
pStake

Finance
Smart Contract Security Audit

Prepared by ShellBoxes

Aug 16th, 2023 -Aug 29th, 2023

Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com


Document Properties

Client Persistence

Version 1.0

Classification Public

Scope

Repository Commit Hash

https://github.com/persistenceOne/
pstake-stkETH

c558158203a185f4b0bc62740c920acca6c3c580

Re-Audit

Repository Commit Hash

https://github.com/persistenceOne/
pstake-stkETH

5ea6c32c05386b200693bf37c507666cb5f57f15

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://github.com/persistenceOne/pstake-stkETH
https://github.com/persistenceOne/pstake-stkETH
https://github.com/persistenceOne/pstake-stkETH
https://github.com/persistenceOne/pstake-stkETH
mailto:contact@shellboxes.com


Contents

1 Introduction 5

1.1 About Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Approach&Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 RiskMethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 FindingsOverview 7

2.1 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 FindingDetails 10

SHB.1 Multiple Candidate VotesAccepted for the SameEpoch . . . . . . . . . . . . 10

SHB.2 Replay Attack onAccepted ConsensusData . . . . . . . . . . . . . . . . . . . 12

SHB.3 Exited Balance of Validators and Staker Rewards Permanently Locked in

theWithdrawalCredential Contract . . . . . . . . . . . . . . . . . . . . . . . 14

SHB.4 Permanent Locking of Validator Rewards Due to Lack of depositedValida-

torsUpdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

SHB.5 L2 FundsCannot BeBridged to L1 Due to FlawedSlippageCalculation . . . 18

SHB.6 StuckMEVRewards in theWithdrawalCredential . . . . . . . . . . . . . . . 21

SHB.7 DesynchronizationRiskDue to Epoch-BasedData Submission . . . . . . . 22

SHB.8 PrematureRewardAllocationDue to IgnoringQueueWait Time . . . . . . . 24

SHB.9 Loss of User-Supplied Feeswhen Interactingwith OptimismMessenger . 26

SHB.10 ImproperHandling of Exiting Validators Allowing Last-TimeRewardClaims 31

SHB.11 Desynchronization of pricePerShareBetween L1 and L2 . . . . . . . . . . . 35

SHB.12 Inequitable RewardDistribution forNewValidators . . . . . . . . . . . . . . 37

SHB.13 Incorrect Condition Prevents Governor fromUpdating Commission Fees . 40

SHB.14 First Staker canGrief Others using an InflationAttack . . . . . . . . . . . . 42

SHB.15 Innacurate rewardDebtCalculation fornodeOperatorsModifyingValidator

Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

SHB.16 Uninitialized socketRegistry Address Leading to Potential Loss of Funds . 49

SHB.17 Lack of BlacklistMechanism forMaliciousNodeOperators . . . . . . . . . 51

SHB.18 Owner CanSet Critical Values to Zero . . . . . . . . . . . . . . . . . . . . . . 53

SHB.19 OracleMembers CanVote onMultiple ConsensusData Inputs . . . . . . . . 54

3



SHB.20 Need forWhitelisting TrustedRelayers inMEVBoost . . . . . . . . . . . . . 55

SHB.21 Requirement for Node Operators to Set Fee Recipient to

Protocol-ManagedAddress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

SHB.22 Missing Socket API PayloadCheck . . . . . . . . . . . . . . . . . . . . . . . . 57

SHB.23 WITHDRAWAL_CREDENTIAL_BYTES32SetterDesynchronizesOldValidators 59

SHB.24 GovernorHas Full Control Over Oracle Quorum . . . . . . . . . . . . . . . . 60

SHB.25 MinimumStakeAmount Bypass . . . . . . . . . . . . . . . . . . . . . . . . . 61

SHB.26 Inability to Update stkETHExchangeRateWhenAll RewardsAreSlashed . 64

SHB.27 Uninitialized optimismReceiver and arbitrumReceiver Can Lead toDoS . . 66

SHB.28 Hard-codedSlippageCausesDoS . . . . . . . . . . . . . . . . . . . . . . . . 68

SHB.29 BlockNumberDifferenceBetweenChains results inDesynchronizedEvents 69

4 Best Practices 71

BP.1 RemoveUnused variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

BP.2 RemoveRedundant Initializationswith Default Type Values . . . . . . . . . 72

BP.3 Remove Tautological Statements . . . . . . . . . . . . . . . . . . . . . . . . 72

BP.4 Unchanged Variables Should BeDeclared asConstants . . . . . . . . . . . 73

BP.5 CorrectMisleading Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 74

BP.6 Optimize For LoopCounter Increment . . . . . . . . . . . . . . . . . . . . . . 74

BP.7 RemoveUnusedModifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Tests 76

5.1 L1-contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 L2-contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusion 79

7 Scope Files 80

7.1 Audit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Re-Audit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Disclaimer 83

4



1 Introduction

Persistence engaged ShellBoxes to conduct a security assessment on the pStake

Finance beginning onAug 16th, 2023 and ending Aug 29th, 2023. In this report, we detail our

methodical approach to evaluate potential security issues associated with the

implementation of smart contracts, by exposing possible semantic discrepancies

between the smart contract code and design document, and by recommending additional

ideas to optimize the existing code. Our findings indicate that the current version of smart

contracts can still be enhanced further due to the presence of many security and

performance concerns.

This document summarizes the findings of our audit.

1.1 About Persistence

pSTAKE is a liquid staking protocol unlocking the liquidity of staked assets. Stakers of PoS

tokens can now stake their assets while maintaining the liquidity of these assets. On

staking with pSTAKE, users earn staking rewards and also receive staked representative

tokens (stkASSETs) which can be used in DeFi to generate additional yield (yield on top of

staking rewards).

Issuer Persistence

Website https://pstake.finance/

Type Solidity Smart Contract

Documentation pSTAKE for Ethereum (stkETH) on Layer 2s

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

5

https://pstake.finance/
https://docs.google.com/document/d/1kUwv63GfJbgE4v8qMLiW6rumZDASCicB7QitpyGe-aY/edit#heading=h.mlbhgdlbp83t


implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6



2 FindingsOverview

2.1 Disclaimer

Please note that our review and subsequent findings related to the smart contracts do not

cover the Socket Bridge Aggregator. The functionality, security, and integrity of the Socket

Bridge Aggregator are outside the scope of this audit. The implementation of the bridging

solution can have a significant impact on the security of the protocol.

Furthermore, within the smart contract system, there exists a role designated as the

Governor, This role possesses significant permissions, including the ability to influence

the oracle that submits consensus data on-chain. For the purposes of this audit, we have

treated the governor role as a trusted entity. However, users and stakeholders should be

aware of the extensive capabilities and influence this role holdswithin the system.

2.2 Summary

The following is a synopsis of our conclusions fromour analysis of the pStakeFinance im-

plementation. During the first part of ouraudit,weexamine thesmart contract sourcecode

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.3 Key Findings

While the smart contracts exhibit a structured approach, our review identified several

areas of concern that need to be addressed to ensure the robustness and security of the

system. The issues include 6 critical-severity, 7 high-severity, 10 medium-severity, 5

low-severity, 1 informational-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Multiple Candidate Votes Accepted for the

SameEpoch

CRITICAL Fixed

7



SHB.2. Replay Attack onAccepted ConsensusData CRITICAL Fixed

SHB.3. Exited Balance of Validators and Staker Re-

wardsPermanently Locked in theWithdrawalCreden-

tial Contract

CRITICAL Acknowledged

SHB.4. Permanent Locking of Validator Rewards Due

to Lack of depositedValidatorsUpdate

CRITICAL Fixed

SHB.5. L2 Funds Cannot Be Bridged to L1 Due to

FlawedSlippageCalculation

CRITICAL Fixed

SHB.6. StuckMEVRewards in theWithdrawalCreden-

tial

CRITICAL Acknowledged

SHB.7. Desynchronization Risk Due to Epoch-Based

Data Submission

HIGH Acknowledged

SHB.8. Premature Reward Allocation Due to Ignoring

QueueWait Time

HIGH Acknowledged

SHB.9. Loss of User-Supplied Fees when Interacting

with OptimismMessenger

HIGH Fixed

SHB.10. Improper Handling of Exiting Validators Al-

lowing Last-TimeRewardClaims

HIGH Fixed

SHB.11. Desynchronization of pricePerShare Between

L1 and L2

HIGH Acknowledged

SHB.12. Inequitable Reward Distribution for New Val-

idators

HIGH Acknowledged

SHB.13. Incorrect Condition Prevents Governor from

Updating Commission Fees

HIGH Fixed

SHB.14. FirstStakercanGriefOthersusingan Inflation

Attack

MEDIUM Fixed

SHB.15. Innacurate rewardDebt Calculation for node-

OperatorsModifying Validator Count

MEDIUM Fixed

8



SHB.16. Uninitialized socketRegistryAddressLeading

to Potential Loss of Funds

MEDIUM Fixed

SHB.17. Lack of Blacklist Mechanism for Malicious

NodeOperators

MEDIUM Acknowledged

SHB.18. Owner CanSet Critical Values to Zero MEDIUM Fixed

SHB.19. Oracle Members Can Vote on Multiple Con-

sensusData Inputs

MEDIUM Acknowledged

SHB.20. Need forWhitelistingTrustedRelayers inMEV

Boost

MEDIUM Acknowledged

SHB.21. Requirement for Node Operators to Set Fee

Recipient to Protocol-ManagedAddress

MEDIUM Acknowledged

SHB.22. Missing Socket API PayloadCheck MEDIUM Acknowledged

SHB.23. WITHDRAWAL_CREDENTIAL_BYTES32Setter

DesynchronizesOld Validators

MEDIUM Acknowledged

SHB.24. Governor Has Full Control Over Oracle Quo-

rum

LOW Acknowledged

SHB.25. MinimumStakeAmount Bypass LOW Fixed

SHB.26. Inability to Update stkETH Exchange Rate

WhenAll RewardsAreSlashed

LOW Fixed

SHB.27. Uninitialized optimismReceiver and arbi-

trumReceiver Can Lead toDoS

LOW Fixed

SHB.28. Hard-codedSlippageCausesDoS LOW Acknowledged

SHB.29. BlockNumberDifferenceBetweenChainsre-

sults in Desynchronized Events

INFORMATIONAL Acknowledged

9



3 FindingDetails

SHB.1 MultipleCandidateVotesAccepted for theSameEpoch

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

The pushData function in the contract allows the execution of different ConsensusData in-

puts for the same transaction epoch (n x 200 epochs). The contract assumes the Consen-

susData to be correct every time the number of votes is equal to or exceeds the quorum.

This design flaw can lead to the acceptance of two ormore different ConsensusData inputs

for the same transaction epoch.

