SHELLBOXES

Giant Mammoth

Smart Contract Security Audit

Prepared by ShellBoxes
April 37,2023 - April 10t", 2023
Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Giant Mammoth Chain
Version 1.0
Classification Public
Scope
Repository Commit Hash

https://github.com/MammothDevMaster/
giantmammoth/tree/main/genesis/contracts

aef463d43ee7al026d50e44d85b7c628f42eab2c

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

https://github.com/MammothDevMaster/giantmammoth/tree/main/genesis/contracts
https://github.com/MammothDevMaster/giantmammoth/tree/main/genesis/contracts
mailto:contact@shellboxes.com

Conte

nts

1 Introduction

1.1
1.2

About GiantMammothChain,
Approach &Methodology
1.21 RiskMethodology

2 Findings Overview

2.1
2.2
2.3

Disclaimer
SUMMaArY e e
KeyFindings

3 Finding Details

SHB.1
SHB.2
SHB.3

SHB.4
SHB.5
SHB.6
SHB.7

SHB.8

SHB.9

Lost SharesInThe advanceStakingRewards Modifier
Potential Desynchronization Between Staking and StakingPool Contracts .
Division Before Multiplication Can Cause a Precision Loss in Reward Cal-
culation
Mismatch Between Whitepaper and Code Implementation on Reward Allo-
cation L
Frontrunattackvector. L
Banned Deployer Can Still Deploy Contracts
Usage of .transfer() toTransferEther
Mismatch Between Whitepaper and Code Implementation on Validator Se-
lection
Missing Value Verification o oo

SHB.10 Lack of Check for ContractAddress
SHB.11 Inaccurate Comparisonin _claimSystemFee Function
SHB.12 FloatingPragma
SHB.13 Missing Setter For The _systemTreasury

4 BestPractices

BP.1

BP.2
BP.3
BP.4
BP.5

Remove Unused Contract GovernorVotes
Optimize StructStorage
Remove Unnecessary Initializations
Avoid Unnecessary UpdatestoMappings
RemoveTautologies

o~ O~ O1 Ol

N N N3

14

15
17
21
22

5 Conclusion

6 ScopeFiles
6.1 Audit . .
6.2 Re-Audit

7 Disclaimer

38

39
39
39

41

1 Introduction

Giant Mammoth Chain engaged ShellBoxes to conduct a security assessment on the Giant
Mammoth beginning on April 3, 2023 and ending April 10t", 2023. In this report, we detail
our methodical approach to evaluate potential security issues associated with the imple-
mentation of smart contracts, by exposing possible semantic discrepancies between the
smart contract code and design document, and by recommending additional ideas to opti-
mize the existing code. Our findings indicate that the current version of smart contracts can
still be enhanced further due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About Giant Mammoth Chain

Giant Mammoth Chain solves the problem of scalability and security and builds a
high-level network. It is designed for applications that build their own chain, including
higher speeds and lower network gas costs than before, EVM compatibility, and risk
mitigation.

GMMT is a project that started with inspiration from the Layer 1and Layer 2 solutions that
are currently attracting a lot of attention. It is designed to go beyond the limitations of a
Layer 2 chain belonging to one Layer 1 chain, and ultimately build a true multi-chain by
belonging to multiple Layer 1chains.

Issuer Giant Mammoth Chain

Website https://www.mmtchain.io/

Type Solidity Smart Contract

Whitepaper https://gmmtchain.io/whitepaper/giant_

mammoth_whitepaper_en.pdf

Audit Method Whitebox

https://www.mmtchain.io/
https://gmmtchain.io/whitepaper/giant_mammoth_whitepaper_en.pdf
https://gmmtchain.io/whitepaper/giant_mammoth_whitepaper_en.pdf

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.
— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact andis categorized into four levels, namely Critical, High, Medium, and Low.

5 High Critical
S Medium
£
— Low
High Medium Low
Likelihood

2 Findings Overview

2.1 Disclaimer

During the audit, it was noted that the RuntimeUpgrade contract performs external calls
to another contract called the RuntimeUpgradeEvmHook. It is important to note that the
RuntimeUpgradeEvmHook contract is out of scope for this audit and was not reviewed as
part of this assessment.

While the RuntimeUpgradeEvmHook contractis out of scope, itis assumed that the con-
tract has been thoroughly tested and will always act as intended. However, it is important
to keepinmindthatanyissuesor vulnerabilities withinthe RuntimeUpgradeEvmHook con-
tract could potentially affect the security and reliability of the RuntimeUpgrade contract.

