
Unicrypt’s
ILOV7

Smart Contract Security Audit

Prepared by ShellBoxes

Dec 24th, 2022 - Jan 9th, 2023

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Unicrypt

Version 1.0

Classification Public

Scope

Repository Commit Hash

https://github.com/chainsulting/
ilov7-audit

4571798816bda734fa60edde65c047f09d691762

Re-Audit

Repository Commit Hash

https://github.com/chainsulting/
ilo7-audit

4083b43f823a3b226f03e27e5acbd40cb1d4885b

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://github.com/chainsulting/ilov7-audit
https://github.com/chainsulting/ilov7-audit
https://github.com/chainsulting/ilo7-audit
https://github.com/chainsulting/ilo7-audit
mailto:contact@shellboxes.com

Contents

1 Introduction 4

1.1 About Unicrypt . 4

1.2 Approach&Methodology . 4

1.2.1 RiskMethodology . 5

2 FindingsOverview 6

2.1 Disclaimer . 6

2.2 Summary . 6

2.3 Key Findings . 6

3 FindingDetails 8

SHB.1 AnAdminCanBecomeaManager . 8

SHB.2 Admin CanDisable Presale Creation by SettingHigh Eth Creation Fee . . . 9

SHB.3 Potential Loss of Functionality in setFacetCuts Function 10

SHB.4 Denial Of Service Vulnerability ThroughOwner Finalization Time Frame . . 11

SHB.5 CentralizationRisk . 13

SHB.6 Locked Ether . 19

SHB.7 WETHaddress can bemanipulated . 22

4 Best Practices 24

BP.1 Merkle Tree In TheWhitelist Contract . 24

BP.2 RemoveUnnecessary Check for Address Zero in _removeAdmin Function 24

BP.3 RemoveUnnecessary Initialization of totalSplitPercentage 25

5 Tests 27

6 Conclusion 44

7 Scope Files 45

7.1 Audit . 45

7.2 Re-Audit . 48

8 Disclaimer 51

3

1 Introduction
Unicrypt engaged ShellBoxes to conduct a security assessment on the ILO V7 Presale

Smart Contracts beginning on Dec 24th, 2022 and ending Jan 9th, 2023. In this report, we

detail our methodical approach to evaluate potential security issues associated with the

implementation of smart contracts, by exposing possible semantic discrepancies

between the smart contract code and design document, and by recommending additional

ideas to optimize the existing code. Our findings indicate that the current version of smart

contracts can still be enhanced further due to the presence of many security and

performance concerns.

This document summarizes the findings of our audit.

1.1 About Unicrypt

Started in June 2020, Unicrypt provides an ever-growing suite of decentralized services.

The objective is to bring value to theDeFi space as awhole by delivering disruptive, flexible

and audited technology.

Issuer Unicrypt

Website https://unicrypt.network/

Type Solidity Smart Contract

Documentation https://docs.unicrypt.network

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

4

https://unicrypt.network/
https://docs.unicrypt.network

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5

2 FindingsOverview
2.1 Disclaimer

This audit report highlights security issues that were identified within the scope of the au-

dit, which includes all smart contracts in the Ilov7 repository. Despite the client’s develop-

ers having performed unit testswith 100% coverage of the audited contracts, the client has

not taken any action to address ormitigate the risks associated withmost of the identified

issues in this report. Therefore, we advise the client to take the necessary action to fix as

many issues as possible in their next version of the project to ensure the security and in-

tegrity of their smart contracts.

2.2 Summary

Thefollowing isasynopsisofourconclusions fromouranalysisof theUnicrypt’s ILOV7 im-

plementation. During the first part of ouraudit,weexamine thesmart contract sourcecode

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.3 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 1

high-severity, 4medium-severity, 2 low-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. AnAdminCanBecomeaManager HIGH Acknowledged

SHB.2. AdminCanDisablePresaleCreationbySetting

High Eth Creation Fee

MEDIUM Acknowledged

SHB.3. Potential Loss of Functionality in setFacetCuts

Function

MEDIUM Acknowledged

6

SHB.4. Denial Of Service Vulnerability ThroughOwner

Finalization Time Frame

MEDIUM Acknowledged

SHB.5. CentralizationRisk MEDIUM Acknowledged

SHB.6. Locked Ether LOW Acknowledged

SHB.7. WETHaddress can bemanipulated LOW Acknowledged

7

3 FindingDetails
SHB.1 AnAdminCanBecomeaManager

• Severity : HIGH

• Status : Acknowledged

• Likelihood : 2

• Impact : 3

Description:

The AdminRegistry contract manages the admins by adding and removing to an

EnumerableSet. This contract can be implemented using the AdminRegistryImplementer

.However, any admin can call the setAdminRegistry function in the

AdminRegistryImplementer ,and set a contractwhere they are themanager since they are

the deployer, and take full control over the contract.

Files Affected:

SHB.1.1: AdminRegistryImplenter.sol

45 function setAdminRegistry(
46 IAdminRegistry _adminRegistry
47) external onlyAdmin {
48 require(address(_adminRegistry).code.length > 0, "ARI:

,! NO_CONTRACT");
49 adminRegistry = _adminRegistry;
50 }

Recommendation:

Consider implementing the setAdminRegistry with an access control allowing only the

managers to upgrade the AdminRegistry contract. Additionally, it would be better if the

AdminRegistry is not updated until themajority of admins approve it.

8

Updates

The Unicrypt team acknowledged the risk, stating that they are planning to put in place

Multi-signaturewallets formanagement activities, tomitigate the risk.

SHB.2 Admin Can Disable Presale Creation by Setting High

Eth Creation Fee

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The _chargeCreationFee function is responsible for charging the eth creation fee for a new

presale. This fee is set by the admin using the setFees function, which allows the admin to

specify the value of the eth creation fee. However, there is no check in place to ensure that

the fee is set to a reasonable amount. An attacker with admin privileges could exploit this

vulnerability by setting the _ethCreationFee to a very high value, effectively making it im-

possible for users to create newpresales and disabling this functionality for the contract.