Exploit Scenario:

Consider a scenario where the quorum is initialized to 2 (as it is in the contract now) and

there are 4 oraclemembers. If twomembers agree on a particular input and the other two

members agree on a different input, both inputs can be executed (for 6 oraclememberswe

will have3accepted inputs ...). This can lead toan incorrect state in thecontract, as thecon-

tractwould accept both inputs as valid even though theymight be contradictory.

Files Affected:

SHB.1.1: Oracle.sol

251 function pushData(

252 ConsensusData memory _consensusData

253 ) external override whenNotPaused onlyOracle {

254 if (beaconData.getNextTxEpoch(lastCompletedEpoch) != beaconData.

↪→ getCurrentEpoch()) {

255 revert VotedEarly();

10



256 }

257 bytes32 candidateId = keccak256(abi.encode(_consensusData,

↪→ beaconData.getCurrentEpoch()));

258 bytes32 voteId = keccak256(abi.encode(msg.sender, candidateId));

259 if (submittedVotes[voteId]) {

260 revert AlreadyVoted(msg.sender);

261 }

262 submittedVotes[voteId] = true;

263 uint256 candidateNewVotes = candidates[candidateId] + 1;

264 candidates[candidateId] = candidateNewVotes;

265 if (candidateNewVotes >= quorum) {

Recommendation:

• Implementamechanismtoensurethatonlyonecandidatedata isacceptedforagiven

transaction epoch

• Useapercentageasaquorum insteadof relyingonstaticnumberof votes foraccept-

ing the input, the data input givenby theoracle should only beaccepted if it is votedon

by themajorityof themembers (morethan50%asaminimumsowecanonlyhaveone

accepted data per epoch).

Updates

The team resolved the issue, by reverting with VotedEarly in the pushData whenever the

current epochwas already voted on.

SHB.1.2: Oracle.sol

244 function pushData(

245 ConsensusData memory _consensusData

246 ) external override whenNotPaused onlyOracle {

247 if(_executedConsensusData[keccak256(abi.encode(_consensusData))])

↪→ revert DuplicateDataSubmitted();

248 // revert if voted for completed Epoch or if voted early

249 if (beaconData.getCurrentEpoch() == lastCompletedEpoch

11



250 beaconData.getNextTxEpoch(lastCompletedEpoch) != beaconData.

↪→ getCurrentEpoch()) revert VotedEarly();

SHB.2 Replay Attack onAccepted ConsensusData

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

The pushData function in the contract accepts and processes ConsensusData if it receives

votes greater than or equal to the ”quorum”. However, there is no mechanism in place to

ensure that thesameConsensusData isn’t processedmultiple times. Thisoversight allows

forapotentialreplayattackwherethesameConsensusDatacanbesubmittedandaccepted

multiple times, leading to incorrect state updates.

Exploit Scenario:

An oracle submits a specific ConsensusData that garners more than the ”quorum” votes,

leading the contract to update its state based on this data. Another oracle, either

maliciously or inadvertently, submits the same ConsensusData again. Since there’s no

check to prevent the same data from being processed multiple times, the contract will

again update its state based on the same data, leading to incorrect or duplicated state

changes in the same transaction epoch.

Files Affected:

SHB.2.1: Oracle.sol

251 function pushData(

252 ConsensusData memory _consensusData

253 ) external override whenNotPaused onlyOracle {

12



254 if (beaconData.getNextTxEpoch(lastCompletedEpoch) != beaconData.

↪→ getCurrentEpoch()) {

255 revert VotedEarly();

256 }

257 bytes32 candidateId = keccak256(abi.encode(_consensusData,

↪→ beaconData.getCurrentEpoch()));

258 bytes32 voteId = keccak256(abi.encode(msg.sender, candidateId));

259 if (submittedVotes[voteId]) {

260 revert AlreadyVoted(msg.sender);

261 }

262 submittedVotes[voteId] = true;

263 uint256 candidateNewVotes = candidates[candidateId] + 1;

264 candidates[candidateId] = candidateNewVotes;

265 if (candidateNewVotes >= quorum) {

Recommendation:

BeforeprocessinganyConsensusData, considercheckingagainst thestoredentries toen-

sure it has not been processed before on the same tx epoch.

Updates

The team resolved the issue by adding amapping called _executedConsensusData to track

the executed concensus data and prevent it frombeing replayed.

SHB.2.2: Oracle.sol

244 function pushData(

245 ConsensusData memory _consensusData

246 ) external override whenNotPaused onlyOracle {

247 if(_executedConsensusData[keccak256(abi.encode(_consensusData))])

↪→ revert DuplicateDataSubmitted();

SHB.2.3: Oracle.sol

298 _executedConsensusData[keccak256(abi.encode(_consensusData))] = true;

13



SHB.3 Exited Balance of Validators and Staker Rewards

Permanently Locked in the WithdrawalCredential

Contract

• Severity : CRITICAL

• Status : Acknowledged

• Likelihood : 3

• Impact : 3

Description:

The setRewardsSlashedAmount function in the contract is designed to set rewards,

slashed amounts, and exit balances. However, there’s an oversight in the handling of the

exited balance of validators. When a validator exits, their balance remains locked in the

WithdrawalCredential contract and isn’t transferred back to the Issuer contract. The same

goes for the accumulated staker rewards, the contract only handles validators and

treasury rewards.

Exploit Scenario:

Consider a scenario where multiple validators exit over time. Their combined exited

balances accumulate in the WithdrawalCredential contract. This accumulated balance

remains idle and isn’t utilized to generate rewards or for any other productive purpose.

Over time, this can lead to a significant amount of the users’ funds being lockedwithout any

utility.

Files Affected:

SHB.3.1: WithdrawalCredential.sol

94 function setRewardsSlashedAmount(

95 uint256 _rewards,

96 uint256 _slashed_amount,

97 uint256 exit_balance

98 ) external override onlyOracle {

14



99 newRewards = _rewards;

100 totalRewards += _rewards;

101 totalSlashedAmount = _slashed_amount;

102 exitBalance += exit_balance;

103 }

Recommendation:

Modify the setRewardsSlashedAmount function to transfer the exited balance back to the

Issuer contract upon a validator’s exit.

Updates

The teamacknowledged the issue, stating that proper fundmovementwill be implemented

with withdrawal feature (unstaking) as the exit balance will majorly serve the purpose of

filling thewithdrawal requests or provide liquidity to different validator for continuous re-

ward generation.

SHB.4 Permanent Locking of Validator Rewards Due to Lack

of depositedValidatorsUpdate

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

The updateRewardPerValidator function in the contract is designed to update the rewards

for validators. However, there’s a critical oversight related to the handling of exited val-

idators. The contract fails to update the depositedValidators in the Issuerwhen a validator

exits. As a result, the contract still considers exited validators when calculating rewards.

Since exited validators cannot claim these rewards, an important portion of each accumu-

lated reward becomes permanently locked in the contract.

15



Exploit Scenario:

Consider a situation where a significant number of validators exit over a period. Due to

the lackof updates todepositedValidators, the contract continues toallocate rewardscon-

sidering these exited validators. Over time, a substantial portion of the rewards becomes

locked and unclaimable. As more validators exit, the percentage of lost rewards for each

allocation increases, leading to a significant loss of funds over time.

Files Affected:

SHB.4.1: Oracle.sol

310 function validatorExited(ExitedValidator[] memory _validators) internal

↪→ returns (uint256) {

311 bytes[] memory pub_key = new bytes[](_validators.length);

312 uint256 exitValidatorBalance = 0;

313 for (uint i; i < _validators.length; ) {

314 pub_key[i] = _validators[i].publicKey;

315 exitValidatorBalance += _validators[i].amount;

316 unchecked {

317 ++i;

318 }

319 }

320 IKeysManager(core().keysManager()).exitedValidator(pub_key);

321 return exitValidatorBalance;

322 }

SHB.4.2: KeysManager.sol

81 function exitedValidator(bytes[] memory publicKeys) external override {

82 require(msg.sender == core().oracle(), "KeysManager: Only oracle can

↪→ activate");

83 for (uint256 i; i < publicKeys.length; ) {

84 Validator storage validator = _validators[publicKeys[i]];

85 require(

86 validator.state == State.DEPOSITED,

87 "KeysManager: Validator not in valid state"

16



88 );

89 // node operator active validator count decreases

90 nodeOperatorValidatorCount[validator.nodeOperator] -= 1;

91 validator.state = State.EXITED;

92 unchecked {

93 ++i;

94 }

95 }

96 emit ExitValidator(publicKeys);

97 }

SHB.4.3: StakingPool.sol

67 function updateRewardPerValidator(uint256 newReward) public override {

68 IERC20Upgradeable(address(stkEth)).safeTransferFrom(_msgSender(),

↪→ address(this), newReward);

69 accRewardPerValidator += (newReward * 1e12) / IIssuer(core.issuer())

↪→ .depositedValidators();

70 }

Recommendation:

Consider updating the depositedValidators count in the Issuerwhenever a validator exits.

Updates

The teamresolved the issue, byupdating thedepositedValidatorscountusing thevalidator-

sExited function from the Issuer contract.

SHB.4.4: Oracle.sol

305 function validatorExited(ExitedValidator[] memory _validators) internal

↪→ returns (uint256) {

306 bytes[] memory pubKey = new bytes[](_validators.length);

307 uint256 exitValidatorBalance;

308 for (uint i; i < _validators.length; ) {

309 pubKey[i] = _validators[i].publicKey;

17



310 exitValidatorBalance += _validators[i].amount;

311 unchecked {

312 ++i;

313 }

314 }

315 IKeysManager(core().keysManager()).exitedValidator(pubKey);

316 IIssuer(core().issuer()).validatorsExited(_validators.length);

317 return exitValidatorBalance;

318 }

SHB.4.5: Oracle.sol

306 function validatorsExited(uint256 _numValidatorExited) external

↪→ whenNotPaused {

307 if(msg.sender != core.oracle()) revert UnauthorizedCall(msg.sender);

308 depositedValidators -= _numValidatorExited;

309 }

SHB.5 L2 Funds Cannot Be Bridged to L1 Due to Flawed Slip-

pageCalculation

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

The smart contract IssuerUpgradable contains a function namedgetDepositL2 that serves

as the entry point for receiving ETH fromL2 stakers. This function employs a slippage con-

trolmechanismdesignedtoaccommodatedelays in thebridgeprocess. However, there isa

critical oversight in thecalculationof theL2exchangerate. The issuearises fromtheomis-

sion of a necessary adjustment for themultiplication by 1e18 in the pricePerShare, leading

to incorrect slippage calculations resulting in reverted deposits, even for exchange rates

18



that are not stale. so basicallymeaning that the transaction to getDepositL2will revert and

ETHwill remain stuck in L2.

Exploit Scenario:

1. Initially, the exchange rate between stkETH andETH is 1:1.

pricePerShare = 1e18

2. Given the 1:1 exchange rate, msg.value / _stkEthMinted will be approximately 1 due to

the exchange rate.

