000000000000000000007004);

72 _deployerProxyContract = IDeployerProxy(0

↪→ x0000000000000000000000000000000000007005);

73 // invoke constructor

74 _invokeContractConstructor();

75 }

19

SHB.5.8: Injector.sol

77 function initManually(

78 IStaking stakingContract,

79 ISlashingIndicator slashingIndicatorContract,

80 ISystemReward systemRewardContract,

81 IStakingPool stakingPoolContract,

82 IGovernance governanceContract,

83 IChainConfig chainConfigContract,

84 IRuntimeUpgrade runtimeUpgradeContract,

85 IDeployerProxy deployerProxyContract

86) public initializer {

87 // BSC-compatible

88 _stakingContract = stakingContract;

89 _slashingIndicatorContract = slashingIndicatorContract;

90 _systemRewardContract = systemRewardContract;

91 // BAS-defined

92 _stakingPoolContract = stakingPoolContract;

93 _governanceContract = governanceContract;

94 _chainConfigContract = chainConfigContract;

95 _runtimeUpgradeContract = runtimeUpgradeContract;

96 _deployerProxyContract = deployerProxyContract;

97 // invoke constructor

98 _invokeContractConstructor();

99 }

Recommendation:

To address this issue, we recommend deploying the contract and executing the ctor or the

init/initManually function in thecaseof the Injector in thesametransactiontoprevent front-

runattacks, oraddingaccesscontrol to thectorand init/initManually functions, so it cannot

be initialized by anyone.

20

Updates

TheGiantMammothChain teamacknowledged the issue, stating that the ctor functionwas

never called other thanwhen the genesis blockwas created.

SHB.6 BannedDeployer CanStill Deploy Contracts

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 3

• Impact : 1

Description:

The _registerDeployedContract function checks that the deployer is allowed by checking

the isDeployer function. However, it doesn’t check if the deployer is banned. A banned de-

ployermight still deploy contracts.

Files Affected:

SHB.6.1: DeployerProxy.sol

108 function _registerDeployedContract(address deployer, address impl)

↪→ internal {

109 // make sure this call is allowed

110 require(isDeployer(deployer), "Deployer: deployer is not allowed");

111 // remember who deployed contract

112 SmartContract memory dc = _smartContracts[impl];

113 require(dc.impl == address(0x00), "Deployer: contract is deployed

↪→ already");

114 dc.state = ContractState.Enabled;

115 dc.impl = impl;

116 dc.deployer = deployer;

117 _smartContracts[impl] = dc;

118 // emit event

21

119 emit ContractDeployed(deployer, impl);

120 }

Recommendation:

We recommend adding a check for banned deployer before registering the deployed con-

tract.

SHB.6.2: DeployerProxy.sol

require(!isBanned(deployer), "Deployer: deployer is banned");

Updates

The Giant Mammoth Chain team resolved the issue by adding a require check that makes

sure the deployer is not bannedwhen the _registerDeployedContract is being called.

SHB.7 Usage of .transfer() to Transfer Ether

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

During the audit, it was noted that the project is using the .transfer() function to transfer

ether between contracts. While .transfer() is a built-in function in Solidity and provides a

quick andeasyway to transfer ether, it is important to note that it is a dangerous function to

use. Although transfer() and send() are recommended as a security best-practice to pre-

vent reentrancy attacks because they only forward 2300 gas, the gas repricing of opcodes

may break deployed contracts.

22

Files Affected:

SHB.7.1: StakingPool.sol

176 delete _pendingUnstakes[validator][msg.sender];

177 // its safe to use call here (state is clear)

178 require(address(this).balance >= amount, "StakingPool: not enough

↪→ balance");

179 payable(address(msg.sender)).transfer(amount);

180 // emit event

181 emit Claim(validator, msg.sender, amount);

SHB.7.2: SystemReward.sol

102 if (_systemTreasury != address(0x00)) {

103 address payable payableTreasury = payable(_systemTreasury);

104 payableTreasury.transfer(amountToPay);

105 emit FeeClaimed(_systemTreasury, amountToPay);

106 return;

107 }

SHB.7.3: SystemReward.sol

110 for (uint256 i = 0; i < _distributionShares.length; i++) {

111 DistributionShare memory ds = _distributionShares[i];

112 uint256 accountFee = amountToPay * ds.share / SHARE_MAX_VALUE;

113 payable(ds.account).transfer(accountFee);

114 emit FeeClaimed(ds.account, accountFee);

115 totalPaid += accountFee;

116 }

Recommendation:

Consider using .call{ value: ... }(””) instead, without hard-coded gas limits alongwith reen-

trancy guards for reentrancy protection.