Files Affected:

SHB.2.1: PresaleFactory.sol

619 function _chargeCreationFee(uint256 _feeProfile) private returns (bool)
,! {

620 uint256 creationFee = presaleSettings.getEthCreationFee(
,! _feeProfile);

621 require(msg.value == creationFee, "PF: INVALID_FEE_AMOUNT");
622 (bool sentFee,) = presaleSettings.getEthFeeReceiver().call{
623 value: creationFee
624 }("");
625 return sentFee;

9

Recommendation:

To mitigate this issue, it is recommended to add a check in the setFees function to ensure

that the _ethCreationFee is set to a reasonable amount. This could be done by adding a re-

quire statement to limit themaximumvalue that can be set for the fee.

Updates

The Unicrypt team acknowledged the risk, stating that the likelihood of an admin causing a

denial of service is low.

SHB.3 Potential Loss of Functionality in setFacetCuts Func-

tion

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

ThesetFacetCutsfunctionallowsanadmintoset theavailablefacetcutsforaDiamondcon-

tract. However, there is currently no check to ensure that the array of facet cuts passed as

an argument, _facetCuts, is not empty. If an empty array is passed, all previous facetCuts

will be deleted and nonewoneswill be added, effectively disabling the functionality for any

deployed presales that depend on the availability of facet cuts.

Files Affected:

SHB.3.1: PresaleGenerator.sol

73 function setFacetCuts(
74 IDiamond.FacetCut[] calldata _facetCuts
75) external onlyAdmin {
76 require(canSetFacets, "PG: DISABLED");

10

77

78 // remove all old facets
79 delete facetCuts;
80

81 // add new facets
82 for (uint256 i = 0; i < _facetCuts.length; i++) {
83 facetCuts.push(_facetCuts[i]);
84 }
85 }

Recommendation:

Consideraddingachecktoensurethat the_facetCutsarray isnotemptybeforeallowingthe

deletion of previous facetCuts ,and the addition of newones. This could be done by adding a

require statement at the beginning of the function to check the length of the array:

SHB.3.2: PresaleGenerator.sol

require(_facetCuts.length > 0, "FC: NO_FACET_CUTS_PROVIDED");

Thiswouldprevent the lossof functionalitybyensuring thatat leastonefacetcut isprovided

before allowing the update to proceed.

Updates

TheUnicrypt Teamacknowledged this issue, stating that it is unlikely for an admin to cause

aDoS.

SHB.4 Denial Of Service Vulnerability Through Owner Final-

ization Time Frame

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

11

Description:

The function adminSetOwnerFinalizationFrame allows the contract administrator to set

the owner finalization time frame, but does not include any checks to ensure that the

specified time frame is reasonable. If the presale owner is not available and the time frame

is set to a large value, this could potentially cause a denial of service for the contract, as

the ownerwould not be able to finalize the presalewithin the allotted time frame.

Files Affected:

SHB.4.1: PresaleRestictedFacet.sol

275 function adminSetOwnerFinalizationFrame(uint64 _time) external
,! onlyAdmin {

276 LibPresaleInfo.setOwnerFinalization(_time);
277 }

SHB.4.2: PresaleParticipantFacet.sol

155 function finalizePresale() external override nonReentrant {
156 LibPresaleStatus.enforceIsSuccessful();
157 LibPresaleStatus.enforceLpNotGenerated();
158

159 // get storage variables
160 IPresaleSettings settings = IPresaleSettings(LibPresaleInfo.

,! settings());
161 LibPresaleInfo.Numbers memory numbers = LibPresaleInfo.numbers();
162

163 // check for owner exclusive finalization timeframe
164 require(
165 numbers.endTime + numbers.ownerFinalizationFrame <
166 block.timestamp
167 msg.sender == LibDiamond.contractOwner(),
168 "PPF: ONLY_OWNER_TIMEFRAME"
169);

12

Recommendation:

The function should include checks to ensure that the specified ownerFinalizationFrame is

reasonable and does not exceed a certain threshold (e.g. a few days or weeks). This can

helpprevent adenial of serviceattackbyensuring that thepresaleownerhasa reasonable

amount of time to finalize the presale.

Updates

TheUnicrypt teamacknowledged this issue, stating it is unlikely to happen.

SHB.5 CentralizationRisk

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

ThePresaleSettingscontractallowsupdating fees, tokens, andsomecontractsaddresses.

However, asingleadminhas toomuchaccess toupdatesomecritical statevariables. Addi-

tionally, an admin can force fail any presale at any point,which is a huge centralization risk.

Exploit Scenario:

As an example :

• An admin can call the setFeeAddresseswith their address in the arguments and re-

ceive all the fees.

Files Affected:

SHB.5.1: PresaleLockForwarder.sol

164 function replaceLockerContract(
165 address _locker,

13

166 bool _active
167) external onlyAdmin {
168 require(_locker.code.length > 0, "PLF: NO_CONTRACT");
169 address ammFactory = ILPLocker(_locker).uniswapFactory();
170 require(isListedAmm(ammFactory), "PLF: AMM_NOT_LISTED");
171 ammInfo[ammFactory] = AmmInfo(_locker, _active);
172 emit ReplacedLocker(ammFactory, _locker, _active);
173 }

SHB.5.2: PresaleSettings.sol

127 function setFeeAddresses(
128 address payable _ethAddress,
129 address payable _nonEthAddress,
130 address _saleTokenFeeAddress
131) external onlyAdmin {
132 require(
133 _ethAddress != address(0) &&
134 _nonEthAddress != address(0) &&
135 _saleTokenFeeAddress != address(0),
136 "PS: Zero address"
137);
138 feeSettings.ethFeeReceiver = _ethAddress;
139 feeSettings.nonEthFeeReceiver = _nonEthAddress;
140 feeSettings.saleTokenFeeReceiver = _saleTokenFeeAddress;
141 }

SHB.5.3: PresaleSettings.sol

157 function setFees(
158 uint16 _baseTokenFee,
159 uint16 _saleTokenFee,
160 uint16 _referralFee,
161 uint16 _referralFeeSplit,
162 uint256 _ethCreationFee
163) external onlyAdmin {

14

164 require(_ethCreationFee >= DENOMINATOR, "PS: Fee too low");
165 require(
166 _baseTokenFee <= DENOMINATOR &&
167 _saleTokenFee <= DENOMINATOR &&
168 _referralFee <= DENOMINATOR &&
169 _referralFeeSplit <= DENOMINATOR,
170 "PS: Fee too high"
171);
172 feeSettings.baseTokenFee = _baseTokenFee;
173 feeSettings.saleTokenFee = _saleTokenFee;
174 feeSettings.ethCreationFee = _ethCreationFee;
175 feeSettings.referralFee = _referralFee;
176 feeSettings.referralFeeSplit = _referralFeeSplit;
177 }