3. The slippage check in getDepositL2 involves:

SHB.5.1: IssuerUpgradable.sol

exchangeRate - exchangeRate / 100 > (msg.value / _stkEthMinted)

(msg.value / _stkEthMinted) > exchangeRate + exchangeRate / 100

4. Thecheckdoesnotaccount for thepricePerSharebeing inflatedbyamultiplicationby

1e18.

5. Consequently, the slippage check is erroneous and consistently reverts deposits,

evenwhen the exchange rate is not stale.

This results in an inability to bridge L2 ETH to L1, rendering the L2 ETH stuck.

Files Affected:

SHB.5.2: IssuerUpgradable.sol

261 function getDepositL2(

262 uint256 _stkEthMinted,

263 uint256 _sourceChainId

264 ) external payable onlySocketReceiver {

265 // accept 1% error in exchange rate due to delay in bridging

266 uint256 exchangeRate = core.stkEth().pricePerShare(); 

267 if (

268 exchangeRate - exchangeRate / 100 > (msg.value / _stkEthMinted)

269 (msg.value / _stkEthMinted) > exchangeRate + exchangeRate / 100

19



270 ) revert InvalidExchangeRateReceived();

SHB.5.3: StkEth.sol

102 function pricePerShare() public view override returns (uint256) {

103 return IOracle(core().oracle()).pricePerShare();

104 }

SHB.5.4: Oracle.sol

182 function changeCValue(int256 calculatedRewards) internal whenNotPaused {

183 if (calculatedRewards > 0) {

184 uint256 valEthShare = (valCommission * uint256(

↪→ calculatedRewards)) / BASIS_POINT;

185 uint256 protocolEthShare = (pStakeCommission * uint256(

↪→ calculatedRewards)) /

186 BASIS_POINT;

187 IIssuer issuer = IIssuer(core().issuer());

188 pricePerShare =

189 ((withdrawals.getTotalRewards() +

190 issuer.ethStaked() -

191 withdrawals.getTotalSlashedAmount() -

192 valEthShare -

193 protocolEthShare) * 1e18) /

194 issuer.stkEthMinted();

195 }

196 }

Recommendation:

Consider comparing the exchangeRatewithmsg.value * 1e18 / _stkEthMinted.

Updates

The teamresolved the issue by adding a 1e18multiplication to balance the ratiowith the ex-

change rate.

20



SHB.5.5: IssuerUpgradable.sol

265 function getDepositL2(

266 uint256 _stkEthMinted,

267 uint256 _sourceChainId

268 ) external payable onlySocketReceiver {

269 // accept 1% error in exchange rate due to delay in bridging

270 uint256 exchangeRate = core.stkEth().pricePerShare();

271 if (

272 exchangeRate - exchangeRate / 100 > (msg.value * 1e18 /

↪→ _stkEthMinted)

273 (msg.value * 1e18 / _stkEthMinted) > exchangeRate + exchangeRate

↪→ / 100

274 ) revert InvalidExchangeRateReceived();

SHB.6 StuckMEVRewards in theWithdrawalCredential

• Severity : CRITICAL

• Status : Acknowledged

• Likelihood : 3

• Impact : 3

Description:

The contract is designed to receive MEV rewards (when node operators runmev boost) in

Ether. However, once the Ether is received and added to themevRewards variable, there is

no mechanism in place to withdraw or utilize these funds. This design flaw can result in a

significant amountofEtherbeingpermanently locked in thecontract, rendering them inac-

cessible and unusable.

Files Affected:

SHB.6.1: WithdrawalCredential.sol

72 /// @dev This function is responsible for receiving eth MEV rewards

21



73 receive() external payable {

74 emit MEVReceived(msg.value);

75 mevRewards += msg.value;

Recommendation:

Implement a function that allows the withdrawal or reallocation of the MEV rewards. This

functionshouldhaveappropriateaccesscontrolstoensureonlyauthorizedentitiescanex-

ecute it.

Updates

The teamacknowledged the issue, stating that the feature towithdrawMEVrewardswill be

implementedwith stkETHwithdrawal(unstaking).

SHB.7 Desynchronization Risk Due to Epoch-Based Data

Submission

• Severity : HIGH

• Status : Acknowledged

• Likelihood : 2

• Impact : 3

Description:

The pushData function in the contract is designed to accept ConsensusData fromoff-chain

oracles based on a voting system. The data submission is restricted to every 200th epoch.

However, there’sapotentialdesynchronization issue iforaclemembersdonotconsistently

submit data every 200 epochs. This can lead to scenarios where different oracles submit

data covering different epoch ranges, resulting in a lack of consensus even if the data from

each oracle is correct.

Exploit Scenario:

Consider a scenariowith four oraclemembers over a span of 400 epochs (quorum= 2):

22



• Oracle A and B submit ConsensusData for the first 200 epochs then another one for

the other 200 epochs.

• Oracle C andD submit ConsensusData covering the entire 400 epochs.

In this situation, even though both oracles’ groups might be providing accurate data, they

won’t reach a consensus due to the overlapping epoch ranges. If there are more oracle

members, this desynchronization can lead to various issues, such as:

• Failure to reach consensus on correct values.

• Potential state corruption if a ConsensusData for a 200 epoch range is accepted,

followed by another ConsensusData from a delayed oracle covering a larger epoch

range (e.g., n*200 epochs), effectively replaying data fromprevious epochs.

Files Affected:

SHB.7.1: Oracle.sol

251 function pushData(

252 ConsensusData memory _consensusData

253 ) external override whenNotPaused onlyOracle {

254 if (beaconData.getNextTxEpoch(lastCompletedEpoch) != beaconData.

↪→ getCurrentEpoch()) {

255 revert VotedEarly();

256 }

SHB.7.2: BeaconData.sol

20 function getNextTxEpoch(

21 Values storage beaconValues,

22 uint64 lastEpoch

23 ) internal view returns (uint64) {

24 if ((beaconValues.getCurrentEpoch() - lastEpoch) % beaconValues.

↪→ epochsPerTimePeriod == 0) {

25 return beaconValues.getCurrentEpoch();

26 } else {

27 uint64 n = (beaconValues.getCurrentEpoch() - lastEpoch) /

23



28 beaconValues.epochsPerTimePeriod;

29 return lastEpoch + ((n + 1) * beaconValues.epochsPerTimePeriod);

30 }

31 }

32

33 function getCurrentEpoch(Values storage beaconValues) internal view

↪→ returns (uint64) {

34 return

35 uint64(

36 (uint64(block.timestamp) - beaconValues.genesisTime) /

37 (beaconValues.slotsPerEpoch * beaconValues.secondsPerSlot)

38 );

39 }

Recommendation:

Consider addingmore information in the ConsensusData about epoch range associated to

it. This information should be taken into consideration to assure reaching consensus ,and

to avoid replaying previously accounted data.

Updates

The teamacknowledged the issue, stating that the teamwill be running the off chain oracle

initially andmaking sure to send correct data. Also, they are planning to implement epoch

range in consensus data to prevent desynchronisation risk in the next update with With-

drawal feature.

SHB.8 Premature Reward Allocation Due to Ignoring Queue

Wait Time

• Severity : HIGH

• Status : Acknowledged

• Likelihood : 3

• Impact : 2

24



Description:

Ethereum’sproofofstake (PoS)consensusmechanismusesenterandexit queues toman-

age validatorswaiting to begin staking or to unstake, ensuring the stability of the network.

Thenetworkhasarate limit, knownaschurn, onhowmanyvalidatorscanbeprocessedper

epoch. If the number of validators trying to enter or exit exceeds this limit, they are placed

in the respective queue. However, the contract’s depositToEth2 function in the Issuer con-

tract immediatelyaccountsavalidatorasdepositedafterstaking in thebeaconchain,with-

out considering the queuewait time. Note that the queuewait time changes over time (cur-

rently at 23.01 days), the queue times can be checked here: Validator Queue.

Exploit Scenario:

A validator stakes and is instantly recognized as deposited by the Issuer contract (Eligi-

ble for protocol rewards). This premature recognition allows the validator to start earning

rewards even before they begin attesting to and proposing blocks in the consensus layer

(generating rewards for theprotocol). As a result, validators canearn rewardswithout ac-

tively participating in the consensus process, undermining the incentive structure of the

PoSmechanism.

Files Affected:

SHB.8.1: IssuerUpgradable.sol

280 function depositToEth2(bytes calldata publicKey) external whenNotPaused

↪→ {

281 require(

282 address(this).balance >= VALIDATOR_DEPOSIT + VERIFICATION_DEPOSIT

↪→ ,

283 "Issuer: Not enough ether deposited"

284 );

285 IKeysManager.Validator memory validator = IKeysManager(core.

↪→ keysManager()).validators(

286 publicKey

287 );

288

25

https://www.validatorqueue.com


289 withdrawalverificationDeposit(validator.nodeOperator);

290

291 IKeysManager(core.keysManager()).depositValidator(publicKey);

292

293 depositedValidators = depositedValidators + 1;

294 DEPOSIT_CONTRACT.deposit{ value: VALIDATOR_DEPOSIT }(

295 publicKey,

296 abi.encodePacked(core.withdrawalCredential()),

297 validator.signature,

298 validator.deposit_root

299 );

300 }

Recommendation:

Implement checks to ensure that validators only start earning rewards after they begin at-

testingtoandproposingblocks. Thiscanbeachievedbyrelyingontheoracle toprovidedata

thatallowsthecontract toswitchavalidator fromdeposited toeligible torewardsafter they

start proposing and attesting to blocks.

Updates

The team acknowledged the issue, stating that they will be implementing the fix with the

withdrawal feature by introducing additional info to pushData function through an offchain

oracle,markDeposited and update the required state changeswith proper checks.

SHB.9 LossofUser-SuppliedFeeswhen InteractingwithOp-

timismMessenger

• Severity : HIGH

• Status : Fixed

• Likelihood : 2

• Impact : 3

26



Description:

The Issuer contract on Layer 1 contains functions such as mintL2, transferToL2, and

mintWethL2, which are responsible for minting or transferring stkETH to Layer 2 (e.g.,

Arbitrum or Optimism). In the case of Arbitrum, the _callValue is used for retry-able L2

message, but a critical issue arises when interacting with Optimism. Specifically, when

calling mintstkETHL2 within OptimismMessenger or changeCValueL2 within Oracle, the

user-supplied value goes unused as the first 1.92 million gas on L2 OP is free. Therefore,

the sent value becomes trapped in the contractwithout amethod to retrieve it. This results

in a loss of user-supplied feeswhen interactingwith OptimismMessenger.

Files Affected:

SHB.9.1: IssuerUpgradable.sol

164 function mintL2(

165 uint256 _messengerId,

166 uint256 _callValue,

167 address _receiverAddress,

168 bytes memory _payload

169 )

170 external

171 payable

172 whenNotPaused

173 minimumStakeAmount(msg.value)

174 onlyExistingMessenger(_messengerId)

175 {

176 uint256 ethToStake = msg.value - _callValue;

177 emit Stake(msg.sender, ethToStake, block.timestamp);

178 uint256 stkEthToMint = (ethToStake * 1e18) / core.stkEth().