23

Updates

The Giant Mammoth Chain team resolved the issue by implementing the use of .call{ value:

... }(””) for transferring ETH from the contract.

SHB.8 Mismatch Between Whitepaper and Code Implemen-

tation on Validator Selection

• Severity : LOW

• Status : Acknowledged

• Likelihood : 2

• Impact : 1

Description:

TheGiantMammothWhitepaper states that the node consists of 21 validators, and that new

validators with themost GMMT staking are selected each day. However, the code does not

verify the number of validators to be 21, and the number of validators is modifiable by the

governance. This discrepancy can lead to confusion for users and investors, whomay ex-

pect the number of validators to be fixed at 21, as described in thewhitepaper. Additionally,

it can result in incorrect calculation of rewards and themisallocation of funds.

Files Affected:

SHB.8.1: ChainConfig.sol

65 function setActiveValidatorsLength(uint32 newValue) external override

↪→ onlyFromGovernance {

66 uint32 prevValue = _consensusParams.activeValidatorsLength;

67 _consensusParams.activeValidatorsLength = newValue;

68 emit ActiveValidatorsLengthChanged(prevValue, newValue);

69 }

24

https://gmmtchain.io/whitepaper/giant_mammoth_whitepaper_en.pdf

Recommendation:

To address this issue, we recommend modifying the code to match the description in the

whitepaper. This can be achieved by adding logic to the contract to ensure that the number

of validators is fixedat 21, and that newvalidatorswith themostGMMTstakingare selected

each day. By doing so, the contract will be consistent with the description in the whitepa-

per, ensuring accuracy and transparency in the validator selection and reward distribution

process.

Updates

TheGiantMammothChain teamacknowledged the issue, stating that thewhitepaper is be-

ing updated tomatch the code.

SHB.9 Missing Value Verification

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The ctor functionsdonot include value verification for thearguments,which can lead to the

initialization of the contract state with invalid or unexpected values. This issue can cause

potential security vulnerabilities or incorrect functionality of the contract.

Files Affected:

SHB.9.1: ChainConfig.sol

33 function ctor(

34 uint32 activeValidatorsLength,

35 uint32 epochBlockInterval,

36 uint32 misdemeanorThreshold,

37 uint32 felonyThreshold,

25

38 uint32 validatorJailEpochLength,

39 uint32 undelegatePeriod,

40 uint256 minValidatorStakeAmount,

41 uint256 minStakingAmount

42) external whenNotInitialized {

SHB.9.2: DeployerProxy.sol

41 function ctor(address[] memory deployers) external whenNotInitialized {

42 for (uint256 i = 0; i < deployers.length; i++) {

43 _addDeployer(deployers[i]);

44 }

45 }

SHB.9.3: Governance.sol

17 function ctor(uint256 newVotingPeriod) external whenNotInitialized {

18 _setVotingPeriod(newVotingPeriod);

19 }

SHB.9.4: RuntimeUpgrade.sol

18 function ctor(address evmHookAddress) external whenNotInitialized {

19 _evmHookAddress = evmHookAddress;

20 }

SHB.9.5: Staking.sol

86 function ctor(address[] calldata validators, uint256[] calldata

↪→ initialStakes, uint16 commissionRate) external whenNotInitialized

↪→ {

SHB.9.6: SystemRewards.sol

43 function ctor(address[] calldata accounts, uint16[] calldata shares)

↪→ external whenNotInitialized {

26

Recommendation:

Toaddress this issue,we recommendmodifying the code to include input validation checks

in the ctor functions for the arguments’ values. These checks should ensure that the ar-

gument values fall within the expected range of values, preventing the initialization of the

contract state with invalid values. By adding input validation checks, the contract will be

better protectedagainst unexpected input values, ensuring the integrity andsecurity of the

initialization process.

Updates

The Giant Mammoth Chain team resolved the issue by adding the input checks for the ctor

functions.

SHB.10 Lack of Check for Contract Address

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The initManually function is responsible for manually initializing the contracts used by the

Injector contract. This function takes several contract addresses as input parameters and

assigns them to the appropriate variables.

However, there is an issue with this implementation as the function does not check

whether the addresses passed as parameters are actually contract addresses. As a

result, if an attacker passes a non-contract address as a parameter to the initManually

function, it could result in the systembehaving unexpectedly or aDenial of Service.