SHB.5.4: PresaleSettings.sol

187 function setEmergencyFees(
188 uint16 _none,
189 uint16 _entry,
190 uint16 _mid,
191 uint16 _high
192) external onlyAdmin {
193 // check fee values
194 require(
195 _none <= DENOMINATOR &&
196 _entry <= DENOMINATOR &&
197 _mid <= DENOMINATOR &&
198 _high <= DENOMINATOR,
199 "PS: FEE_TOO_HIGH"
200);
201 require(_entry <= _none, "PS: ENTRY_TOO_LOW");
202 require(_mid <= _entry, "PS: MID_TOO_LOW");
203 require(_high <= _mid, "PS: HIGH_TOO_LOW");
204 // set emergency fee values

15

205 emergencyWithdrawlFees[IStaking.Tier.None] = _none;
206 emergencyWithdrawlFees[IStaking.Tier.Entry] = _entry;
207 emergencyWithdrawlFees[IStaking.Tier.Mid] = _mid;
208 emergencyWithdrawlFees[IStaking.Tier.High] = _high;
209 }

SHB.5.5: PresaleSettings.sol

216 function setDefaultReferrer(
217 address payable _defaultReferrer
218) external onlyAdmin {
219 require(_defaultReferrer != address(0), "PS: Zero address");
220 defaultReferrer = _defaultReferrer;
221 }

SHB.5.6: PresaleSettings.sol

230 function setMinLockingLiquidity(uint64 _minLiquidity) external onlyAdmin
,! {

231 require(_minLiquidity <= DENOMINATOR, "PS: Liquidity too high");
232 generalSettings.minLiquidityPercentage = _minLiquidity;
233 }

SHB.5.7: PresaleSettings.sol

239 function setMinLockingDuration(uint64 _minDuration) external onlyAdmin {
240 generalSettings.minLiquidityLockingDuration = _minDuration;
241 }

SHB.5.8: PresaleSettings.sol

252 function setOwnerFinalizeDuration(uint64 _duration) external onlyAdmin {
253 require(_duration <= 3 days, "PS: Duration too long");
254 generalSettings.ownerFinalizeDuration = _duration;
255 }

SHB.5.9: PresaleSettings.sol

264 function setWhitelist(IWhitelist _whitelist) external onlyAdmin {

16

265 require(address(_whitelist).code.length > 0, "PS: NO_CONTRACT");
266 whitelist = _whitelist;
267 }

SHB.5.10: PresaleSettings.sol

276 function setWeth(IWETH _weth) external onlyAdmin {
277 require(address(_weth).code.length > 0, "PS: NO_CONTRACT");
278 weth = _weth;
279 }

SHB.5.11: PresaleSettings.sol

288 function setTokenVesting(ITokenVesting _tokenVesting) external onlyAdmin
,! {

289 require(address(_tokenVesting).code.length > 0, "PS: NO_CONTRACT
,! ");

290 tokenVesting = _tokenVesting;
291 }

SHB.5.12: PresaleSettings.sol

300 function setLockForwarder(
301 IPresaleLockForwarder _lockForwarder
302) external onlyAdmin {
303 require(address(_lockForwarder).code.length > 0, "PS: NO_CONTRACT

,! ");
304 lockForwarder = _lockForwarder;
305 }

SHB.5.13: PresaleSettings.sol

314 function setStaking(IStaking _staking) external onlyAdmin {
315 require(address(_staking).code.length > 0, "PS: NO_CONTRACT");
316 staking = _staking;
317 }

SHB.5.14: PresaleSettings.sol

17

334 function addFeeProfile(
335 bool _activate,
336 uint16 _baseTokenFeeDiscount,
337 uint16 _saleTokenFeeDiscount,
338 uint16 _creationFeeDiscount,
339 uint64 _whitelistSlots
340) external onlyAdmin {
341 require(
342 _baseTokenFeeDiscount <= DENOMINATOR &&
343 _saleTokenFeeDiscount <= DENOMINATOR &&
344 _creationFeeDiscount <= DENOMINATOR,
345 "PS: Fee too high"
346);
347 totalFeeProfiles++;
348 feeProfiles[totalFeeProfiles] = FeeProfile(
349 _activate,
350 _baseTokenFeeDiscount,
351 _saleTokenFeeDiscount,
352 _creationFeeDiscount,
353 _whitelistSlots
354);
355 }

SHB.5.15: PresaleSettings.sol

365 function toggleFeeProfile(
366 bool _activate,
367 uint256 _index
368) external onlyAdmin {
369 require(
370 _index > 0 && _index <= totalFeeProfiles,
371 "PS: PROFILE_NOT_FOUND"
372);
373 feeProfiles[_index].active = _activate;
374 }

18

SHB.5.16: PresaleRestrictedFacet.sol

266 function adminForceFail() external onlyAdmin {
267 LibPresaleStatus.enforceLpNotGenerated();
268 _forceFailure();
269 }

Recommendation:

To help ensure that changes to the PresaleSettings contract aremadewith the consensus

of the admins, consider implementing a voting systemwhere themajority of adminsmust

accept the change in order for it to be applied. This can help prevent a single admin from

making changes to the settingswithout the agreement of the rest of the group,which could

potentially be harmful to the contract or its users.

Updates

The Unicrypt team acknowledged this issue for the following reason, it is unlikely for the

settings to be compromised by an owner.

SHB.6 Locked Ether

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

Description:

TheuserDeposit functionallowsusers todeposit either aspecial ERC20 token (baseToken)

oranativetoken intoapresale,dependingonthepreferenceof thepresaleowner. However,

if a user deposits both the baseToken and ETH, the same amount of ETH is not refunded to

the user and remains locked inside the contract.

19

Files Affected:

SHB.6.1: PresaleParticipantFacet.sol

272 function _userDeposit(uint256 _amount) internal {
273 // check if base token is native token
274 uint256 amountIn = LibPresaleInfo.generalInfo().baseIsNative
275 ? msg.value
276 : _amount;
277

278 // get storage variables
279 LibPresaleBuyers.BuyerInfo storage buyer = LibPresaleBuyers
280 .getBuyerInfo(msg.sender);
281 LibPresaleInfo.Numbers memory numbers = LibPresaleInfo.numbers();
282 LibPresaleInfo.GeneralInfo memory info = LibPresaleInfo.