2.2 Summary

The following is a synopsis of our conclusions from our analysis of the Giant Mammoth im-
plementation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.3 KeyFindings

In general, the genesis smart contracts are well-designed and constructed, but their im-
plementation might be improved by addressing the discovered flaws, whichinclude, Thigh-

severity, 5 medium-severity, 6 low-severity, | informational-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Lost Shares In The advanceStakingRewards
Modifier

Acknowledged

SHB.2. Potential Desynchronization Between Staking
and StakingPool Contracts

Acknowledged

SHB.3. Division Before Multiplication Can Cause aPre-
cision Loss in Reward Calculation

SHB.4. Mismatch Between Whitepaper and Code Im-
plementation on Reward Allocation

SHB.5. Front run attack vector

SHB.6. Banned Deployer Can Still Deploy Contracts

SHB.7. Usage of .transfer() to Transfer Ether

SHB.8. Mismatch Between Whitepaper and Code Im-
plementation on Validator Selection

SHB.9. Missing Value Verification

SHB.10. Lack of Check for Contract Address

SHB.11. Inaccurate Comparison in _claimSystemFee
Function

SHB.12. Floating Pragma

SHB.13. Missing Setter For The _systemTreasury

Fixed

Fixed

Acknowledged

Fixed

Fixed

Acknowledged

Fixed

Fixed

Fixed

Acknowledged

INFORMATIONAL | Fixed

3 Finding Details

SHB.1 LostSharesInThe advanceStakingRewards Modifier

- Severity: [HIGH - Likelihood: 3

- Status: Acknowledged - Impact: 2

The advanceStakingRewards modifier is responsible for re-delegating previous rewards,
but it has been identified that the StakingPool contract does not provide the staker with
shares as it doesin the stake function implementation.

This issue can result in incorrect calculation of the staked amount and the rewards,
leading to discrepancies between the actual rewards and the rewards distributed to the
staker. Additionally, it can lead to confusion for users who will need to call the Staking
contract directly to undelegate or claim their rewards.

SHB.1.1: StakingPool.sol

n modifier advanceStakingRewards(address validator) {

72 {

73 ValidatorPool memory validatorPool = _getValidatorPool(validator)
—

7 // claim rewards from staking contract

75 (uint256 stakedAmount, uint256 dustRewards) =
— _calcUnclaimedDelegatorFee(validatorPool) ;

7% _stakingContract.claimDelegatorFee(validator);

7 // re-delegate just arrived rewards

78 if (stakedAmount > 0) {

79 _stakingContract.delegate{value : stakedAmount}(validator);

80 }

81 // increase total accumulated rewards

82 validatorPool.totalStakedAmount += stakedAmount;
83 validatorPool .dustRewards = dustRewards;

84 // save validator pool changes

85 _validatorPools[validator] = validatorPool;

8 }

87 _s

8)

SHB.1.2: StakingPool.sol

ne function stake(address validator) external payable advanceStakingRewards

< (validator) override {

19 ValidatorPool memory validatorPool = _getValidatorPool(validator);
120 uint256 shares = msg.value * _calcRatio(validatorPool) / 1el8;
11 // increase total accumulated shares for the staker

122 _stakerShares[validator] [msg.sender] += shares;

123 // increase staking params for ratio calculation

124 validatorPool.totalStakedAmount += msg.value;

125 validatorPool.sharesSupply += shares;

126 // save validator pool

127 _validatorPools[validator] = validatorPool;

128 // delegate these tokens to the staking contract

129 _stakingContract.delegate{value : msg.valuel}(validator);

130 // emit event

131 emit Stake(validator, msg.sender, msg.value);

B}

To address this issue, we recommend modifying the code to include the calculation of
shares when redeeming rewards in the advanceStakingRewards modifier. This can be
achieved by including the same calculation of shares as in the stake function
implementation, ensuring consistency across the contract.

10

The Giant Mammoth Chain team acknowledged the issue, stating that the contract is not
being used, and there have been no transactions on the StakingPool contract for the last
6 months.

SHB.2 Potential Desynchronization Between Staking and

StakingPool Contracts

. Severity: _ - Likelihood: 3

- Status: Acknowledged - Impact:1

The StakingPool contract contains a stake function, which is designed to allow users to del-
egate their funds to a validator. This function calls the delegate function in the Staking con-
tract to perform the staking. However, it has been identified that a user can directly call the
delegate function, bypassing the stake function and causing a desynchronization between
the StakingPool and Staking contracts.

Thisissue can lead to a desynchronization of staked funds, which can cause a confusion
for both the stakers and the validators. The same issue applies to the unstake function with
the undelegate function.

SHB.2.1: StakingPool.sol

ne function stake(address validator) external payable advanceStakingRewards

< (validator) override {

19 ValidatorPool memory validatorPool = _getValidatorPool(validator);
120 uint256 shares = msg.value * _calcRatio(validatorPool) / 1el8;

121 // increase total accumulated shares for the staker

122 _stakerShares[validator] [msg.sender] += shares;

1

123

124

125

126

127

128

129

130

131

132

// increase staking params for ratio calculation
validatorPool.totalStakedAmount += msg.value;
validatorPool.sharesSupply += shares;

// save validator pool

_validatorPools[validator] = validatorPool;

// delegate these tokens to the staking contract
_stakingContract.delegate{value : msg.valuel}(validator);
// emit event

emit Stake(validator, msg.sender, msg.value);

SHB.2.2: Staking.sol

ws function delegate(address validatorAddress) payable external override {

185

186

_delegateTo(msg.sender, validatorAddress, msg.value);