↪→ pricePerShare();

179 stkEthMinted = stkEthMinted + stkEthToMint;

180 ethStaked = ethStaked + ethToStake;

181 IL1Messenger(messengers[_messengerId].messenger).mintstkETHL2{

↪→ value: _callValue }(

182 _receiverAddress,

27



183 stkEthToMint,

184 _payload

185 );

SHB.9.2: IssuerUpgradable.sol

240 function transferToL2(

241 uint256 _messengerId,

242 uint256 _amount,

243 address _receiverAddress,

244 bytes memory _payload

245 ) external payable whenNotPaused onlyExistingMessenger(_messengerId)

↪→ {

246 uint256 amountTotal = core.stkEth().balanceOf(msg.sender);

247 if (amountTotal >= _amount) {

248 core.stkEth().burn(msg.sender, _amount);

249 IL1Messenger(messengers[_messengerId].messenger).mintstkETHL2

↪→ { value: msg.value }(

250 _receiverAddress,

251 _amount,

252 _payload

253 );

SHB.9.3: IssuerUpgradable.sol

207 function mintWethL2(

208 uint256 _messengerId,

209 uint256 _amount,

210 address _receiverAddress,

211 bytes memory _payload

212 )

213 external

214 payable

215 whenNotPaused

216 minimumStakeAmount(_amount)

217 onlyExistingMessenger(_messengerId)

28



218 {

219 // Transfer WETH from user to issuer

220 IERC20Upgradeable(WETH).safeTransferFrom(msg.sender, address(this

↪→ ), _amount);

221 // withdraw ETH by buring WETH token

222 IWETH(WETH).withdraw(_amount);

223 emit Stake(msg.sender, _amount, block.timestamp);

224 ethStaked += _amount;

225 uint256 stkEthToMint = (_amount * 1e18) / core.stkEth().

↪→ pricePerShare();

226 stkEthMinted += stkEthToMint;

227 IL1Messenger(messengers[_messengerId].messenger).mintstkETHL2{

↪→ value: msg.value }(

228 _receiverAddress,

229 stkEthToMint,

230 _payload

231 );

SHB.9.4: Oracle.sol

211 function changeCValueL2(

212 uint256 _messengerId,

213 bytes memory _payload

214 ) external payable whenNotPaused {

215 IIssuer issuer = IIssuer(core().issuer());

216 (bool messengerStatus, address messenger) = issuer.getMessenger(

↪→ _messengerId);

217 if (!messengerStatus (messenger == address(0))) revert

↪→ InvalidMessenger();

218 IL1Messenger(messenger).changeCValueL2{ value: msg.value }(

219 msg.sender,

220 pricePerShare,

221 _payload

222 );

SHB.9.5: OptimismMessenger.sol

29



38 function _sendMessage(bytes memory _message) internal {

39 optimismMessenger.sendMessage(optimismReceiver, _message, l2gas);

40 }

SHB.9.6: OptimismMessenger.sol

42 function changeCValueL2(

43 address,

44 uint256 cValue,

45 bytes memory

46 ) external payable override onlyOracle whenNotPaused {

47 bytes memory message = abi.encodeWithSelector(

48 IL2MessageContract.changeCValue.selector,

49 cValue

50 );

51 _sendMessage(message);

52 emit CValueChangedL2(block.number, cValue, destinationChainID);

53 }

SHB.9.7: OptimismMessenger.sol

55 function mintstkETHL2(

56 address user,

57 uint256 amount,

58 bytes memory

59 ) external payable override onlyIssuer whenNotPaused {

60 bytes memory message = abi.encodeWithSelector(

61 IL2MessageContract.mintstkETH.selector,

62 user,

63 amount

64 );

65 _sendMessage(message);

66 emit MintStkETHL2(msg.sender, user, amount, destinationChainID);

67 }

30



Recommendation:

Consider refunding the call value to the userwhen he chooses theOptimismMessenger.

Updates

The team resolved the issue by adding a call to refund the user when interacting with the

OptimismMessenger.

SHB.9.8: OptimismMessenger.sol

38 if(msg.value > 0){

39 (bool success, ) = user.call{value: msg.value}("");

40 if(!success) revert RefundFailed();

41 }

SHB.9.9: OptimismMessenger.sol

72 if(msg.value > 0){

73 (bool success, ) = user.call{value: msg.value}("");

74 if(!success) revert RefundFailed();

75 }

SHB.10 Improper Handling of Exiting Validators Allowing

Last-TimeRewardClaims

• Severity : HIGH

• Status : Fixed

• Likelihood : 3

• Impact : 2

Description:

The function exitedValidator within the KeysManager contract successfully marks

validators as exited when they cease staking, either voluntarily or due to slashing. This

process includes a necessary decrement of the number of validators for a given

nodeOperator. However, the flaw here is that the function does not trigger the

31



claimAndUpdateRewardDebt function in the StakingPool contract. Consequently, a

nodeOperator can call claimAndUpdateRewardDebt and still get rewards for the reported

exited validator, enabling them to collect rewardsmeant for that validator. Essentially, this

allows a last-minute reward claim by a nodeOperator after their validator has been

marked as exited.

Exploit Scenario:

1. A validator under the control of a nodeOperator is reported as exited through the ex-

itedValidator function.

2. The function in KeysManager decrements the nodeOperatorValidatorCount, reflect-

ing the exited validator.

3. Despite the validator being reported as exited, the nodeOperator identifies the ab-

sence of a call to claimAndUpdateRewardDebt.

4. The nodeOperator exploits this gap by calling claimAndUpdateRewardDebt for the

exited validator, subsequently accumulating rewards originally designated for

active validators.

5. This unauthorized accumulation of rewards results in an unfair distribution of

rewards and undermines the integrity of the reward system.

6. In a scenario with 20 validators and 10000 wei in fees, each validator should receive

500wei as their share of the fees.

7. Although nodeOperator A has no active validators, they can still claim 500wei in re-

wards, essentially gaining rewards one last time for their exited validator.

Files Affected:

SHB.10.1: StakingPool.sol

74 function claimAndUpdateRewardDebt(address usr) external override {

75 UserInfo storage user = userInfos[usr];

76

77 uint256 userValidators = IKeysManager(core.keysManager()).

↪→ nodeOperatorValidatorCount(usr);

32



78

79 uint256 pending = ((accRewardPerValidator * user.amount) / 1e12)

↪→ - user.rewardDebt;

80

81 if (pending > 0) {

82 IERC20Upgradeable(address(stkEth)).safeTransfer(usr, pending)

↪→ ;

83 emit RewardRedeemed(pending, usr);

84 }

85

86 user.rewardDebt = (accRewardPerValidator * userValidators) / 1e12

↪→ ;

87 user.amount = userValidators;

88 }

SHB.10.2: KeysManager.sol

81 function exitedValidator(bytes[] memory publicKeys) external override {

82 require(msg.sender == core().oracle(), "KeysManager: Only oracle

↪→ can activate");

83 for (uint256 i; i < publicKeys.length; ) {

84 Validator storage validator = _validators[publicKeys[i]];

85 require(

86 validator.state == State.DEPOSITED,

87 "KeysManager: Validator not in valid state"

88 );

89 // node operator active validator count decreases

90 nodeOperatorValidatorCount[validator.nodeOperator] -= 1;

Recommendation:

Consider calling claimAndUpdateRewardDebt after decreasing the validator count for the

nodeOperator.

33



Updates

The team resolved the issue by adding a call to the claimAndUpdateRewardDebt function

after updating the validator count.

SHB.10.3: KeysManager.sol

94 function exitedValidator(bytes[] memory publicKeys) external override {

95 require(msg.sender == core().oracle(), "KeysManager: Only oracle can

↪→ activate");

96 for (uint256 i; i < publicKeys.length; ) {

97 Validator storage validator = _validators[publicKeys[i]];

98 require(

99 validator.state == State.DEPOSITED,

100 "KeysManager: Validator not in valid state"

101 );

102 // node operator active validator count decreases

103 nodeOperatorValidatorCount[validator.nodeOperator] -= 1;

104 IStakingPool(core().validatorPool()).claimAndUpdateRewardDebt(

↪→ validator.nodeOperator);

105 validator.state = State.EXITED;

106 unchecked {

107 ++i;

108 }

109 }

110 emit ExitValidator(publicKeys);

111 }

.

34



SHB.11 Desynchronization of pricePerShare Between L1 and

L2

• Severity : HIGH

• Status : Acknowledged

• Likelihood : 3

• Impact : 2

Description:

After reaching consensus on an oracle report, the contract updates the pricePerShare of

stkETH on L1 based on accumulated rewards and slashing penalties using the changeC-

Value function. However, this updated price is not automatically reflected on Layer 2 (L2).

The synchronization only occurswhen someone explicitly calls the changeCValueL2 func-

tion. This leads to a significant desynchronization in the pricePerShare between L1 and L2,

allowing stkETH to beminted at inconsistent prices across layers.

Exploit Scenario:

An actor observes the desynchronization between L1 and L2 pricePerShare. They exploit

this discrepancy byminting stkETH on the layer where the price is more favorable, poten-

tially leading to arbitrage opportunities or undue advantage.

Files Affected:

SHB.11.1: Oracle.sol

182 function changeCValue(int256 calculatedRewards) internal whenNotPaused {

183 if (calculatedRewards > 0) {

184 uint256 valEthShare = (valCommission * uint256(calculatedRewards)

↪→ ) / BASIS_POINT;

185 uint256 protocolEthShare = (pStakeCommission * uint256(

↪→ calculatedRewards)) /

186 BASIS_POINT;

187 IIssuer issuer = IIssuer(core().issuer());

35



188 pricePerShare =

189 ((withdrawals.getTotalRewards() +

190 issuer.ethStaked() -

191 withdrawals.getTotalSlashedAmount() -

192 valEthShare -

193 protocolEthShare) * 1e18) /

194 issuer.stkEthMinted();

195 withdrawals.distributeRewards(protocolEthShare, valEthShare,

↪→ pricePerShare);

196 emit RewardRateChanged(pricePerShare);

197 } else if (calculatedRewards < 0) {

198 IIssuer issuer = IIssuer(core().issuer());

199 pricePerShare =

200 ((withdrawals.getTotalRewards() +

201 issuer.ethStaked() -

202 withdrawals.getTotalSlashedAmount()) * 1e18) /

203 issuer.stkEthMinted();

204 emit RewardRateChanged(pricePerShare);

205 }

206 }

SHB.11.2: Oracle.sol

211 function changeCValueL2(

212 uint256 _messengerId,

213 bytes memory _payload

214 ) external payable whenNotPaused {

215 IIssuer issuer = IIssuer(core().issuer());

216 (bool messengerStatus, address messenger) = issuer.getMessenger(

↪→ _messengerId);

217 if (!messengerStatus (messenger == address(0))) revert

↪→ InvalidMessenger();

218 IL1Messenger(messenger).changeCValueL2{ value: msg.value }(

219 msg.sender,

220 pricePerShare,

36



221 _payload

222 );

223 }

Recommendation:

Consider calling the changeCValueL2 for each chainwhenever thepricePerShare changes

to keep it synchronized between the chains.