,! generalInfo();
283 LibPresaleStatus.PresaleStatus storage status = LibPresaleStatus
284 .diamondStorage();
285 bool noHardcap = info.presaleType ==
286 LibPresaleInfo.PresaleType.NO_HARDCAP;
287

288 // get base token allowance for deposit
289 uint256 allowance = numbers.maxSpendPerBuyer - buyer.

,! baseDeposited;
290 uint256 remainingBaseToken = noHardcap
291 ? type(uint256).max - status.totalBaseTokensCollected
292 : numbers.hardcap - status.totalBaseTokensCollected;
293 allowance = allowance > remainingBaseToken
294 ? remainingBaseToken
295 : allowance;
296

297 // check if amount is greater than deposit allowance
298 if (amountIn > allowance) {
299 amountIn = allowance;
300 }

20

301

302 // check sale token amount
303 uint256 saleTokenAmount = noHardcap
304 ? 0
305 : _calculateSaleTokenAmount(amountIn, numbers.tokenPrice);
306

307 // update storage variables
308 if (buyer.baseDeposited == 0) {
309 status.totalBuyers++;
310 }
311 buyer.baseDeposited += amountIn;
312 buyer.saleTokensOwed += saleTokenAmount;
313 status.totalBaseTokensCollected += amountIn;
314 status.totalSaleTokensSold += saleTokenAmount;
315

316 // return unused native tokens
317 if (info.baseIsNative && amountIn < msg.value) {
318 (bool sent,) = msg.sender.call{value: msg.value - amountIn

,! }("");
319 require(sent, "PPF: REFUND_FAILED");
320 }
321

322 // send non native base tokens to Presale
323 if (!info.baseIsNative) {
324 TransferHelper.safeTransferFrom(
325 info.baseToken,
326 msg.sender,
327 address(this),
328 amountIn
329);
330 }

21

Recommendation:

Consider requiring the msg.value to be equal to zero when the base token is a non-native

token.

Updates

TheUnicrypt teamacknowledged the risk, stating it is unlikely to happen.

SHB.7 WETHaddress can bemanipulated

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

Description:

TheWETHaddress in the contract is not checked for validity,whichmeans that the contract

deployercouldpotentiallymanipulate thecontractbyspecifyingamaliciousWETHcontract

address instead of the expected contract. This could have serious consequences for the

contract’s users.

Files Affected:

SHB.7.1: PresaleSettings.sol

63 constructor(
64 address payable _defaultReferrer,
65 address _whitelist,
66 address _adminRegistry,
67 address _weth,
68 address _tokenVesting,
69 address _lockForwarder,
70 address _staking
71) AdminRegistryImplementer(_adminRegistry) {

22

72 require(_defaultReferrer != address(0), "PS: Zero address");
73 require(
74 _whitelist.code.length > 0 &&
75 _weth.code.length > 0 &&
76 _tokenVesting.code.length > 0 &&
77 _lockForwarder.code.length > 0 &&
78 _staking.code.length > 0,
79 "PS: NO_CONTRACT"
80);
81

82 defaultReferrer = _defaultReferrer;
83

84 // set references to other contracts
85 whitelist = IWhitelist(_whitelist);
86 weth = IWETH(_weth);

Recommendation:

Consider initializing the WETH address as a constant in the contract declaration. This will

ensure that theWETHaddresscannotbemanipulatedby thedeployer ,andwillmake it clear

to the users of the contractwhat the intendedWETHaddress is.

Updates

The Unicrypt team acknowledged the risk, stating that the address is initialized in the con-

structor to enable deploying the contract in different chains.

23

4 Best Practices

BP.1 Merkle Tree In TheWhitelist Contract

Description:

Using a Merkle tree to implement a whitelist could potentially have some benefits com-

pared to other approaches, such as reducing the gas cost of querying the whitelist and al-

lowing for efficient updates to thewhitelist.

To implement a whitelist using a Merkle tree, you would first need to store the hashes

of the whitelisted addresses in the tree offchain ,and store themerkle root in the contract.

You could then use the isWhitelisted function to check if a given address is on the whitelist

by calculating the hash of the address and verifying that it is included in the tree.

To add or remove an address from the whitelist, you would need to update the tree by

inserting or deleting the hash of the address. This would require recalculating the hashes

of the affected nodes in the tree,and changing theMerkle root in the contract.

Overall, using a Merkle tree for a whitelist may be a good solution if you need to effi-

ciently check if a number of addresses are on thewhitelist.

Status - Acknowledged

TheUnicrypt teamacknowledged this best practice, and they are planning to implement it.

BP.2 Remove Unnecessary Check for Address

Zero in _removeAdmin Function

Description:

The_removeAdmin functioncurrentlycontainsacheck toensure that theaddressbeingre-

moved is not equal to address zero. However, this check is unnecessary, as the _addAd-

min function already enforces the requirement that newadminsmust not be address zero.

Therefore, the check can be safely removed without affecting the functionality of the con-

tract.

24

Removing this unnecessary check can help simplify the code andmake it easier to un-

derstand andmaintain. It can also potentially reduce the gas cost of executing the function,

as the check is an extra step that is not needed.

Files Affected:

BP.2.1: AdminRegistry.sol

187 function _removeAdmin(address _oldAdmin) internal {
188 require(_oldAdmin != address(0), "AR: ZERO_ADDRESS");
189 require(isAdmin(_oldAdmin), "AR: NOT_REGISTERED");

Status - Acknowledged

TheUnicrypt teamacknowledged this best practice.

BP.3 Remove Unnecessary Initialization of

totalSplitPercentage

Description:

The variable totalSplitPercentage is initialized to zero at the beginning of the

_validateAmmParams function. However, this initialization is unnecessary, as the value of

totalSplitPercentage is immediately overwritten in the following line of code. Therefore, it

is recommended to remove the unnecessary initialization of totalSplitPercentage to zero.

Thiswill help simplify the code and reduce the gas cost of executing the function.

Files Affected:

BP.3.1: PresaleFactory.sol

485 function _validateAmmParams(
486 LibPresaleInfo.AmmParams memory _ammParams
487) private view {
488 require(

25

489 _ammParams.ammIndexes.length == _ammParams.splitPercentages.
,! length,

490 "PF: INVALID_AMM_PARAMS"
491);
492

493 // define variables to check amm parameters for duplicates and
,! total split percentage

494 uint256 totalSplitPercentage = 0;

Status - Acknowledged

The Unicrypt team acknowledged this best practice for the reason being their utmost care

for the code readability.