27

Files Affected:

SHB.10.1: Injector.sol

77 function initManually(

78 IStaking stakingContract,

79 ISlashingIndicator slashingIndicatorContract,

80 ISystemReward systemRewardContract,

81 IStakingPool stakingPoolContract,

82 IGovernance governanceContract,

83 IChainConfig chainConfigContract,

84 IRuntimeUpgrade runtimeUpgradeContract,

85 IDeployerProxy deployerProxyContract

86) public initializer {

87 // BSC-compatible

88 _stakingContract = stakingContract;

89 _slashingIndicatorContract = slashingIndicatorContract;

90 _systemRewardContract = systemRewardContract;

91 // BAS-defined

92 _stakingPoolContract = stakingPoolContract;

93 _governanceContract = governanceContract;

94 _chainConfigContract = chainConfigContract;

95 _runtimeUpgradeContract = runtimeUpgradeContract;

96 _deployerProxyContract = deployerProxyContract;

97 // invoke constructor

98 _invokeContractConstructor();

99 }

Recommendation:

We recommend adding a check to ensure that the addresses passed as parameters to the

initManually functionarevalidcontractaddresses. Thiscanbedonebyusing the isContract

function from theOpenZeppelin library to check if the address is a contract address before

assigning it to a variable.

28

Updates

The Giant Mammoth Chain team resolved the issue by adding a check that makes sure the

addresses provided in the arguments represent contracts.

SHB.11 Inaccurate Comparison in _claimSystemFee Function

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 1

Description:

The _claimSystemFee function is responsible for handling the received portion of the

rewards. The function checks the amount to be paid, amountToPay, against the

TREASURY_MIN_CLAIM_THRESHOLD constant before distributing the funds. If the

amountToPay is less than or equal to the TREASURY_MIN_CLAIM_THRESHOLD, the

functionwill not proceedwith the distribution.

However, there is an issue with the comparison between amountToPay and

TREASURY_MIN_CLAIM_THRESHOLD. If amountToPay is equal to the

TREASURY_MIN_CLAIM_THRESHOLD, the function will not distribute the shares, even

though the threshold has been met. This can potentially cause issues with the proper

functioning of the treasury system.

Files Affected:

SHB.11.1: SystemReward.sol

97 function _claimSystemFee() internal {

98 uint256 amountToPay = _systemFee;

99 if (amountToPay <= TREASURY_MIN_CLAIM_THRESHOLD) {

100 return;

101 }

29

Recommendation:

Werecommend changing the comparison in the _claimSystemFee function to a strict com-

parison.

SHB.11.2: SystemReward.sol

97 function _claimSystemFee() internal {

98 uint256 amountToPay = _systemFee;

99 if (amountToPay < TREASURY_MIN_CLAIM_THRESHOLD) {

100 return;

101 }

Bymaking thischange, thecontract’s functionalityandreliabilitycanbe improved,ensuring

that the system treasury operates as intended.

Updates

The Giant Mammoth Chain team resolved the issue by changing the comparison in the

_claimSystemFee function to a strict comparison.

SHB.12 Floating Pragma

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 1

Description:

The contract makes use of the floating-point pragma 0.8.0. Contracts should be deployed

using the same compiler version. Locking the pragma helps ensure that contractswill not

unintentionallybedeployedusinganotherpragma,which insomecasesmaybeanobsolete

version, thatmay introduce issues to the contract system.

Files Affected:

All contracts

30

Recommendation:

Consider locking the pragma version. It is advised that the floating pragma should not be

used in production.

Updates

TheGiantMammothChain teamacknowledged the issue, stating that theywill be fixing the

pragma version to 0.8.11 in the next updates.

SHB.13 Missing Setter For The _systemTreasury

• Severity : INFORMATIONAL

• Status : Fixed

• Likelihood : 1

• Impact : 0

Description:

The_systemTreasuryaddress isacritical componentof thecontract that receivesaportion

of the transaction fees for systemneeds. However, there is no functionwithin the contract

that allows for the _systemTreasury address to be updated.

This means that if, for any reason, the treasury address needs to be updated, such as

a change in ownership or the need for a new address, it is currently impossible to do so.

Thiscouldpotentiallycauseproblems in the future if thecurrent treasuryaddressbecomes

compromised or is no longer accessible.

Files Affected:

SHB.13.1: SystemReward.sol

29 address internal _systemTreasury;

31

Recommendation:

We recommend adding a function to the contract that allows for the _systemTreasury ad-

dress to be updated. This function should only be accessible by the governance.

Updates

The Giant Mammoth Chain team resolved the issue by adding a setter (setNewSystemRe-

ward) to allow the _systemTreasury address to be updated.