SHB.2.3: StakingPool.sol

134

135

136

137

138

139

140

141

142

143

function unstake(address validator, uint256 amount) external
— advanceStakingRewards(validator) override {
ValidatorPool memory validatorPool = _getValidatorPool(validator)
—
require(validatorPool.totalStakedAmount > 0, "StakingPool:
— nothing to unstake");
// make sure user doesn't have pending undelegates (we don't
< support it here)
require(_pendingUnstakes[validator] [msg.sender].epoch == 0, "
< StakingPool: undelegate pending");
// calculate shares and make sure user have enough balance
uint256 shares = amount * calcRatio(validatorPool) / 1el8;
require(shares <= _stakerShares[validator] [msg.sender], "
< StakingPool: not enough shares");
// save new undelegate
IChainConfig chainConfig = IInjector (address(_stakingContract)) .
— getChainConfig();

12

144 _pendingUnstakes[validator] [msg.sender] = PendingUnstake ({

145 amount : amount,

146 shares : shares,

147 epoch : _stakingContract.nextEpoch() + chainConfig.
— getUndelegatePeriod()

148 B;

149 validatorPool.pendingUnstake += amount;

150 _validatorPools[validator] = validatorPool;

151 // undelegate

152 _stakingContract.undelegate(validator, amount);

153 // emit event

154 emit Unstake(validator, msg.sender, amount);

155 }

SHB.2.4: Staking.sol

188 function undelegate(address validatorAddress, uint256 amount)
— external override {

189 _undelegateFrom(msg.sender, validatorAddress, amount);

190 }

To mitigate this issue, we recommend modifying the code so that the delegate function can
only be invoked by the StakingPool contract. This can be achieved by adding a modifier to
the delegate function that checks if the caller is the StakingPool contract. By doing so, the
integrity and security of the staking process can be maintained. The same recommendation

goes for the unstake function with the undelegate function.

The Giant Mammoth Chainteam acknowledged the issue, stating that the contractis not be-
ing used, and there have been no transactions on the contract for the last 6 months. Fur-
thermore, the team is unable to migrate existing staked users to StakingPool.

13

SHB.3 Division Before Multiplication Can Cause a Precision

Loss in Reward Calculation

- Severity: [HIEDIEN - Likelihood: 2

- Status: Fixed « Impact: 2

It has been identified that there is a division before multiplication in the reward calculation

in the Staking contract, which can cause a precision loss. This issue can result in inaccu-

rate calculation of rewards, leading to discrepancies between the actual rewards and the

rewards distributed to the staker. It can also lead to confusion for users who may expect

the reward calculation to be accurate.

SHB.3.1: Staking.sol

2 function _calcValidatorSnapshotEpochPayout(ValidatorSnapshot memory

453

454

455

456

457

458

459

460

— validatorSnapshot) internal view returns (uint256 delegatorFee,
— uint256 ownerFee, uint256 systemFee) {
uint256 totalDelegatedAmount = O;

for(uint266 i=0; i <_activeValidatorsList.length; i++){

address validatorAddress = _activeValidatorsList[i];
Validator memory validator = _validatorsMap[validatorAddress];
ValidatorSnapshot memory snapshot = _validatorSnapshots[validator.

— validatorAddress] [validator.changedAt] ;
totalDelegatedAmount += uint256(snapshot.totalDelegated) *
— BALANCE_COMPACT_PRECISION;
b
uint256 addEcoReward = validatorSnapshot.totalRewards +
— ECOSYSTEM_REWARD * validatorSnapshot.totalDelegated /
— totalDelegatedAmount * BALANCE_COMPACT_PRECISION ;

14

To address thisissue, we recommend modifying the code to perform the multiplication be-
fore the division, ensuring thatthe precision is maintained, resultingin a more accurate re-
ward calculation.

The Giant Mammoth Chainteamresolvedtheissue by performingthe multiplications before
the division to preserve more precisionin the output.

SHB.4 Mismatch Between Whitepaper and Code Implemen-

tation on Reward Allocation

- Severity: [IEBIEN - Likelihood: 2

- Status: Fixed - Impact: 2

The Giant Mammoth Whitepaper states that1/16 of the compensation from each transaction
goes to the system funds, which can be used for system needs, such as applying bridging
costs. However, the code implementation only sends rewards to the system treasury if the
validatoris slashed.

This discrepancy can lead to confusion for users and investors who may expect the re-
ward allocation to match the description in the whitepaper. Additionally, it can resultinin-
correct calculation of rewards and the misallocation of funds.

SHB.4.1: Staking.sol

s function _calcValidatorSnapshotEpochPayout(ValidatorSnapshot memory
— validatorSnapshot) internal view returns (uint256 delegatorFee,

< uint256 ownerFee, uint256 systemFee) {

15

https://gmmtchain.io/whitepaper/giant_mammoth_whitepaper_en.pdf

453 uint256 totalDelegatedAmount = O;

454 for(uint256 i=0; i <_activeValidatorsList.length; i++){

455 address validatorAddress = _activeValidatorsList[i];

456 Validator memory validator = _validatorsMap[validatorAddress];

457 ValidatorSnapshot memory snapshot = _validatorSnapshots[validator.

— validatorAddress] [validator.changedAt];

458 totalDelegatedAmount += uint256(snapshot.totalDelegated) *

— BALANCE_COMPACT_PRECISION;
459 }
460 uint256 addEcoReward = validatorSnapshot.totalRewards +

— ECOSYSTEM_REWARD * validatorSnapshot.totalDelegated /

<> totalDelegatedAmount * BALANCE_COMPACT_PRECISION ;
461 // detect validator slashing to transfer all rewards to treasury
462 if (validatorSnapshot.slashesCount >= _chainConfigContract.