26

5 Tests
Results:

! AdminRegistry

X Should initialize contract correctly

! Add single admin

X Should add single admin as non-manager bymanager

X Should add single admin asmanager bymanager

X Should fail adding single admin by not-manager

X Should fail adding zero address as admin

X Should fail adding already registered admin again

! Remove single admin

X Should remove singlemanager bymanager

X Should remove single admin bymanager

X Should fail removing single admin by not-manager

X Should fail removing single adminwith zero address

X Should fail removing single not registered admin

X Should fail removing single last admin

X Should fail removing single lastmanager

! Addmultiple admins

X Should addmultiple admins bymanager

X Should addmultiplemanagers bymanager

X Should addmultiple admins andmanagers bymanager

27

X Should fail addingmultiple admin by not-manager

X Should fail addingmultiple adminswith different array sizes

X Should fail adding zero address as admin

X Should fail adding already registered admin again

! Removemultiple admins

X Should removemultiple admins bymanager

X Should fail removingmultiple admins by not-manager

X Should fail removingmultiple admin swith zero address

X Should fail removingmultiple not registered admins

X Should fail removing single last admin

! AdminRegistryImplementer

X Should initialize admin registry implementer correctly

X Should set admin registry address by admin

X Should fail setting admin registry address by non-admin

X Should fail setting admin registry addresswith invalid address

X Should use correct admin list

! Presale Diamond

X should have five facets – call to facetAddresses function

X should have the right function selectors – call to facetFunctionSelec-

tors function

X should associate selectors to facets correctly – multiple calls to fac-

etAddress function

28

X Should fail initializingNumbers by non factory

X Should revert on calling unknown function

X Should store facets correctly

X Should return correct settings contract address

X Should return correct factory contract address

X Should fail adding facetwith zero address

X Should fail adding facetwith invalid address

X Should fail adding facet no selector

X Should fail adding facet invalid action type

X Should return supported interfaces correctly

! Presale OwnershipFacet

X Should initialize owner correctly

X Should transfer ownership by owner

X Should fail transferring ownership by non-owner

! Restricted Presale Facet

! Owner functions

! Withdrawsale tokens

X Shouldwithdrawsale tokens on failure

X Should send sale tokens back to owner onwithdrawl

X Should fail withdrawing sale token if presale is not failed

X Should fail withdrawing sale token by non owner

29

! Add token holding requirement

X Should set token holding requirement

X Should fail setting holding requirementwith invalid token

X Should fail setting holding requirementwith invalid amount

X Should fail settingholding requirement if presale is not queued

X Should fail setting holding requirement by non owner

! Update presale times

X Should postpone presale

X Should fail postponingwith invalid start time

X Should fail postponingwith invalid end time

X Should fail postponingwith invalid round1 start time

X Should set free emergencywithdrawon postponing

X Should fail postponing if presale is failed

X Should fail postponing by non owner

! Force failure

X Should force presale to fail

X Should fail forcing failed presale to fail

X Should fail forcing presale to fail by non owner

X Should fail forcing failed if lpwas created

! Set token vesting

X Should set vesting params

X Should fail setting vesting paramswith invalid percentage

X Should fail forcing presale to fail by non owner

X Should set free emergencywithdraw

! Admin functions

30

! Force failure

X Should force presale to fail

X Should fail forcing failed presale to fail

X Should fail forcing presale to fail by non owner

X Should fail forcing failed if lpwas created

! Owner finalization frame

X Should set owner finalization frame

X Should fail setting owner finalization frameby non owner

! Customwhitelist

X Should set customwhitelist

X Should fail setting customwhitelist by non owner

X Should fail setting custom whitelist with invalid contract

address

X Should fail setting customwhitelist for non discounted presale

! PresaleFactory

X Should initialize factory correctly

X Should fail creating factorywith invalid addresses

! Calculate sale token amount required

X Should calculate scenario 0

X Should calculate scenario 1

X Should calculate scenario 2

X Should calculate scenario 3

X Should calculate scenario 4

31

X Should fail calculating amount required with invalid liquidity per-

cent

X Should fail calculating amount requiredwith invalid sale token fee

! Create presale

! Regular presale

X Should create presale

X Should create presalewith native base token

X Should charge creation fee

X Should calculate hardcap correctly

X Should transfer sale token amount to presale

X Should fail with invalid fee profile

X Should fail with invalid sale token

X Should fail with invalid base token

X Should fail with invalid country code

X Should fail with invalidmin-max buyer value

X Should fail with start time too low

X Should fail with invalid round1 start time

X Should fail with end time too low

X Should fail with invalid liquidity percent

X Should fail with locking period too low

X Should fail with invalid creation fee

X Should fail with invalid listing parameters

X Should fail without approving sale token amount

X Should fail with invalid softcap <> hardcap ratio

X Should fail with invalid ammparameters length

32

X Should fail with invalid amm index

X Should fail with dublicated ammson splitting

X Should fail with invalid splitting percentage

! Discounted presale

X Should create presale

X Should charge lower creation fee

! Nohardcap presale

X Should create presale

X Should fail with invalid price increase

X Should fail with invalid creation fee

! Custompresale

X Should create presale

X Should fail creation by non admin

X Should fail creationwith invalid fee values

! Admin functions

X Should set presale registry by admin

X Should set presale settings by admin

X Should set country list by admin

X Should fail setting presale registry by non-admin

X Should fail setting presale settings by non-admin

X Should fail setting country list by non-admin

! PresaleGenerator

X Should initialize generator correctly

X Should set PresaleFactory by admin

33

X Should fail setting PresaleFactory by not-admin

X Should fail setting invalid PresaleFactory

X Should set diamond facets by admin

X Should fail setting diamond facets by non-admin

X Should disable setting diamond facets

X Should fail disabling setting diamond facets by not-admin

X Should fail creating presale by not-factory

! PresaleLockForwarder

X Should create contract

X Should fail contract creationwith invalid registry address

X Should initialize contract correctly

X Should fail locking liquiditywith not registered presale

X Should set presale registry by admin

X Should fail setting presale registry by not-admin

X Should fail setting invalid presale registry

X Should state pool initialization on existing poolwith funds

X Should not state pool initialization on existing poolwithout funds

! Changing listedAMMs

X Should add ammby admin

X Should fail adding ammby not-admin

34

X Should fail adding ammwith invalid locker contract

X Should fail adding ammdublicates

X Should activate/deactivate ammby admin

X Should fail activating/deactivating ammby not-admin

X Should fail toggle unlisted amm