Updates

The teamacknowledged the risk, stating that theywill call the changeCValueL2 froman off

chain oracle after pushData gets executed as different payloads are required for different

messengers. Also, for long term they will be using an aggregator service for cross chain

communication and update the cValueL2 inside pushData itself. .

SHB.12 Inequitable RewardDistribution forNewValidators

• Severity : HIGH

• Status : Acknowledged

• Likelihood : 3

• Impact : 2

Description:

Within theKeysManager contract, the functiondepositValidator is designed to facilitate the

additionofvalidatorsfromthenodeOperatorscount,whichsubsequently influencesthere-

wards allocated to nodeOperators. However, the issue stems from the fact that these re-

wards are not updated before the addition of a new validator. As a consequence, new val-

idators end up sharing rewards allocated to old validators.

Exploit Scenario:

• NodeOperator Bob currently has 0 validators under his control.

37



• Bob decides to add 1 new validator to his list Prior to the rewards being distributed

among validators.

• When the rewards are subsequently given out, Bob receives a share of the rewards

that were initially accumulated by other validators who were active before he added

his newvalidator.

• Bob benefits from rewards he did not contribute to, thereby gaining an unfair advan-

tageoverother validatorswhoearned their rewards throughactual participationand

contribution.

Files Affected:

SHB.12.1: KeysManager.sol

101 function depositValidator(bytes memory publicKey) external override {

102 require(msg.sender == core().issuer(), "KeysManager: Only issuer can

↪→ activate");

103

104 Validator storage validator = _validators[publicKey];

105

106 // num of Valudators allowed is specified as type(uint256).max .

↪→ Hence, using the same here

107 require(

108 type(uint256).max > nodeOperatorValidatorCount[validator.

↪→ nodeOperator],

109 "KeysManager: validator deposit not added by node operator"

110 );

111

112 require(validator.state == State.ACTIVATED, "KeysManager: Key not

↪→ activated");

113 validator.state = State.DEPOSITED;

114 // node operator active validator count increases

115 nodeOperatorValidatorCount[validator.nodeOperator] += 1;

116

38



117 IStakingPool(core().validatorPool()).claimAndUpdateRewardDebt(

↪→ validator.nodeOperator);

118

119 emit DepositValidator(publicKey);

120 }

SHB.12.2: StakingPool.sol

74 function claimAndUpdateRewardDebt(address usr) external override {

75 UserInfo storage user = userInfos[usr];

76

77 uint256 userValidators = IKeysManager(core.keysManager()).

↪→ nodeOperatorValidatorCount(usr);

78

79 uint256 pending = ((accRewardPerValidator * user.amount) / 1e12) -

↪→ user.rewardDebt;

80

81 if (pending > 0) {

82 IERC20Upgradeable(address(stkEth)).safeTransfer(usr, pending);

83 emit RewardRedeemed(pending, usr);

84 }

85

86 user.rewardDebt = (accRewardPerValidator * userValidators) / 1e12;

87 user.amount = userValidators;

88 }

Recommendation:

Consider implementing amechanism to update the rewards before newdeposits. This can

beachievedbygatheringanarrayofpendingdepositors (whocalled thedepositToEth2)and

stating themasDEPOSITED after updating the rewards in theOracle contract.

Updates

The teamacknowledged the issue, stating that theywill be implementing the fixbyusing the

oracle tomake the validator eligible for rewards.

39



SHB.13 IncorrectConditionPreventsGovernor fromUpdating

Commission Fees

• Severity : HIGH

• Status : Fixed

• Likelihood : 2

• Impact : 3

Description:

The updateCommissions function is designed to allow theGovernor to update commission

fees. However, there’s an oversight in the condition that checks the validity of the provided

commission values. The condition reverts if both _pStakeCommission and _valCommis-

sionarelessthanBASIS_POINT,andtheirsumisalso lessthanBASIS_POINT.This incorrect

condition can prevent theGovernor fromupdating the commission fees to valid values.

Exploit Scenario:

TheGovernorattempts toupdate thecommission feesusing theupdateCommissions func-

tion. Due to the incorrect condition, even if the provided values are valid andwithin the ac-

ceptable range, the functionmight revert with the InvalidValues error, preventing the Gov-

ernor fromsetting the desired commission rates.

Files Affected:

SHB.13.1: Oracle.sol

118 function updateCommissions(

119 uint32 _pStakeCommission,

120 uint32 _valCommission

121 ) external onlyGovernor {

122 if (

123 _pStakeCommission < BASIS_POINT &&

124 _valCommission < BASIS_POINT &&

125 (_pStakeCommission + _valCommission) < BASIS_POINT

40



126 ) {

127 revert InvalidValues();

128 }

129 pStakeCommission = _pStakeCommission;

130 valCommission = _valCommission;

131 emit CommissionsUpdated(_pStakeCommission, _valCommission);

132 }

Recommendation:

Review and correct the condition in the updateCommissions function to ensure that it ac-

curately checks the validity of the provided commission values.

SHB.13.2: Oracle.sol

118 function updateCommissions(

119 uint32 _pStakeCommission,

120 uint32 _valCommission

121 ) external onlyGovernor {

122 if (

123 _pStakeCommission >= BASIS_POINT

124 _valCommission >= BASIS_POINT

125 (_pStakeCommission + _valCommission) >= BASIS_POINT

126 ) {

127 revert InvalidValues();

128 }

129 pStakeCommission = _pStakeCommission;

130 valCommission = _valCommission;

131 emit CommissionsUpdated(_pStakeCommission, _valCommission);

132 }

Updates

The team resolved the issue by correcting the commission checks.

SHB.13.3: Oracle.sol

41



113 function updateCommissions(

114 uint32 _pStakeCommission,

115 uint32 _valCommission

116 ) external onlyGovernor {

117 if (

118 _pStakeCommission > BASIS_POINT

119 _valCommission > BASIS_POINT

120 (_pStakeCommission + _valCommission) > BASIS_POINT

121 ) revert InvalidValues();

122 pStakeCommission = _pStakeCommission;

123 valCommission = _valCommission;

124 emit CommissionsUpdated(_pStakeCommission, _valCommission);

125 }

SHB.14 First Staker canGrief Othersusing an InflationAttack

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 2

• Impact : 2

Description:

Amalicious actor can front-run a call to the pushData function within Oracle. This call up-

dates the exchange rate and subsequently influences the stkETH price calculation. By ex-

ploiting the issue described in (minimum stake amount bypass), the attacker can stake 1

wei, andmint 1 wei of stkETH, and then proceed to deposit a substantial ETH value in with-

drawalCredential. Which leads to an inflation of the price of stkETH. This inflation impacts

subsequent users’ ability to stake, leading to a cascading effect of artificially inflated token

prices. Users attempting to stake face rounding down issues, intensifying the inflation at-

tack’s consequences. it can be evenmore impacting if the protocol implements an unstak-

ingmechanism.

42



Exploit Scenario:

1. Consider a scenario where the protocol has just been deployed and has no stakers

and that oraclemembers are trying to activate some validators.

2. MalicioususerBobobserves themempool forpushData transactionsandanticipates

that a particular votewill satisfy the quorumcheck.

3. Bob performs a front-running attack by submitting two transactions:

(a) Heexploits the issue: SHB.25. MinimumStakeAmountBypass, hewill beable to

stake 1wei of Ether and receives 1wei of stkETH due to the 1:1 exchange rate.

(b) Bob then deposits a large amount of ETH intowithdrawalCredential.

4. The pushData transaction, which was expected to pass the quorum check, succeeds

and updates the exchange rate, leading to a higher stkETH price calculation. The

price calculation incorporates pricePerShare:

SHB.14.1: IssuerUpgradable.sol

pricePerShare =

((withdrawals.getTotalRewards() +

issuer.ethStaked() -

withdrawals.getTotalSlashedAmount()) * 1e18) /

issuer.stkEthMinted();

5. As a result of the inflated pricePerShare, the price of 1 wei of stkETH becomes very

high due to the large ETH deposit in theWithdrawalCredential contract.

6. Subsequent users attempting to stakewill have to do so at the inflated price until the

pushData function is called again to update the exchange rate.

7. Users trying to stake less than the balance ofWithdrawalCredential contractwill re-

ceive no shares due to stkEthToMint rounding down to zero, exacerbating the impact

of the inflation attack.

Files Affected:

43



SHB.14.2: IssuerUpgradable.sol

164 function mintL2(

165 uint256 _messengerId,

166 uint256 _callValue,

167 address _receiverAddress,

168 bytes memory _payload

169 )

170 external

171 payable

172 whenNotPaused

173 minimumStakeAmount(msg.value)

174 onlyExistingMessenger(_messengerId)

175 {

176 uint256 ethToStake = msg.value - _callValue;

177 emit Stake(msg.sender, ethToStake, block.timestamp);

178 uint256 stkEthToMint = (ethToStake * 1e18) / core.stkEth().

↪→ pricePerShare();

SHB.14.3: Oracle.sol

182 function changeCValue(int256 calculatedRewards) internal whenNotPaused {

183 if (calculatedRewards > 0) {

184 uint256 valEthShare = (valCommission * uint256(calculatedRewards)

↪→ ) / BASIS_POINT;

185 uint256 protocolEthShare = (pStakeCommission * uint256(

↪→ calculatedRewards)) /

186 BASIS_POINT;

187 IIssuer issuer = IIssuer(core().issuer());

188 pricePerShare =

189 ((withdrawals.getTotalRewards() +

190 issuer.ethStaked() -

191 withdrawals.getTotalSlashedAmount() -

192 valEthShare -

193 protocolEthShare) * 1e18) /

194 issuer.stkEthMinted();

44



195 withdrawals.distributeRewards(protocolEthShare, valEthShare,

↪→ pricePerShare);

196 emit RewardRateChanged(pricePerShare);

197 } else if (calculatedRewards < 0) {

198 IIssuer issuer = IIssuer(core().issuer());

199 pricePerShare =

200 ((withdrawals.getTotalRewards() +

201 issuer.ethStaked() -

202 withdrawals.getTotalSlashedAmount()) * 1e18) /

203 issuer.stkEthMinted();

204 emit RewardRateChanged(pricePerShare);

205 }

206 }

Recommendation:

It is recommended tocorrect theminimumstakecheck to remediate the riskof the inflation

attack.

Updates

The teamresolved the issuebyapplying theminimumStakeAmountcheckon themsg.value

- _callValue instead ofmsg.value.