— getMisdemeanorThreshold()) {
463 return (delegatorFee = 0, ownerFee = 0, systemFee =

— validatorSnapshot.totalRewards) ;
484 } else if (validatorSnapshot.totalDelegated == 0) {
465 return (delegatorFee = 0, ownerFee = addEcoReward, systemFee = 0)
-

st }
467 // ownerFee (18+4-4=18) = totalRewards 18 * commissionRate 4 / le4
468 ownerFee = addEcoReward * validatorSnapshot.commissionRate / 1le4 ;
469 // delegatorRewards = totalRewards - ownerFee
470 delegatorFee = addEcoReward - ownerFee;
4m // default system fee is zero for epoch
472 systemFee = 0;
s}

To address this issue, we recommend modifying the code to match the description in the
whitepaper. This can be achieved by adding logic to the reward allocation function to allo-
cate 1/16 of the compensation to the system funds for each transaction, as described in the

[

whitepaper. By doing so, the reward allocation will be consistent with the whitepaper, en-
suring accuracy and transparency in the reward distribution process.

The Giant Mammoth Chain team resolved the issue, stating that the allocation is being per-
formed by the mainnet core and not in the contracts.

SHB.5 Frontrun attack vector

a Severity: _ - Likelihood: 3

- Status: Acknowledged - Impact:1

Allthe contracts use a function called ctor toinitialize the state, which can be front-runned
by an attacker.
Thisissue canresultintheinitialization of the contract state with malicious orincorrect
values, leading to potential security vulnerabilities orincorrect functionality of the contract.
The Injector contract also has two functions, namely init and initManually, that are used
toinitialize the contract, and both functions are vulnerable to front-run attacks.

Afront-run attack occurs when an attacker listens to the mempool and detects a transac-
tionto the ctor orinit function with a low gas price. The attacker then submits a transaction
tothe same function with a higher gas price, effectively replacing the original transactionin
the mempool. This allows the attacker to control the initialization of the contract state with
malicious or incorrect values.

The initManually function is particularly susceptible because it requires contract ad-
dresses to be passed as parameters, which can be intercepted and manipulated by an at-
tacker. Asaresult, an attacker could potentially callthe initManually function after contract

17

deployment andinitialize all the contracts withincorrect or malicious values, leading to po-
tential security vulnerabilities or incorrect functionality of the contract.

SHB.5.1: ChainConfig.sol

3 function ctor(

34 uint32 activeValidatorsLength,
35 uint32 epochBlockInterval,

36 uint32 misdemeanorThreshold,

37 uint32 felonyThreshold,

38 uint32 validatorJailEpochLength,
39 uint32 undelegatePeriod,

40 uint256 minValidatorStakeAmount,
a uint256 minStakingAmount

2) external whenNotInitialized {

SHB.5.2: DeployerProxy.sol

function ctor(address[] memory deployers) external whenNotInitialized {

&2 for (uint256 i = 0; i < deployers.length; i++) {
@ _addDeployer (deployers[i]);

4 }

s ¥

SHB.5.3: Governance.sol

n function ctor(uint256 newVotingPeriod) external whenNotInitialized {
18 _setVotingPeriod(newVotingPeriod) ;

19 }

SHB.5.4: RuntimeUpgrade.sol

8 function ctor(address evmHookAddress) external whenNotInitialized {
19 _evmHookAddress = evmHookAddress;

20 }

18

SHB.5.5: Staking.sol

86

function ctor(address[] calldata validators, uint256[] calldata

— {

SHB.5.6: SystemRewards.sol

43

function ctor(address[] calldata accounts, uintl16[] calldata shares)

< external whenNotInitialized {

SHB.5.7: Injector.sol

62

67

68

69

70

n

72

73

74

75

function init() external initializer {
// BSC compatible addresses
_stakingContract = IStaking(0

— x0000000000000000000000000000000000001000) ;

_slashingIndicatorContract = ISlashingIndicator (0

— x0000000000000000000000000000000000001001) ;

_systemRewardContract = ISystemReward (O

— x0000000000000000000000000000000000001002) ;

// BAS defined addresses
_stakingPoolContract = IStakingPool(0

— x0000000000000000000000000000000000007001) ;

_governanceContract = IGovernance (0

— x0000000000000000000000000000000000007002) ;

_chainConfigContract = IChainConfig(0

— x0000000000000000000000000000000000007003) ;

_runtimeUpgradeContract = IRuntimeUpgrade (0

— x0000000000000000000000000000000000007004) ;

_deployerProxyContract = IDeployerProxy (0

— x0000000000000000000000000000000000007005) ;

// invoke constructor

_invokeContractConstructor();

< initialStakes, uintl6 commissionRate) external whenNotInitialized

19

SHB.5.8: Injector.sol

7 function initManually(

78 IStaking stakingContract,

79 ISlashingIndicator slashingIndicatorContract,
80 ISystemReward systemRewardContract,

81 IStakingPool stakingPoolContract,

82 IGovernance governanceContract,

83 IChainConfig chainConfigContract,

84 IRuntimeUpgrade runtimeUpgradeContract,

85 IDeployerProxy deployerProxyContract

8) public initializer {

87 // BSC-compatible

88 _stakingContract = stakingContract;

89 _slashingIndicatorContract = slashingIndicatorContract;
90 _systemRewardContract = systemRewardContract;

91 // BAS-defined

92 _stakingPoolContract = stakingPoolContract;

93 _governanceContract = governanceContract;

9% _chainConfigContract = chainConfigContract;

95 _runtimeUpgradeContract = runtimeUpgradeContract;
% _deployerProxyContract = deployerProxyContract;
97 // invoke constructor

98 _invokeContractConstructor () ;

9 }

To address this issue, we recommend deploying the contract and executing the ctor or the
init/initManually functioninthe case of the Injectorinthe sametransactionto preventfront-
run attacks, or adding access controlto the ctor and init/initManually functions, so it cannot
be initialized by anyone.