X Should fail togglewith invalid status

X Should replace locker contract by admin

X Should fail replacing locker contract by not-admin

X Should fail replacing locker contractwith invalid contract

X Should fail replacing locker contractwith unlisted amm factory

! CustomPresale

X Should initialize presale correctly

X Should charge custom fees on finalization

! DiscountedPresale

X Should create discounted presale

X Should initialize discounted presale correctly

X Should fail if customwhitelist is not set

X Should charge discounted sale token fee on finalization

X Should charge discounted base token fee on finalization

! NoHarcapPresale

X Should initialize presale correctly

35

! Deposit

X Should not calculate sale token amount on deposit

X Should track deposited base token amount on deposit

X Should allowunlimited base token amount deposit

! Finalization

X Should set correct token price on finalization

X Should init lpwith correct amounts on finalization

X Should send correct base token amount to owner on finalization

X Shouldwithdraw correct owed sale token amounts

! Regular Presale

X Should initialize regular presale correctly

! User deposit base token

X Should deposit in public round

X Should fail depositingwhile queued

X Should fail depositingwhile private round if notwhitelisted

X Should deposit in private round if whitelisted

X Should fail depositing in public round with insufficient access to-

kens

X Should deposit in public roundwith sufficient access tokens

X Should deposit with native token

X Should not depositmore thanmax allowance

X Should fail depositingmore thanmax allowance

X Should not depositmore than hardcap

36

X Should fail depositing if hardcap is already reached

X Should refund dust ether

X Should send custombase token to presale

X Should send native base token to presale

! Userwithdrawbase token

X Shouldwithdraw total deposited base token on presale failure

X Should fail withdrawing before presale failed

X Should fail withdrawingwithout depositing

X Should fail withdrawing twice

X Should transfer base token back to user

X Should transfer native base token back to user

! User emergencywithdrawbase token

X Shouldwithdrawdeposited base tokenwhen presale is active

X Should not charge fee on postponed presale

X Should not charge fee on presale fail

X Should fail emergencywithdraw if presale ended successfully

! Should charge feeonemergencywithdrawwhenpresale is not

failed

X Should charge tier typeNONE fee

X Should charge tier type ENTRY fee

X Should charge tier typeMID fee

X Should charge tier typeHIGH fee

! User finalize presalewith erc20 base

37

X Should finalize presale by owner in owner only time frame

X Should fail finalizing presale by anyone in owner only time frame

X Should fail finalizing failed presale

X Should finalize presale by anyone after owner only time frame

X Should set status to failed if pools have been initialized before

X Should charge base token fee on presale finalization

X Should charge sale token fee on presale finalization

X Should charge referrer fee amounts

X Should charge referral split fee amounts

X Should burn unsold sale tokens

X Should create new liquidity pool

X Should initialize liquidity poolwith correct amounts

X Should send owner remaining base token amount on finalization

! User finalize presalewith native base

X Should finalize presalewith native base tokens

X Should initialize poolwithweth

X Should send owner remaining base token amount

! Userwithdrawsale token

X Should emitwithdrawevent

X Shouldwithdrawowed sale tokens

X Should fail withdrawing sale tokens if presale is not finalized

X Should fail withdrawing sale tokens if nothing deposited

! Track presale status

38

X Should be in queued status after creation

X Should be in round 0 after start time if round 0 duration is set

X Should be in round 1 after start time if round 0 duration is not set

X Should be in round 1 after round 0

X Should be successful if hardcap ismet

X Should be successful if softcap and end time ismet

X Should be active if softcap ismet but end time is notmet

X Should be in failed state if softcap is notmet but end time ismet

X Should be in failed state if admin forced failure

X Should be finalized if presalewas finalized (lp created)

! PresaleRegistry

X Should initialize registry correctly

X Should set factory by owner

X Should fail setting factory by non-owner

X Should fail setting factorywith invalid address

X Should fail registering presale by non factory

X Should emit register event

X Should register created presale correctly

X Should register correct presale type

! PresaleSettings

X Should initialize settings correctly

39

X Should fail creating contractwith invalid addresses

! Set variables by owner

X Should set fee addresses

X Should fail setting invalid fee addresses

X Should set fees

X Should fail setting creation fee too low

X Should fail setting fees too high

X Should set emergencywithdrawl fee for different tier levels

X Should fail setting emergencywithdrawl fees too high

X Should fail setting invalid emergencywithdrawl fees

X Should set staking contract

X Should fail setting staking contractwith invalid address

X Should set default referrer

X Should fail setting zero address as default referrer

X Should setmin locking liquidity percentage

X Should fail settingmin locking liquidity percentage too high

X Should setmin locking duration

X Should set owner finalize duration

X Should fail setting finalize owner duration too long

X Should setwhitelist address

X Should fail setting invalidwhitelist address

X Should setweth address

X Should fail setting invalidweth address

40

X Should set token vesting address

X Should fail setting invalid token vesting address

X Should set lock forwarder address

X Should fail setting invalid lock forwarder address

X Should add a custom fee profile

X Should fail adding invalid fee profile

X Should deactivate/activate existing fee profile

X Should fail deactivating invalid fee profile

! Set variables by non-owner

X Should fail setting fee addresses

X Should fail setting fees

X Should fail setting default referrer

X Should fail settingmin locking liquidity percentage

X Should fail settingmin locking duration

X Should fail setting owner finalization duration

X Should fail settingwhitelist address

X Should fail settingweth address

X Should fail setting token vesting address

X Should setting lock forwarder address

X Should fail adding a custom fee profile

X Should fail activating/deactivating a custom fee profile

! Getter

X Should return default fee for no fee profile

41

X Should return relative fee for defined fee profiles

X Should fail getting fees for invalid fee profiles

! Whitelist

X Should initializewhitelist correctly

! Add single user

X Should add single user towhitelist by admin

X Should fail adding single user by not-admin

X Should fail adding zero address

X Should fail adding alreadywhitelisted user again

! Remove single user

X Should remove single user by admin

X Should fail removing single user by not-admin

X Should fail removing single userwith zero address

X Should fail removing single not registered user

! Addmultiple users

X Should addmultiple users by admin

X Should fail addingmultiple users by not-admin

X Should fail adding zero address as user

X Should fail adding already registered user again

! Removemultiple users

X Should removemultiple users by admin

X Should fail removingmultiple users by not-admin

42

X Should fail removingmultiple userswith zero address

X Should fail removingmultiple not registered users

301 passing (1m)