SHB.14.4: IssuerUpgradable.sol

168 function mintL2(

169 uint256 _messengerId,

170 uint256 _callValue,

171 address _receiverAddress,

172 bytes memory _payload

173 )

174 external

175 payable

176 whenNotPaused

177 minimumStakeAmount(msg.value - _callValue)

45



178 onlyExistingMessenger(_messengerId)

179 {

SHB.15 Innacurate rewardDebt Calculation for

nodeOperatorsModifying Validator Count

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 2

• Impact : 2

Description:

Within theStakingPoolcontract, the functionclaimAndUpdateRewardDebtallowsnodeOp-

erators to claim their rewardsbasedon thenumberof validatorsunder theirmanagement.

However, a discrepancy in the calculation of user.rewardDebt leads to inconsistent out-

comes for nodeOperatorswhen they add or remove validators from their control.

Exploit Scenario:

Scenario A: Inaccurate RewardDebt UponAdding Validators

1. In a scenario involving 20 validators and a total of 10000wei in validator rewards, the

ideal distribution dictates that each validator should receive 500wei as their propor-

tionate share of the rewards.

2. NodeOperator Bob, responsible formanaging 2 validators,makes the decision to in-

troduce a 3rd validator under his supervision.

3. Upon Bob’s invocation of the claimAndUpdateRewardDebt function, he receives

rewards meant for the total number of user.amount validators, which amounts to 2.

Consequently, he gains rewards equivalent to 1000 wei (500 wei per validator * 2

validators).

46



4. However, the variable user.rewardDebt, intended to represent the amount Bob has

received, is inaccurately calculated using the formula (accRewardPerValidator *

userValidators) / 1e12. In this case, it is set to 1500wei (500wei * 3 validators).

5. Consequently, the protocol erroneously assumes that Bob has obtained 1500 wei,

when in reality, he has only received 1000 wei. This miscalculation leads to Bob

receiving fewer rewards than he should during the subsequent invocation of

claimAndUpdateRewardDebt.

Scenario B: Incorrect RewardDebt After Exiting a Validator

1. In a scenario with 20 validators and 10000 wei in validator rewards, each validator

should receive 500wei as their share of the rewards.

2. Node Operator Bob, managing 2 validators, Bob decides to exit 1 validator, reducing

his validator count to 1.

3. Upon Bob’s invocation of the claimAndUpdateRewardDebt function, he receives

rewards meant for the total number of user.amount validators, which amounts to 2.

Consequently, he gains rewards equivalent to 1000 wei (500 wei per validator * 2

validators).

4. However, the variable user.rewardDebt, intended to represent the amount Bob has

received, is inaccurately calculated using the formula (accRewardPerValidator *

userValidators) / 1e12. In this case, it is set to 500wei (500wei * 1 validators).

5. Consequently, the protocol erroneously assumes that Bob has obtained 500 wei,

when in reality, he has received 1000 wei. This miscalculation leads to Bob receiving

more rewards than he should during the subsequent invocation of

claimAndUpdateRewardDebt.

Files Affected:

SHB.15.1: StakingPool.sol

74 function claimAndUpdateRewardDebt(address usr) external override {

75 UserInfo storage user = userInfos[usr];

76

47



77 uint256 userValidators = IKeysManager(core.keysManager()).

↪→ nodeOperatorValidatorCount(usr);

78

79 uint256 pending = ((accRewardPerValidator * user.amount) / 1e12) -

↪→ user.rewardDebt;

80

81 if (pending > 0) {

82 IERC20Upgradeable(address(stkEth)).safeTransfer(usr, pending);

83 emit RewardRedeemed(pending, usr);

84 }

85

86 user.rewardDebt = (accRewardPerValidator * userValidators) / 1e12;

87 user.amount = userValidators;

Recommendation:

Consider correcting user.rewardDebt calculation to be : user.rewardDebt = (accReward-

PerValidator * user.amount) / 1e12whenuser.amount is not zero , andusing the current for-

mula of user.rewardDebt = (accRewardPerValidator * userValidators) / 1e12 otherwise.

Updates

The team resolved the issue by using user.amountwhen it’s different fromzero.

SHB.15.2: StakingPool.sol

74 function claimAndUpdateRewardDebt(address usr) external override {

75 UserInfo storage user = userInfos[usr];

76

77 uint256 userValidators = IKeysManager(core.keysManager()).

↪→ nodeOperatorValidatorCount(usr);

78

79 uint256 pending = ((accRewardPerValidator * user.amount) / 1e12) -

↪→ user.rewardDebt;

80

81 if (pending > 0) {

48



82 IERC20Upgradeable(address(stkEth)).safeTransfer(usr, pending);

83 emit RewardRedeemed(pending, usr);

84 }

85

86 if(user.amount != 0) {

87 user.rewardDebt = (accRewardPerValidator * user.amount) / 1e12;

88 } else {

89 user.rewardDebt = (accRewardPerValidator * userValidators) / 1e12

↪→ ;

90 }

91 user.amount = userValidators;

92 }

SHB.16 Uninitialized socketRegistry Address Leading to Po-

tential Loss of Funds

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

Description:

The Issuer contract in L2 contains a function transferEthMainnet designed to transfer ETH

from Layer 2 (L2) to Layer 1 (L1). However, there’s a critical oversight related to the socke-

tRegistry address. This address is not initialized in the contract’s constructor. If the owner

doesnot set this addresspost-deployment, anyattempt to transferETHusing the transfer-

EthMainnet function can result in a loss of funds, as the fundswould be sent to an uninitial-

ized address.

Files Affected:

SHB.16.1: Issuer.sol

49



118 function transferEthMainnet(

119 uint256 _stkEthMinted,

120 uint256 _amount,

121 uint256 _slippageFee,

122 bytes calldata _payload

123 ) external override onlyOracle returns (bool) {

124 if (address(this).balance < _amount + _slippageFee) revert

↪→ InSufficientBalance();

125 // update correct amount

126 newEthStaked = newEthStaked - _amount;

127 newStkEthMinted = newStkEthMinted - _stkEthMinted;

128 slippageColleted -= _slippageFee;

129 (bool success, ) = socketRegistry.call{ value: _amount +

↪→ _slippageFee }(_payload);

130 if (!success) revert BridgeCallFailed();

131 emit EthBridgedToL1(address(this).balance);

132 return success;

133 }

Recommendation:

Ensure that the socketRegistry address is initialized during the contract deployment,

preferably in the constructor.

Updates

The teamresolved the issueby initializing the socketRegistry address in the initialize func-

tion.

SHB.16.2: Issuer.sol

69 function initialize(IStkEth _stketh, address _socketRegistry) public

↪→ initializer {

70 __Ownable_init();

71 stketh = _stketh;

72 socketRegistry = _socketRegistry;

50



73 }

SHB.17 LackofBlacklistMechanismforMaliciousNodeOper-

ators

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The current contract implementation addresses the scenario where a validator actsmali-

ciously and subsequently gets slashed. However, post-slashing, there’s nothing in place to

prevent the same node operator from creating a new validator, calling the depositToEth2

function, and potentially repeating the malicious actions. This oversight can allow mali-

cious actors to continually exploit and grieve the protocol.

Exploit Scenario:

A validator acts maliciously, leading to them being slashed. Post-slashing, the validator,

leveraging the lackofpreventivemeasures in thecontract, calls thedepositToEth2 function

to create a new validator. They can then repeat their malicious actions, causing repeated

harm to the protocol and its participants.

Files Affected:

SHB.17.1: IssuerUpgradable.sol

280 function depositToEth2(bytes calldata publicKey) external whenNotPaused

↪→ {

281 require(

282 address(this).balance >= VALIDATOR_DEPOSIT + VERIFICATION_DEPOSIT

↪→ ,

51



283 "Issuer: Not enough ether deposited"

284 );

285 IKeysManager.Validator memory validator = IKeysManager(core.

↪→ keysManager()).validators(

286 publicKey

287 );

288

289 withdrawalverificationDeposit(validator.nodeOperator);

290

291 IKeysManager(core.keysManager()).depositValidator(publicKey);

292

293 depositedValidators = depositedValidators + 1;

294 DEPOSIT_CONTRACT.deposit{ value: VALIDATOR_DEPOSIT }(

295 publicKey,

296 abi.encodePacked(core.withdrawalCredential()),

297 validator.signature,

298 validator.deposit_root

299 );

300 }

Recommendation:

Track and monitor validators that get slashed due to malicious actions, and implement a

blacklistmechanismwithin the contract.

Updates

The teamacknowledged the issue, stating that theywill be implementing a blacklistmech-

anismwith thewithdrawal feature.

52



SHB.18 Owner CanSet Critical Values to Zero

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

Description:

The setValues function allows the owner to set the values ofmevRewards and exitBalance

tozero. While thecommentsuggests that this function ismeant for initialization, it’s redun-

dant since uint variables inSolidity are initialized to zero by default. Moreover, allowing the

owner to reset these values post-initialization can lead to unintended consequences.

Files Affected:

SHB.18.1: WithdrawalCredential.sol

84 /// @notice this function will be used to initialize mev rewards and

↪→ exit balance

85 function setValues() external onlyOwner {

86 mevRewards = 0;

87 exitBalance = 0;

88 }

Recommendation:

Consider removing the setValues function as it does not add the intended functionality.

Updates

The team resolved the issue by removing the setValues function.

53



SHB.19 OracleMembersCanVoteonMultipleConsensusData

Inputs

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The pushData function is designed to allow oracle members to vote on a specific Consen-

susData. While the function restricts an oracle member from voting more than once on a

specific ConsensusData, it doesn’t prevent them fromvotingonmultiple anddifferentCon-

sensusData inputswithin the same tx epoch. This oversight can allowamalicious oracle to

producemultiple attestations in the sameepoch, undermining the consensus logic.

Exploit Scenario:

Amaliciousoraclemember, aiming todisrupt theconsensusmechanism, submits voteson

multiple different ConsensusData inputs within the same epoch. This behavior can lead to

confusion, potential desynchronization, and could compromise the integrity of the consen-

susmechanism.

Files Affected:

SHB.19.1: Oracle.sol

251 function pushData(

252 ConsensusData memory _consensusData

253 ) external override whenNotPaused onlyOracle {

254 if (beaconData.getNextTxEpoch(lastCompletedEpoch) != beaconData.

↪→ getCurrentEpoch()) {

255 revert VotedEarly();

256 }

54



257 bytes32 candidateId = keccak256(abi.encode(_consensusData,

↪→ beaconData.getCurrentEpoch()));

258 bytes32 voteId = keccak256(abi.encode(msg.sender, candidateId));

259 if (submittedVotes[voteId]) {

260 revert AlreadyVoted(msg.sender);

261 }

262 submittedVotes[voteId] = true;

263 uint256 candidateNewVotes = candidates[candidateId] + 1;

264 candidates[candidateId] = candidateNewVotes;

265 if (candidateNewVotes >= quorum) {

Recommendation:

Adapt the pushData function to ensure that an oracle member can only vote once per tx

epoch, regardless of the ConsensusData input.