20

The Giant Mammoth Chain team acknowledged the issue, stating that the ctor function was
never called other than when the genesis block was created.

SHB.6 Banned Deployer Can Still Deploy Contracts

- Severity: [HIEBIENI - Likelihood: 3

- Status: Fixed « Impact:1

The _registerDeployedContract function checks that the deployer is allowed by checking
the isDeployer function. However, it doesn’t check if the deployer is banned. A banned de-
ployer might still deploy contracts.

SHB.6.1: DeployerProxy.sol

ws function _registerDeployedContract(address deployer, address impl)

< internal {

109 // make sure this call is allowed

1o require(isDeployer(deployer), "Deployer: deployer is not allowed");

1 // remember who deployed contract

12 SmartContract memory dc = _smartContracts[impl];

13 require(dc.impl == address(0x00), "Deployer: contract is deployed
— already");

114 dc.state = ContractState.Enabled;

15 dc.impl = impl;

116 dc.deployer = deployer;

n _smartContracts[impl] = dc;

118 // emit event

21

119 emit ContractDeployed(deployer, impl);
120 }

We recommend adding a check for banned deployer before registering the deployed con-

tract.

SHB.6.2: DeployerProxy.sol

require(!isBanned(deployer), "Deployer: deployer is banned");

The Giant Mammoth Chain team resolved the issue by adding a require check that makes
sure the deployeris not banned when the _registerDeployedContractis being called.

SHB.7 Usage of .transfer() to Transfer Ether

- Severity: [EOW - Likelihood: 1

. Status: Fixed - Impact: 2

During the audit, it was noted that the project is using the .transfer() function to transfer
ether between contracts. While .transfer() is a built-in function in Solidity and provides a
quick and easy way to transfer ether, itisimportant to note that it is a dangerous function to
use. Although transfer() and send() are recommended as a security best-practice to pre-
vent reentrancy attacks because they only forward 2300 gas, the gas repricing of opcodes

may break deployed contracts.

22

SHB.7.1: StakingPool.sol

m delete _pendingUnstakes([validator] [msg.sender];

m // its safe to use call here (state is clear)

ms require(address(this).balance >= amount, "StakingPool: not enough
— balance");

m payable(address(msg.sender)).transfer (amount);

s // emit event

e emit Claim(validator, msg.sender, amount);

SHB.7.2: SystemReward.sol

w2 if (_systemTreasury != address(0x00)) {

103 address payable payableTreasury = payable(_systemTreasury);
104 payableTreasury.transfer (amountToPay) ;

105 emit FeeClaimed(_systemTreasury, amountToPay);

106 return;

07}

SHB.7.3: SystemReward.sol

m for (uint256 i = 0; i < _distributionShares.length; i++) {

i DistributionShare memory ds = _distributionShares[i];

i uint256 accountFee = amountToPay * ds.share / SHARE_MAX VALUE;
3 payable(ds.account) .transfer (accountFee) ;

m emit FeeClaimed(ds.account, accountFee);

15 totalPaid += accountFee;

e

Consider using .call{ value: ... }(”") instead, without hard-coded gas limits along with reen-
trancy guards for reentrancy protection.

23

The Giant Mammoth Chain team resolved the issue by implementing the use of .call{ value:
.. }("") for transferring ETH from the contract.

SHB.8 Mismatch Between Whitepaper and Code Implemen-

tation on Validator Selection

. Severity: [EOW] - Likelihood: 2

- Status: Acknowledged - Impact:1

The Giant Mammoth Whitepaper states that the node consists of 21 validators, and that new
validators with the most GMMT staking are selected each day. However, the code does not
verify the number of validators to be 21, and the number of validators is modifiable by the
governance. This discrepancy can lead to confusion for users and investors, who may ex-
pect the number of validators to be fixed at 21, as described in the whitepaper. Additionally,
itcanresultinincorrect calculation of rewards and the misallocation of funds.

SHB.8.1: ChainConfig.sol

s function setActiveValidatorsLength(uint32 newValue) external override

— onlyFromGovernance {

66 uint32 prevValue = _consensusParams.activeValidatorsLength;
61 _consensusParams.activeValidatorsLength = newValue;

68 emit ActiveValidatorsLengthChanged(prevValue, newValue);

69 }

24

https://gmmtchain.io/whitepaper/giant_mammoth_whitepaper_en.pdf

To address this issue, we recommend modifying the code to match the description in the
whitepaper. This can be achieved by adding logic to the contract to ensure that the number
of validatorsis fixed at 21, and that new validators with the most GMMT staking are selected
each day. By doing so, the contract will be consistent with the description in the whitepa-
per, ensuring accuracy and transparency in the validator selection and reward distribution
process.