Coverage:

The code coverage results were obtained by running npx hardhat coverage in the

ilov7-audit-main project. We found the following results :

• Statements Coverage : 98.69%

• BranchesCoverage : 92.79%

• Functions Coverage : 100%

• Lines Coverage : 98.62%

43

6 Conclusion
In this audit, we examined the design and implementation of Unicrypt’s ILO V7 and discov-

ered several issues of varying severity. Unicrypt teamaddressed0 issues raised in the ini-

tial report and implemented the necessary fixes, while classifying the rest as a risk with

low-probability of occurrence. Shellboxes’ auditors advised Unicrypt Team to maintain a

high level of vigilance and to keep those findings in mind in order to avoid any future com-

plications.

44

7 Scope Files

7.1 Audit

Files MD5Hash

ilov7-audit-main/contracts/AdminRegistry.sol ceab501034f449c0de8992c16f772b17

ilov7-audit-main/contracts/PresaleSettings.sol 6e887398776696aaf55936019b0e858c

ilov7-audit-main/contracts/PresaleRegistry.sol 0eb9653071ea5b8aee6e11f01d4a38bb

ilov7-audit-main/contracts/AdminRegistryImpl
ementer.sol

a50c9ad8259f43e2f7ea838194c64ca3

ilov7-audit-main/contracts/PresaleFactory.sol c371cc55fd004eecabd7d9ddf7edf7ec

ilov7-audit-main/contracts/PresaleGenerator.s
ol

c37d1ec8f9f432ce750322c48a1f1ff7

ilov7-audit-main/contracts/Whitelist.sol 4b450a5fe9fc11639f7d284bab8ac638

ilov7-audit-main/contracts/PresaleLockForwar
der.sol

9e38cedd9a04884508ea5898dd010695

ilov7-audit-main/contracts/presale/PresaleDia
mond.sol

9f5af6c47425a27d100fd7d34105ec36

ilov7-audit-main/contracts/presale/facets/Dia
mondLoupeFacet.sol

ec1e4a84b12a86faa7afa872689b80a6

ilov7-audit-main/contracts/presale/facets/Pre
saleLoupeFacet.sol

d3bb158338642ff43a537415744e8d2f

ilov7-audit-main/contracts/presale/facets/Pre
saleRestictedFacet.sol

cf64c09ad5537b43cdedd8409ed43f54

ilov7-audit-main/contracts/presale/facets/Pre
saleParticipantFacet.sol

11d1b037714a6184bb37825a32f00889

45

ilov7-audit-main/contracts/presale/facets/Own
ershipFacet.sol

24a5d81d53605ddbe0d0fccbfc03b491

ilov7-audit-main/contracts/presale/interfaces/
IPresaleDiamond.sol

2b407f0283a55ad734682affae76d220

ilov7-audit-main/contracts/presale/interfaces/
IERC173.sol

01d6453755edd41e1ca03282a3fd9d6c

ilov7-audit-main/contracts/presale/interfaces/
IDiamond.sol

8e17f7274793b9192b62de29951059ed

ilov7-audit-main/contracts/presale/interfaces/
IPresaleLoupe.sol

12670d21091e79d8510c9820c8277573

ilov7-audit-main/contracts/presale/interfaces/
IDiamondLoupe.sol

cb84fec62c9738d06639bcb5e9ee333a

ilov7-audit-main/contracts/presale/interfaces/
IPresaleRestrictedFacet.sol

d929dbd182b55583031e9ff62ef5f410

ilov7-audit-main/contracts/presale/interfaces/
IPresaleParticipantFacet.sol

fdb2904642cbad4ffb373164635ee77e

ilov7-audit-main/contracts/presale/libraries/Li
bPresaleStatus.sol

2b966b2eb3ae4a49414400644e9ff47a

ilov7-audit-main/contracts/presale/libraries/Li
bPresaleVesting.sol

e4350c74a28d07a6e82020c4481acabf

ilov7-audit-main/contracts/presale/libraries/Li
bPresaleBuyers.sol

b460852d4fcd90b70d119854d438cea6

ilov7-audit-main/contracts/presale/libraries/Li
bDiamond.sol

05a999f5fc844a7b47eb6f485d25d64f

ilov7-audit-main/contracts/presale/libraries/Li
bPresaleInfo.sol

0293c6d23b48b137c4b29b01430ba8cb

ilov7-audit-main/contracts/interfaces/IPresale
Generator.sol

226c5618ddbdbb3a579afcddaa80e77d

46

ilov7-audit-main/contracts/interfaces/IPresale
LockForwarder.sol

a31b35e4f1695021181755c715795c29

ilov7-audit-main/contracts/interfaces/IWhitelis
t.sol

11d4de500695f5a86eb6c4ce249b00e0

ilov7-audit-main/contracts/interfaces/IAdminR
egistry.sol

2c24161ef45eeffcb73b9ed3141caff4

ilov7-audit-main/contracts/interfaces/IPresale
Factory.sol

ee42130062108a0de2444e89880f56e1

ilov7-audit-main/contracts/interfaces/IPresale
Settings.sol

80aacae1f9a2e614d99685bf09c1841e

ilov7-audit-main/contracts/interfaces/IWETH.s
ol

4c49fc788e6e2fbd8b25c1668573d1c1

ilov7-audit-main/contracts/interfaces/ITokenV
esting.sol

e208e353fc117f5c77a156a7250ce2ef

ilov7-audit-main/contracts/interfaces/IPresale
Registry.sol

fd1fe556480ab0288731a764e4bcf497

ilov7-audit-main/contracts/interfaces/ICountry
List.sol

d3a16b2224304344a88eec2913247df3

ilov7-audit-main/contracts/interfaces/AMM/IL
PLocker.sol

45eefdf29b33d90bdfc9692db6b20e3b

ilov7-audit-main/contracts/interfaces/AMM/IA
MMFactory.sol

f0bf0dbef43963127e2418e49b9bb41e

ilov7-audit-main/contracts/interfaces/AMM/ILi
quidityPool.sol

17b7f21f87dccc460719df89b37b3b03

ilov7-audit-main/contracts/libraries/FullMath.s
ol

20819ad28cfd4d57bf2bd2e13985b85f

ilov7-audit-main/contracts/libraries/TransferH