32

4 Best Practices

BP.1 RemoveUnusedContract GovernorVotes

Description:

When importing external contracts into a smart contract project, it is important to ensure

that the importedcontractsareactuallyusedintheproject. Importingunusedcontractscan

unnecessarily increase the project’s codebase and complexity, which can lead to potential

security vulnerabilities or performance issues.

It has been identified that the GovernorVotes contract from OpenZeppelin is imported

into the project but is not used anywhere in the code. To adhere to best practices andmini-

mize potential security risks,we recommend removing the import statement and its asso-

ciated contract.

By removing unused contracts, the project’s codebase can be simplified and the risk of

potential security vulnerabilities can be reduced.

Files Affected:

BP.1.1: Governance.sol

6 import "@openzeppelin/contracts/governance/extensions/GovernorVotes.sol

↪→ ";

Status - Acknowledged

BP.2 Optimize Struct Storage

Description:

Whendeclaringastruct inasmartcontractproject, theorder inwhichthestruct’sattributes

are declared can have an impact on the storage size and efficiency of the contract.

It has been identified that the ValidatorDelegation struct in the project can be optimized

for storageby rearranging theorder of its attributes. Bydeclaring thedelegateGapandun-

33

delegateGapattributesafter thedelegateQueueandundelegateQueueattributes, theseat-

tributes can be stored in the same slot, reducing the overall storage size of the struct.

Files Affected:

BP.2.1: Staking.sol

63 struct ValidatorDelegation {

64 DelegationOpDelegate[] delegateQueue;

65 uint64 delegateGap;

66 DelegationOpUndelegate[] undelegateQueue;

67 uint64 undelegateGap;

68 }

Toadhere to best practicesandoptimize storage in the contract,we recommend rearrang-

ing the ValidatorDelegation struct’s attributes as follows:

BP.2.2: Staking.sol

63 struct ValidatorDelegation {

64 DelegationOpDelegate[] delegateQueue;

65 DelegationOpUndelegate[] undelegateQueue;

66 uint64 delegateGap;

67 uint64 undelegateGap;

68 }

Status - Fixed

BP.3 RemoveUnnecessary Initializations

Description:

In Solidity, variables are automatically initialized to their default values when they are de-

clared. For example, the default value for a uint256 variable is 0, and the default value for a

bool variable is false.

It has been identified that there are instances in the codewhere variables areunneces-

sarily initialized to their default values, which can result in unnecessary gas consumption

and increased contract size.

34

To adhere to best practices and optimize the contract’s performance, we recommend

removing any unnecessary initializationwith a variable’s default value.

Files Affected:

BP.3.1: Staking.sol

88 uint256 totalStakes = 0;

BP.3.2: SystemReward.sol

55 uint16 totalShares = 0;

Status - Acknowledged

BP.4 Avoid Unnecessary Updates toMappings

Description:

Whenworkingwithmappings in Solidity, it is important to ensure that updates tomappings

are onlymadewhen necessary. Unnecessary updates tomappings can result in increased

gasconsumptionand longercontract execution times. It hasbeen identified that there isan

unnecessaryupdatetothe_validatorsMapmapping inthe_delegateTofunction. In thiscase,

the mapping is updated even though the validator struct has not beenmodified. To adhere

to best practices and optimize the contract’s performance, we recommend removing the

unnecessary update to the _validatorsMap mapping in the _delegateTo function. By doing

so, the contract can reduce its gas consumption and improve its execution time.

Files Affected:

BP.4.1: Staking.sol

242 function _delegateTo(address fromDelegator, address toValidator, uint256

↪→ amount) internal {

243 // check is minimum delegate amount

244 require(amount >= _chainConfigContract.getMinStakingAmount() &&

↪→ amount != 0, "Staking: amount is too low");

35

245 require(amount % BALANCE_COMPACT_PRECISION == 0, "Staking: amount

↪→ have a remainder");

246 // make sure amount is greater than min staking amount

247 // make sure validator exists at least

248 Validator memory validator = _validatorsMap[toValidator];

249 require(validator.status != ValidatorStatus.NotFound, "Staking:

↪→ validator not found");

250 uint64 atEpoch = _nextEpoch();

251 // Lets upgrade next snapshot parameters:

252 // + find snapshot for the next epoch after current block

253 // + increase total delegated amount in the next epoch for this

↪→ validator

254 // + re-save validator because last affected epoch might change

255 ValidatorSnapshot storage validatorSnapshot =

↪→ _touchValidatorSnapshot(validator, atEpoch);

256 validatorSnapshot.totalDelegated += uint112(amount /

↪→ BALANCE_COMPACT_PRECISION);

257 _validatorsMap[toValidator] = validator;

Status - Acknowledged

BP.5 Remove Tautologies

Description:

In programming, a tautology is a logical expression that is always true, regardless of its in-

put values. InSolidity, it is important to avoid tautologies in code, as they canmake the code

more difficult to read and potentially introduce unnecessary security risks.