The Giant Mammoth Chain team acknowledged the issue, stating that the whitepaperis be-
ing updated to match the code.

SHB.9 Missing Value Verification

- Severity: [EOW - Likelihood: 1

. Status: Fixed - Impact: 2

The ctor functions do not include value verification for the arguments, which can lead to the
initialization of the contract state with invalid or unexpected values. This issue can cause
potential security vulnerabilities or incorrect functionality of the contract.

SHB.9.1: ChainConfig.sol

33 function ctor/(

3% uint32 activeValidatorsLength,
35 uint32 epochBlockInterval,

3 uint32 misdemeanorThreshold,
a7 uint32 felonyThreshold,

25

38 uint32 validatorJailEpochLength,

39 uint32 undelegatePeriod,
40 uint256 minValidatorStakeAmount,
4 uint256 minStakingAmount

2) external whenNotInitialized {

function ctor(address[] memory deployers) external whenNotInitialized {

) for (uint256 i = 0; i < deployers.length; i++) {
@ _addDeployer(deployers[i]);

4t }

s}

m function ctor(uint256 newVotingPeriod) external whenNotInitialized {
18 _setVotingPeriod(newVotingPeriod) ;

19}

8 function ctor(address evmHookAddress) external whenNotInitialized {

19 _evmHookAddress = evmHookAddress;

N
o
‘ L'J

86 function ctor(address[] calldata validators, uint256[] calldata

< initialStakes, uintl6 commissionRate) external whenNotInitialized

‘ L

13 function ctor(address[] calldata accounts, uinti16[] calldata shares)

<% external whenNotInitialized {

To address thisissue, we recommend modifying the code to include input validation checks
in the ctor functions for the arguments’ values. These checks should ensure that the ar-
gument values fall within the expected range of values, preventing the initialization of the
contract state with invalid values. By adding input validation checks, the contract will be
better protected against unexpected input values, ensuring the integrity and security of the
initialization process.

The Giant Mammoth Chain team resolved the issue by adding the input checks for the ctor
functions.

SHB.10 Lack of Checkfor Contract Address

- Severity: [EOW - Likelihood: 1

. Status: Fixed - Impact: 2

The initManually function is responsible for manually initializing the contracts used by the
Injector contract. This function takes several contract addresses as input parameters and
assigns them to the appropriate variables.

However, there is an issue with this implementation as the function does not check
whether the addresses passed as parameters are actually contract addresses. As a
result, if an attacker passes a non-contract address as a parameter to the initManually
function, it could resultin the system behaving unexpectedly or a Denial of Service.

27

SHB.10.1: Injector.sol

7 function initManually(

78 IStaking stakingContract,

79 ISlashingIndicator slashingIndicatorContract,
80 ISystemReward systemRewardContract,

81 IStakingPool stakingPoolContract,

82 IGovernance governanceContract,

83 IChainConfig chainConfigContract,

84 IRuntimeUpgrade runtimeUpgradeContract,

85 IDeployerProxy deployerProxyContract

8) public initializer {

87 // BSC-compatible

88 _stakingContract = stakingContract;

89 _slashingIndicatorContract = slashingIndicatorContract;
%0 _systemRewardContract = systemRewardContract;

91 // BAS-defined

92 _stakingPoolContract = stakingPoolContract;

93 _governanceContract = governanceContract;

% _chainConfigContract = chainConfigContract;

95 _runtimeUpgradeContract = runtimeUpgradeContract;
% _deployerProxyContract = deployerProxyContract;
9 // invoke constructor

98 _invokeContractConstructor();

9 }

We recommend adding a check to ensure that the addresses passed as parameters to the
initManually function are valid contract addresses. Thiscan be done by usingthe isContract
function from the OpenZeppelin library to check if the address is a contract address before
assigning it to a variable.

28

The Giant Mammoth Chain team resolved the issue by adding a check that makes sure the
addresses provided in the arguments represent contracts.

SHB.11 Inaccurate Comparisonin _claimSystemFee Function

- Severity: [EOW - Likelihood: 1

. Status: Fixed - Impact:1

The _claimSystemFee function is responsible for handling the received portion of the
rewards. The function checks the amount to be paid, amountToPay, against the
TREASURY_MIN_CLAIM_THRESHOLD constant before distributing the funds. If the
amountToPay is less than or equal to the TREASURY_MIN_CLAIM_THRESHOLD, the
function will not proceed with the distribution.

However, there is an issue with the comparison between amountToPay and
TREASURY_MIN_CLAIM_THRESHOLD. If amountToPay is equal to the
TREASURY_MIN_CLAIM_THRESHOLD, the function will not distribute the shares, even
though the threshold has been met. This can potentially cause issues with the proper
functioning of the treasury system.

SHB.11.1: SystemReward.sol

¢ function _claimSystemFee() internal {

98 uint256 amountToPay = _systemFee;

99 if (amountToPay <= TREASURY_MIN CLAIM THRESHOLD) {
100 return,

101 }

29

We recommend changing the comparisoninthe _claimSystemFee function to a strict com-
parison.