elper.sol

98837f658a121cc8196056425b5b2483

47

7.2 Re-Audit

Files MD5Hash

ilo7-audit/contracts/Whitelist.sol 4b450a5fe9fc11639f7d284bab8ac638

ilo7-audit/contracts/PresaleFactory.sol b5ae673ffba1f2f491af767c3e6d10d0

ilo7-audit/contracts/AdminRegistryImplemente
r.sol

a50c9ad8259f43e2f7ea838194c64ca3

ilo7-audit/contracts/PresaleGenerator.sol c37d1ec8f9f432ce750322c48a1f1ff7

ilo7-audit/contracts/PresaleRegistry.sol 0eb9653071ea5b8aee6e11f01d4a38bb

ilo7-audit/contracts/AdminRegistry.sol ceab501034f449c0de8992c16f772b17

ilo7-audit/contracts/PresaleLockForwarder.sol 9e38cedd9a04884508ea5898dd010695

ilo7-audit/contracts/PresaleSettings.sol b62681ab3201a7530f465875dcc8882e

ilo7-audit/contracts/interfaces/IPresaleFactory
.sol

ee42130062108a0de2444e89880f56e1

ilo7-audit/contracts/interfaces/IWETH.sol 4c49fc788e6e2fbd8b25c1668573d1c1

ilo7-audit/contracts/interfaces/IWhitelist.sol 11d4de500695f5a86eb6c4ce249b00e0

ilo7-audit/contracts/interfaces/IPresaleRegistr
y.sol

fd1fe556480ab0288731a764e4bcf497

ilo7-audit/contracts/interfaces/ICountryList.sol d3a16b2224304344a88eec2913247df3

ilo7-audit/contracts/interfaces/IPresaleSetting
s.sol

5fa870f0f2dd57caf688aaaf7ffefb16

ilo7-audit/contracts/interfaces/IAdminRegistry.
sol

2c24161ef45eeffcb73b9ed3141caff4

ilo7-audit/contracts/interfaces/IPresaleLockFo
rwarder.sol

a31b35e4f1695021181755c715795c29

48

ilo7-audit/contracts/interfaces/ITokenVesting.s
ol

e208e353fc117f5c77a156a7250ce2ef

ilo7-audit/contracts/interfaces/IPresaleGenera
tor.sol

226c5618ddbdbb3a579afcddaa80e77d

ilo7-audit/contracts/interfaces/AMM/IAMMFact
ory.sol

f0bf0dbef43963127e2418e49b9bb41e

ilo7-audit/contracts/interfaces/AMM/ILiquidity
Pool.sol

17b7f21f87dccc460719df89b37b3b03

ilo7-audit/contracts/interfaces/AMM/ILPLocker
.sol

45eefdf29b33d90bdfc9692db6b20e3b

ilo7-audit/contracts/libraries/TransferHelper.s
ol

98837f658a121cc8196056425b5b2483

ilo7-audit/contracts/libraries/FullMath.sol 20819ad28cfd4d57bf2bd2e13985b85f

ilo7-audit/contracts/presale/PresaleDiamond.s
ol

9f5af6c47425a27d100fd7d34105ec36

ilo7-audit/contracts/presale/interfaces/IDiamo
ndLoupe.sol

cb84fec62c9738d06639bcb5e9ee333a

ilo7-audit/contracts/presale/interfaces/IPresal
eLoupe.sol

12670d21091e79d8510c9820c8277573

ilo7-audit/contracts/presale/interfaces/IERC17
3.sol

01d6453755edd41e1ca03282a3fd9d6c

ilo7-audit/contracts/presale/interfaces/IPresal
eDiamond.sol

2b407f0283a55ad734682affae76d220

ilo7-audit/contracts/presale/interfaces/IPresal
eParticipantFacet.sol

fdb2904642cbad4ffb373164635ee77e

ilo7-audit/contracts/presale/interfaces/IPresal
eRestrictedFacet.sol

d929dbd182b55583031e9ff62ef5f410

49

ilo7-audit/contracts/presale/interfaces/IDiamo
nd.sol

8e17f7274793b9192b62de29951059ed

ilo7-audit/contracts/presale/libraries/LibPresa
leVesting.sol

e4350c74a28d07a6e82020c4481acabf

ilo7-audit/contracts/presale/libraries/LibPresa
leBuyers.sol

b460852d4fcd90b70d119854d438cea6

ilo7-audit/contracts/presale/libraries/LibPresa
leStatus.sol

2b966b2eb3ae4a49414400644e9ff47a

ilo7-audit/contracts/presale/libraries/LibPresa
leInfo.sol

0293c6d23b48b137c4b29b01430ba8cb

ilo7-audit/contracts/presale/libraries/LibDiam
ond.sol

05a999f5fc844a7b47eb6f485d25d64f

ilo7-audit/contracts/presale/facets/Ownership
Facet.sol

24a5d81d53605ddbe0d0fccbfc03b491

ilo7-audit/contracts/presale/facets/PresaleRes
tictedFacet.sol

ee46847f2c6c6cae81bc6ae5c4111c28

ilo7-audit/contracts/presale/facets/PresalePar
ticipantFacet.sol

11d1b037714a6184bb37825a32f00889

ilo7-audit/contracts/presale/facets/DiamondLo
upeFacet.sol

ec1e4a84b12a86faa7afa872689b80a6

ilo7-audit/contracts/presale/facets/PresaleLou
peFacet.sol

d3bb158338642ff43a537415744e8d2f

50

8 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject that engagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

51

For a Contract Audit, contact us at contact@shellboxes.com

52

mailto:contact@shellboxes.com

	Introduction
	About Unicrypt
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Disclaimer
	Summary
	Key Findings

	Finding Details
	An Admin Can Become a Manager
	Admin Can Disable Presale Creation by Setting High Eth Creation Fee
	Potential Loss of Functionality in setFacetCuts Function
	Denial Of Service Vulnerability Through Owner Finalization Time Frame
	Centralization Risk
	Locked Ether
	WETH address can be manipulated

	Best Practices
	Merkle Tree In The Whitelist Contract
	Remove Unnecessary Check for Address Zero in _removeAdmin Function
	Remove Unnecessary Initialization of totalSplitPercentage

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