Updates

The team acknowledged the issue, stating that they are planning to implement the recom-

mendationwith thewithdrawal feature.

SHB.20 Need forWhitelisting TrustedRelayers inMEVBoost

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

In the context ofMEVBoost, Relays play a crucial role as a data-availability layer and com-

municationbridgebetweenbuildersandvalidators. Theyaredoubly-trusted: builderstrust

them for unbiased payload routing, while proposers trust them for block validity, accuracy,

and data availability. Given their specialization in Denial of Service (DoS) protection and

55



networking, it’s essential to ensure that only trustworthy relayers are allowed to partici-

pate. Without amechanism towhitelist trusted relayers, the system is exposed to potential

risks, especially since there’s an inherent trust assumption on relayers in PBS before the

integration of in-protocol PBS in Ethereum.

Recommendation:

Implement amechanism towhitelist a set of trusted relayerswithin theMEVBoost system.

Updates

The team acknowledged the issue, stating that they are planning to implement the recom-

mendationwith thewithdrawal feature.

SHB.21 Requirement for NodeOperators to Set FeeRecipient

to Protocol-ManagedAddress

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

For the pStake system, Node Operators who run validators should bemandated to set the

fee recipient for their respective validators to an address that is managed by the protocol.

This address is specifically for managing Execution Layer Rewards. It’s important to note

that this address is distinct from theWithdrawal Credentials in the consensus layer.

Exploit Scenario:

If NodeOperators set the fee recipient to anaddressother than theprotocol-managedone,

the Execution Layer Rewardswill not be fairly ditributed between the stakers, the protocol

and the validators. This leads to a loss of rewards.

56



Recommendation:

Implement amechanismwithin thepStakesystemtoenforceNodeOperators toset the fee

recipient to a protocol-managed address. This can be achieved bymonitoring the node op-

erators tomake sure the fee recipient address is set to the correct address.

Updates

The team acknowledged the issue, stating that they are planning to implement the recom-

mendationwith thewithdrawal feature.

SHB.22 Missing Socket API PayloadCheck

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The protocol currently employs the socket bridge to facilitate the transfer of ether fromL2

toL1. Giventhepotential risksassociatedwithacompromise inSocketAPIservers, it’scru-

cial to have an additional layer of validation for the payload data. Implementing the Socket

V2 Verifier can serve as this additional validation layer, ensuring the integrity and authen-

ticity of the data being transferred.

Exploit Scenario:

If the Socket API servers are compromised, malicious actors could manipulate or inject

malicious payload data during the transfer from L2 to L1. This could lead to incorrect or

fraudulent transfers, potentially causing financial losses or undermining the trust in the

protocol.

Files Affected:

57

https://github.com/SocketDotTech/socket-v2-verifier-contracts
https://github.com/SocketDotTech/socket-v2-verifier-contracts


SHB.22.1: Issuer.sol

118 function transferEthMainnet(

119 uint256 _stkEthMinted,

120 uint256 _amount,

121 uint256 _slippageFee,

122 bytes calldata _payload

123 ) external override onlyOracle returns (bool) {

124 if (address(this).balance < _amount + _slippageFee) revert

↪→ InSufficientBalance();

125 // update correct amount

126 newEthStaked = newEthStaked - _amount;

127 newStkEthMinted = newStkEthMinted - _stkEthMinted;

128 slippageColleted -= _slippageFee;

129 (bool success, ) = socketRegistry.call{ value: _amount +

↪→ _slippageFee }(_payload);

130 if (!success) revert BridgeCallFailed();

131 emit EthBridgedToL1(address(this).balance);

132 return success;

133 }

Recommendation:

Integrate the Socket V2 Verifier into the protocol’s transfermechanism.

Updates

The teamacknowledged the issue, stating that theSocketV2Verifier isnot yet inproduction

mode.

58

https://github.com/SocketDotTech/socket-v2-verifier-contracts
https://github.com/SocketDotTech/socket-v2-verifier-contracts


SHB.23 WITHDRAWAL_CREDENTIAL_BYTES32SetterDesyn-

chronizesOld Validators

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

Thesmart contractCore featuresa variablenamedWITHDRAWAL_CREDENTIAL_BYTES32,

which stores the withdrawal address for rewards and full withdrawals. This withdrawal

address, once set in the protocol, remains immutable and cannot be changed. As a result,

validators who have registered with a specific withdrawal address are unable to modify it

after registration. The onlyway to alter this address is through the intervention of the gov-

ernor,who can call the setWithdrawalCredential function. However, even if thewithdrawal

address is changedby thegovernor, previously registeredvalidatorswill continue to retain

the initially assigned withdrawal address, which will cause a desynchronization between

validators.

Files Affected:

SHB.23.1: Core.sol

58 function setWithdrawalCredential(bytes32 withdrawcreds) external

↪→ onlyGovernor {

59 //0x0100000000000000000000003d80b31a78c30fc628f20b2c89d7ddbf6e53cedc

60 WITHDRAWAL_CREDENTIAL_BYTES32 = withdrawcreds;

Recommendation:

Consider setting the WITHDRAWAL_CREDENTIAL_BYTES32 only once, as the protocol

should rely on upgradeability tomodify theWithdrawalCredential’s code.

59



Updates

The team acknowledged the issue, stating that the Core contract is already deployed and it

is not upgradeable.

SHB.24 GovernorHas Full Control Over Oracle Quorum

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

Description:

There exists a function within the contract that permits the governor to modify the quo-

rum,which is thenumber of required votesneededbyoraclemembers to validate the data.

This capability grants the governor undue influence and control over the oracle, potentially

compromising its decentralized nature and integrity.

Files Affected:

SHB.24.1: Oracle.sol

110 function updateQuorum(uint32 latestQuorum) external onlyGovernor

↪→ NonZeroQuorum(latestQuorum) {

111 emit QuorumUpdated(latestQuorum, quorum);

112 quorum = latestQuorum;

Recommendation:

Consider implementing a decentralized governance that should be responsible for critical

changes likeadjusting thequorum. Also, it is recommended to limit thegovernor’sability to

change the quorum or introduce a range within which the quorum can be adjusted to pre-

vent extreme values.

60



Updates

The teamacknowledged the issue, stating that they are planning to implement proper gov-

ernancewith DAO butwill start by amultisigwith time-lock to update any admin, governor

functionalities.

SHB.25 MinimumStakeAmount Bypass

• Severity : LOW

• Status : Fixed

• Likelihood : 2

• Impact : 1

Description:

The function mintL2 within the Issuer L1 contract is designed to facilitate the minting of

stkETH tokens in Layer 2 (e.g., Arbitrum or Optimism). This function includes a check to

ensure that the amount of ETH supplied in msg.value is greater than or equal to the

minimum stake amount. However, the actual amount of stkETH minted to the user is

determined by the variable ethToStake, which is derived frommsg.value - _callValue. This

discrepancy enables users to exploit the protocol by minting arbitrarily low amounts of

stkETH through manipulation of the _callValue, bypassing the intended minimum stake

requirement. This exploitation contradicts the security assumption mentioned in the

minimumStakeAmount modifier comment. It’s important to note that this issue is

particularly applicable in Arbitrum , where the remainder of _callValue is reimbursed to

the user. This reimbursement mechanism effectively allows users to mint stkETH with

minimalmonetary commitment.

Exploit Scenario:

1. Assuming an initial exchange rate of 1:1 between stkETH andETH.

2. The mintL2 function includes a check to ensure that msg.value (the amount of ETH

supplied) is greater than or equal to theminimumstake amount.

61



3. However, theactualamountofstkETHminted isdeterminedbyethToStake, calculated

asmsg.value - _callValue.

4. Exploiting this discrepancy, a user (e.g., Bob) canmanipulate _callValue tomake eth-

ToStake an arbitrarily low value.

5. Bob callsmintL2with the following parameters:

msg.value = 10000 gwei

_callValue = 10000 gwei - 1wei

messengerId of theArbitrumMessenger contract

Therefore :

ethToStake =msg.value - _callValue = 1wei

6. Bob successfully mints an amount of stkETH equivalent to 1 wei, which significantly

deviates from the intended minimum stake requirement, and gets refunded back

_callValue - arbitrumFees.

7. This enables Bob to bypass theminimum stake constraint, violating the security as-

sumption.

Files Affected:

SHB.25.1: IssuerUpgradable.sol

164 function mintL2(

165 uint256 _messengerId,

166 uint256 _callValue,

167 address _receiverAddress,

168 bytes memory _payload

169 )

170 external

171 payable

172 whenNotPaused

173 minimumStakeAmount(msg.value)

174 onlyExistingMessenger(_messengerId)

175 {

62



176 uint256 ethToStake = msg.value - _callValue;

177 emit Stake(msg.sender, ethToStake, block.timestamp);

178 uint256 stkEthToMint = (ethToStake * 1e18) / core.stkEth().

↪→ pricePerShare();

Recommendation:

ConsiderperformingtheminimumStakeAmountcheckonethToStake insteadofmsg.value.

Updates

The teamresolved the issuebyapplying theminimumStakeAmountcheckon themsg.value

- _callValue instead ofmsg.value.

SHB.25.2: IssuerUpgradable.sol

168 function mintL2(

169 uint256 _messengerId,

170 uint256 _callValue,

171 address _receiverAddress,

172 bytes memory _payload

173 )

174 external

175 payable

176 whenNotPaused

177 minimumStakeAmount(msg.value - _callValue)

178 onlyExistingMessenger(_messengerId)

179 {

63



SHB.26 Inability to Update stkETH Exchange Rate When All

RewardsAreSlashed

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

Within the Oracle contract, the function pushData is essential for communicating key

information from the consensus layer to the protocol. This information includes details

about exited validators and the amounts that have been slashed. The variable

deltaBalanceChange is responsible for representing rewards earned by validators, and

the subsequent call to the changeCValue function facilitates the modification of the

exchange rate for stkETH. However, an issue arises when the deltaBalanceChange is

equal to the slashed_amount. In this situation, the exchange rate remains unchanged even

if stakers have staked ETH in the tx epoch, which contradicts the intended behavior of the

protocol.