SHB.11.2: SystemReward.sol

g7 function _claimSystemFee() internal {

98 uint256 amountToPay = _systemFee;

99 if (amountToPay < TREASURY_MIN_ CLAIM_THRESHOLD) {
100 return;

101 }

By making this change, the contract’s functionality and reliability can be improved, ensuring
that the system treasury operates as intended.

The Giant Mammoth Chain team resolved the issue by changing the comparison in the
_claimSystemFee function to a strict comparison.

SHB.12 Floating Pragma

. Severity: [EOW] - Likelihood: 1

- Status: Acknowledged - Impact:1

The contract makes use of the floating-point pragma 0.8.0. Contracts should be deployed
using the same compiler version. Locking the pragma helps ensure that contracts will not
unintentionally be deployed usinganother pragma, whichinsome cases maybe anobsolete
version, that may introduce issues to the contract system.

All contracts

30

Consider locking the pragma version. It is advised that the floating pragma should not be
used in production.

The Giant Mammoth Chain team acknowledged the issue, stating that they will be fixing the
pragma version to 0.8.11in the next updates.

SHB.13 Missing Setter For The _systemTreasury

. Severity: INFORMATIONAL - Likelihood: 1

- Status: Fixed « Impact: 0

The _systemTreasuryaddressis acritical component of the contract that receives a portion
of the transaction fees for system needs. However, there is no function within the contract
that allows for the _systemTreasury address to be updated.

This means that if, for any reason, the treasury address needs to be updated, such as
a change in ownership or the need for a new address, it is currently impossible to do so.
This could potentially cause problemsinthe futureifthe currenttreasury address becomes
compromised or is no longer accessible.

SHB.13.1: SystemReward.sol

29 address internal _systemTreasury;

31

We recommend adding a function to the contract that allows for the _systemTreasury ad-
dress to be updated. This function should only be accessible by the governance.

The Giant Mammoth Chain team resolved the issue by adding a setter (setNewSystemRe-
ward) to allow the _systemTreasury address to be updated.

kY.

4 Best Practices

BP.1 Remove Unused Contract GovernorVotes

When importing external contracts into a smart contract project, it is important to ensure
thattheimported contractsare actuallyusedinthe project. Importing unused contractscan
unnecessarily increase the project’s codebase and complexity, which can lead to potential
security vulnerabilities or performance issues.

It has been identified that the GovernorVotes contract from OpenZeppelin is imported
into the project but is not used anywhere in the code. To adhere to best practices and mini-
mize potential security risks, we recommend removing the import statement and its asso-
ciated contract.

By removing unused contracts, the project’s codebase can be simplified and the risk of
potential security vulnerabilities can be reduced.

BP.1.1: Governance.sol

¢ import "Qopenzeppelin/contracts/governance/extensions/GovernorVotes.sol

%II.

BP.2 Optimize Struct Storage

Whendeclaringastructinasmartcontract project, the orderin which the struct’s attributes
are declared can have animpact on the storage size and efficiency of the contract.

It has beenidentified that the ValidatorDelegation struct in the project can be optimized
for storage by rearranging the order of its attributes. By declaring the delegateGap and un-

33

delegateGap attributes after the delegateQueue and undelegateQueue attributes, these at-
tributes can be stored in the same slot, reducing the overall storage size of the struct.

BP.2.1: Staking.sol

oy

3

64

65

66

67

68

struct ValidatorDelegation {

3

DelegationOpDelegate[] delegateQueue;
uint64 delegateGap;
DelegationOpUndelegate[] undelegateQueue;
uint64 undelegateGap;

To adhere to best practices and optimize storage in the contract, we recommend rearrang-
ing the ValidatorDelegation struct’s attributes as follows:

BP.2.2: Staking.sol

63

64

65

66

67

68

struct ValidatorDelegation {

DelegationOpDelegate[] delegateQueue;
DelegationOpUndelegate[] undelegateQueue;
uint64 delegateGap;

uint64 undelegateGap;

BP.3 Remove Unnecessary Initializations

In Solidity, variables are automatically initialized to their default values when they are de-

clared. For example, the default value for a uint256 variable is 0, and the default value for a
bool variable is false.

It has beenidentified that there areinstancesinthe code where variables are unneces-

sarily initialized to their default values, which can result in unnecessary gas consumption
and increased contract size.

34

To adhere to best practices and optimize the contract’s performance, we recommend
removing any unnecessary initialization with a variable’s default value.

BP.3.1: Staking.sol

88 uint256 totalStakes = O;

BP.3.2: SystemReward.sol

55 uintl6 totalShares = O;

BP.4 Avoid Unnecessary Updates to Mappings

When working with mappings in Solidity, itis important to ensure that updates to mappings
are only made when necessary. Unnecessary updates to mappings canresultinincreased
gas consumption and longer contract executiontimes. It has beenidentified thatthereis an
unnecessaryupdatetothe _validatorsMap mappinginthe _delegateTo function. Inthis case,
the mapping is updated even though the validator struct has not been modified. To adhere
to best practices and optimize the contract’s performance, we recommend removing the
unnecessary update to the _validatorsMap mapping in the _delegateTo function. By doing
so, the contract can reduce its gas consumption and improve its execution time.