It hasbeen identified that thereare instances in thecontractwhere tautologiesareused

in require statements to check that a value is greater thanor equal to aminimumvalueof 0.

Toadhere tobestpracticesandsimplify thecode,werecommendremoving the tautolo-

gies from the require statements and checking only the upper bound.

36

Files Affected:

BP.5.1: SystemReward.sol

59 require(share >= SHARE_MIN_VALUE && share <= SHARE_MAX_VALUE, "

↪→ SystemReward: bad share distribution");

BP.5.2: Staking.sol

495 require(commissionRate >= COMMISSION_RATE_MIN_VALUE && commissionRate <=

↪→ COMMISSION_RATE_MAX_VALUE, "Staking: bad commission rate");

Status - Acknowledged

37

5 Conclusion

In this audit, we examined the design and implementation of Giant Mammoth contract and

discovered several issues of varying severity. GiantMammoth Chain teamaddressed 8 is-

sues raised in the initial report and implemented the necessary fixes, while classifying the

rest as a riskwith low-probability of occurrence. Shellboxes’ auditors advisedGiantMam-

moth Chain Team tomaintain a high level of vigilance and to keep those findings inmind in

order to avoid any future complications.

38

6 Scope Files

6.1 Audit

Files MD5Hash

contracts/ChainConfig.sol b9f47e453f71b08fd24f9efef5f118bb

contracts/DeployerProxy.sol 2e869a770fdc12614262ea14ffa0337e

contracts/Governance.sol d56241249d744846bd70b23694e13475

contracts/Injector.sol 05ebb6b39b5e647ccfb033c6bf008986

contracts/RuntimeUpgrade.sol f14f0d0547007397858e37f2f0fdb0cb

contracts/SlashingIndicator.sol dd5081addaaa070750f430260646bd4d

contracts/Staking.sol aee412b82043e6a8c87b41c8bb0025f3

contracts/StakingPool.sol c690b0ed5306560a1eb119b12793c00b

contracts/SystemReward.sol ceba86075f29f10c0cd05bbe4cd279cc

6.2 Re-Audit

Files MD5Hash

contracts/ChainConfig.sol ad9550b9116e5a25247ce208e2851a77

contracts/DeployerProxy.sol 22d3f11527ec3359dc73639aa1c99057

contracts/Governance.sol afd3126daeaa14f84055b8f5334fac86

contracts/Injector.sol 5a84fb21f4f4600a42686f7f86dc9494

contracts/RuntimeUpgrade.sol 9656028c89a800980f26ca18586ec673

39

contracts/SlashingIndicator.sol 3b782ab7bda0f17cc04b56adfbf97c1a

contracts/Staking.sol 5b3bbe8b24594011dbffd4213a03b808

contracts/StakingPool.sol 4d8f313b3ab44878fa6a9413d1b47412

contracts/SystemReward.sol ee19126557135a2f9596f8343c508cd4

40

7 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject thatengagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

41

For a Contract Audit, contact us at contact@shellboxes.com

42

mailto:contact@shellboxes.com

	Introduction
	About Giant Mammoth Chain
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Disclaimer
	Summary
	Key Findings

	Finding Details
	Lost Shares In The advanceStakingRewards Modifier
	Potential Desynchronization Between Staking and StakingPool Contracts
	Division Before Multiplication Can Cause a Precision Loss in Reward Calculation
	Mismatch Between Whitepaper and Code Implementation on Reward Allocation
	Front run attack vector
	Banned Deployer Can Still Deploy Contracts
	Usage of .transfer() to Transfer Ether
	Mismatch Between Whitepaper and Code Implementation on Validator Selection
	Missing Value Verification
	Lack of Check for Contract Address
	Inaccurate Comparison in _claimSystemFee Function
	Floating Pragma
	Missing Setter For The _systemTreasury

	Best Practices
	Remove Unused Contract GovernorVotes
	Optimize Struct Storage
	Remove Unnecessary Initializations
	Avoid Unnecessary Updates to Mappings
	Remove Tautologies

	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