BP.4.1: Staking.sol

22 function _delegateTo(address fromDelegator, address toValidator, uint256
— amount) internal {

243

244 require(amount >= _chainConfigContract.getMinStakingAmount () &&

< amount != 0, "Staking: amount is too low");

35

245 require (amount 7% BALANCE_COMPACT_PRECISION == 0, "Staking: amount

< have a remainder");

26 // make sure amount is greater than min staking amount

247 // make sure validator exists at least

248 Validator memory validator = _validatorsMap[toValidator];

249 require(validator.status != ValidatorStatus.NotFound, "Staking:

< validator not found");

250 uint64 atEpoch = _nextEpoch();

251 // Lets upgrade next snapshot parameters:

252 // + find snapshot for the next epoch after current block

253 // + increase total delegated amount in the next epoch for this

— validator
254 // + re-save validator because last affected epoch might change
255 ValidatorSnapshot storage validatorSnapshot =

— _touchValidatorSnapshot(validator, atEpoch);
256 validatorSnapshot.totalDelegated += uint112(amount /

— BALANCE_COMPACT_PRECISION) ;

257 _validatorsMap[toValidator] = validator;

BP.5 Remove Tautologies

In programming, a tautology is a logical expression that is always true, regardless of its in-
put values. In Solidity, itisimportant to avoid tautologies in code, as they can make the code
more difficult to read and potentially introduce unnecessary security risks.
Ithas beenidentifiedthatthere areinstancesinthe contract where tautologies are used
inrequire statementsto checkthatavalueis greater than or equal to a minimum value of 0.
Toadhere tobest practices and simplify the code, we recommend removing the tautolo-
gies from the require statements and checking only the upper bound.

36

Files Affected:

59 require(share >= SHARE MIN VALUE && share <= SHARE MAX VALUE, "
— SystemReward: bad share distribution");

ws require(commissionRate >= COMMISSION_RATE MIN VALUE && commissionRate <=
< COMMISSION_RATE_MAX_VALUE, "Staking: bad commission rate");

Status - Acknowledged

37

5 Conclusion

In this audit, we examined the design and implementation of Giant Mammoth contract and
discovered severalissues of varying severity. Giant Mammoth Chain team addressed 8 is-
suesraisedin theinitial report and implemented the necessary fixes, while classifying the
rest as arisk with low-probability of occurrence. Shellboxes’ auditors advised Giant Mam-
moth Chain Team to maintain a high level of vigilance and to keep those findings in mind in
order to avoid any future complications.

38

6 ScopecFiles

6.1 Audit

Files

MD5 Hash

contracts/ChainConfig.sol

b9f47e453f71b08fd24f9efef5f118bb

contracts/DeployerProxy.sol

2e869a770fdc12614262ea14ffa0337e

contracts/Governance.sol

d56241249d744846bd70b23694e13475

contracts/Injector.sol

05ebb6b39b5e647ccfb033c6bf008986

contracts/RuntimeUpgrade.sol

f14f0d0547007397858e37f2f0fdb0cb

contracts/SlashingIndicator.sol

dd5081addaaal070750f430260646bd4d

contracts/Staking.sol

aee412b82043e6a8c87b41c8bb0025f3

contracts/StakingPool.sol

c690b0ed5306560a1eb119b12793c00b

contracts/SystemReward.sol

ceba86075f29f10c0cd05bbe4cd279cc

6.2 Re-Audit

Files

MD5 Hash

contracts/ChainConfig.sol

ad9550b9116e5a25247ce208e2851a77

contracts/DeployerProxy.sol

22d3f11527ec3359dc7363%9aa1c99057

contracts/Governance.sol

afd3126daeaal4f84055b8f5334fac86

contracts/Injector.sol

5a84fb21f4f4600a4268617f86dc9494

contracts/RuntimeUpgrade.sol

9656028c89a800980f26cal8586ec673

39

contracts/Slashingindicator.sol

3b782ab7bda0f17cc04b56adfbf97cla

contracts/Staking.sol

5b3bbe8b24594011dbffd4213a03b808

contracts/StakingPool.sol

4d8f313b3ab44878faba9413d1b47412

contracts/SystemReward.sol

eel19126557135a2f9596f8343c508cd4

40

7 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

41

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

=S

42

mailto:contact@shellboxes.com

	Introduction
	About Giant Mammoth Chain
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Disclaimer
	Summary
	Key Findings

	Finding Details
	Lost Shares In The advanceStakingRewards Modifier
	Potential Desynchronization Between Staking and StakingPool Contracts
	Division Before Multiplication Can Cause a Precision Loss in Reward Calculation
	Mismatch Between Whitepaper and Code Implementation on Reward Allocation
	Front run attack vector
	Banned Deployer Can Still Deploy Contracts
	Usage of .transfer() to Transfer Ether
	Mismatch Between Whitepaper and Code Implementation on Validator Selection
	Missing Value Verification
	Lack of Check for Contract Address
	Inaccurate Comparison in _claimSystemFee Function
	Floating Pragma
	Missing Setter For The _systemTreasury

	Best Practices
	Remove Unused Contract GovernorVotes
	Optimize Struct Storage
	Remove Unnecessary Initializations
	Avoid Unnecessary Updates to Mappings
	Remove Tautologies

	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