Files Affected:

SHB.26.1: Oracle.sol

297 withdrawals.setRewardsSlashedAmount(

298 deltaBalanceChange,

299 _consensusData.slashedAmount,

300 exitBalance

301 );

302 changeCValue(int256(deltaBalanceChange) - int256(slashed_amount));

SHB.26.2: Oracle.sol

182 function changeCValue(int256 calculatedRewards) internal whenNotPaused {

183 if (calculatedRewards > 0) {

64



184 uint256 valEthShare = (valCommission * uint256(calculatedRewards)

↪→ ) / BASIS_POINT;

185 uint256 protocolEthShare = (pStakeCommission * uint256(

↪→ calculatedRewards)) /

186 BASIS_POINT;

187 IIssuer issuer = IIssuer(core().issuer());

188 pricePerShare =

189 ((withdrawals.getTotalRewards() +

190 issuer.ethStaked() -

191 withdrawals.getTotalSlashedAmount() -

192 valEthShare -

193 protocolEthShare) * 1e18) /

194 issuer.stkEthMinted();

195 withdrawals.distributeRewards(protocolEthShare, valEthShare,

↪→ pricePerShare);

196 emit RewardRateChanged(pricePerShare);

197 } else if (calculatedRewards < 0) {

198 IIssuer issuer = IIssuer(core().issuer());

199 pricePerShare =

200 ((withdrawals.getTotalRewards() +

201 issuer.ethStaked() -

202 withdrawals.getTotalSlashedAmount()) * 1e18) /

203 issuer.stkEthMinted();

204 emit RewardRateChanged(pricePerShare);

205 }

Recommendation:

Consider including the casewhere calculatedRewards is equal to zero in the else if block:

SHB.26.3: Oracle.sol

} else if (calculatedRewards <= 0) {

IIssuer issuer = IIssuer(core().issuer());

pricePerShare =

((withdrawals.getTotalRewards() +

65



issuer.ethStaked() -

withdrawals.getTotalSlashedAmount()) * 1e18) /

issuer.stkEthMinted();

emit RewardRateChanged(pricePerShare);

}

Updates

Theteamresolvedthe issueby includingthecasewherecalculatedRewards isequal tozero

in the else if block:

SHB.26.4: Oracle.sol

190 } else if (calculatedRewards <= 0) {

191 IIssuer issuer = IIssuer(core().issuer());

192 pricePerShare =

193 ((withdrawals.getTotalRewards() +

194 issuer.ethStaked() -

195 withdrawals.getTotalSlashedAmount()) * 1e18) /

196 issuer.stkEthMinted();

197 emit RewardRateChanged(pricePerShare);

198 }

SHB.27 Uninitialized optimismReceiver and

arbitrumReceiver Can Lead toDoS

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The optimismReceiver and arbitrumReceiver variables, crucial for cross-chain function-

ality, are not initialized in the contract’s constructor. This oversight can lead to a Denial of

66



Service (DoS)attackon thecross-chain functionality until thesevariablesareproperly ini-

tialized at a later stage.

Files Affected:

SHB.27.1: OptimismMessenger.sol

15 address private optimismReceiver;

SHB.27.2: ArbitrumMessenger.sol

13 address private arbitrumReceiver;

Recommendation:

Ensure that all critical variables are properly initialized in the contract’s constructor.

Updates

The team resolved the issue by initializing optimismReceiver and arbitrumReceiver in the

contract’s constructor.

SHB.27.3: OptimismMessenger.sol

26 constructor(address _messenger, address _core, address _optimismReceiver

↪→ ) L1MessengerBase(_core) {

27 optimismMessenger = ICrossDomainMessenger(_messenger);

28 optimismReceiver = _optimismReceiver;

29 }

SHB.27.4: ArbitrumMessenger.sol

25 constructor(address _inbox, address _core, address _arbitrumReceiver)

↪→ L1MessengerBase(_core) {

26 inbox = IInbox(_inbox);

27 arbitrumReceiver = _arbitrumReceiver;

28 }

67



SHB.28 Hard-codedSlippageCausesDoS

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 1

Description:

The IssuerL1 contract contains the functiongetDepositL2,whichservesasamechanismto

receiveETHfromLayer2stakers. This function isdesignedto implementaslippagecontrol,

intended to account for potential delays in the bridge process. However, a significant issue

arises from the fact that the slippage control is hard-coded to a fixed value of 1%. This in-

flexible slippage setting can lead to complications, especially during periods of significant

delay in the bridge process. In such cases, the contractmay become incapable of receiving

ETH fromLayer 2 stakers, hindering its intended functionality.

Files Affected:

SHB.28.1: IssuerUpgradable.sol

261 function getDepositL2(

262 uint256 _stkEthMinted,

263 uint256 _sourceChainId

264 ) external payable onlySocketReceiver {

265 // accept 1% error in exchange rate due to delay in bridging

266 uint256 exchangeRate = core.stkEth().pricePerShare();

267 if (

268 exchangeRate - exchangeRate / 100 > (msg.value /

↪→ _stkEthMinted)

269 (msg.value / _stkEthMinted) > exchangeRate + exchangeRate /

↪→ 100

270 ) revert InvalidExchangeRateReceived();

68



Recommendation:

Consider implementing a flexible slippage control to allow the contract to adapt to various

bridging delays.

Updates

The team acknowledged the issue, stating that the accepted error rate is kept at max 1%

so that the exchange rate does not get changed by a lot and the funds will be transferred

once a day by the oracle (protocol) itself which will make sure to provide enough slippage

by addSlippage functionality if required.

SHB.29 Block Number Difference Between Chains results in

Desynchronized Events

• Severity : INFORMATIONAL

• Status : Acknowledged

• Likelihood : 1

• Impact : 0

Description:

The contracts L2MessageContract.sol, L2MessageContractOptimism.sol, and

L2MessageContractArbitrum.sol contain the function changeCValue,which is responsible

for minting sktETH for users on Layer 2 after receiving a message from the

crossDomainAccount. This function emits an event cValueChanged(block.number,

_cValue) to indicate the block number at which the cValue changed. However, a crucial

issue arises due to the potential disparity between block.number on Layer 2 (Arbitrum or

Optimism) and block.number on Layer 1. This mismatch can lead to the emission of an

inaccurate block number in the event, causing confusion and potentially impacting

front-end applications relying on accurate event information.

Files Affected:

69



SHB.29.1: L2MessageContract.sol

40 function changeCValue(uint256 _cValue) external

↪→ onlyFromCrossDomainAccount(msg.sender) {

41 CValue = _cValue;

42 emit cValueChanged(block.number, _cValue);

43 }

SHB.29.2: L2MessageContractOptimism.sol

53 function changeCValue(

54 uint256 _cValue

55 ) external override onlyFromCrossDomainAccount whenNotPaused {

56 stkETH.changePricePerShare(_cValue);

57 emit cValueChanged(block.number, _cValue);

58 }

SHB.29.3: L2MessageContractArbitrum.sol

43 function changeCValue(

44 uint256 _cValue

45 ) external override onlyFromCrossDomainAccount whenNotPaused {

46 stkETH.changePricePerShare(_cValue);

47 emit cValueChanged(block.number, _cValue);

48 }

Recommendation:

Consider relying on block.timestamp instead to have a more accurate way to track event

timing.

Updates

The teamacknowledged the issue, stating that their UI is fetching data fromsubgraphs and

not directly from the contracts. Also they have integrated different subgraphs for L1 and

L2s.

70



4 Best Practices

BP.1 RemoveUnused variables

Description:

The contracts containmultiple variables that are not utilized in their operations. These un-

used variables can introduce unnecessary complexity, increase gas costs, and potentially

lead to confusionormisinterpretationswhenreviewingor interactingwith thecontracts. It

is recommended to remove those variables.

Files Affected:

BP.1.1: StakingPool.sol

32 IERC20Upgradeable public pstake;

33 IUniswapRouter public router;

34 address public WETH;

BP.1.2: StakingPool.sol

42 IPriceOracle public oracle;

BP.1.3: StakingPool.sol

46 uint256 public DEVIATION; // 5% deviation is acceptable

47 uint256 public constant BASIS_POINT = 10000;

BP.1.4: WithdrawalCredential.sol

28 uint256 private newSlashedAmount;

BP.1.5: KeysManager.sol

17 uint256 public constant PUBKEY_LENGTH = 48;

18 uint256 public constant SIGNATURE_LENGTH = 96;

19 uint256 public constant VALIDATOR_DEPOSIT = 31e18;

71



Status - Acknowledged

BP.2 Remove Redundant Initializations with

Default Type Values

Description:

The contract contains variables that are explicitly initialized with their default type values.

In Solidity, variables are automatically initialized with their default values (e.g., 0 for inte-

gers, false for booleans). Remove these redundant initializations to simplify the contract

and reduce deployment costs.

Files Affected:

BP.2.1: Oracle.sol

273 uint256 slashed_amount = 0;

BP.2.2: Oracle.sol

284 uint256 exitBalance = 0;

BP.2.3: Oracle.sol

312 uint256 exitValidatorBalance = 0;

Status - Fixed

BP.3 Remove Tautological Statements

Description:

The contract contains tautological statements, which are always true by their nature.

Specifically, the require statement checks if type(uint256).max is greater than a value

from nodeOperatorValidatorCount, which will always be true since type(uint256).max

represents the maximum possible value for an uint256 and nodeOperatorValidatorCount

will not reach it since it only grows increments.

72



Files Affected:

BP.3.1: KeysManager.sol

107 require(

108 type(uint256).max > nodeOperatorValidatorCount[validator.

↪→ nodeOperator],

109 "KeysManager: validator deposit not added by node operator"

110 );

Status - Acknowledged

BP.4 Unchanged Variables Should Be Declared as

Constants

Description:

Thecontractcontainsvariables that remainunchangedthroughout its lifecycle. Thesevari-

ables,whichdonotundergoanymodificationspost-deployment, should ideallybedeclared

as constants. Using constants instead of regular state variables can lead to gas savings.

Files Affected:

BP.4.1: Oracle.sol

32 uint256 public minExitBal = 16 ether;

BP.4.2: Oracle.sol

34 uint256 public maxSlashing = 1 ether;

73



Status - Acknowledged

BP.5 CorrectMisleading Comments

Description:

In the Core contract, the comments above setWithdrawalCredential state that the

withdrawal address is in BLS formwhen it is not, it’s an execution key (0x01).

Files Affected:

BP.5.1: Core.sol

57 /// @param withdrawcreds: it is the withdrawal address in BLS form

58 function setWithdrawalCredential(bytes32 withdrawcreds) external

↪→ onlyGovernor {

59 //0x0100000000000000000000003d80b31a78c30fc628f20b2c89d7ddbf6e53cedc

Status - Acknowledged

BP.6 Optimize For LoopCounter Increment

Description:

In multiple contracts, the logic necessitates looping over a number of elements. A way to

optimize incrementing the counter is using the unchecked keyword and to use

post-increment. Here is an example:

Files Affected:

BP.6.1: Example

for (uint256 i; i < len;) {

unchecked{

++i;

}

}

74



Status - Acknowledged

BP.7 RemoveUnusedModifier

Description:

TheCoreRef contract defines amodifier named ifMinterSelf. However, throughout the con-

tract’s implementation, thismodifier is not utilized in any of the functions ormethods.

Files Affected:

BP.7.1: CoreRef.sol

19 modifier ifMinterSelf() {

20 if (_core.isMinter(address(this))) {

21 _;

22 }

23 }

Status - Acknowledged

75



5 Tests

Results:

5.1 L1-contracts

→ admin actions

X all contracts deploys successfully (146ms)

X upgradable contracts get upgraded by admin (280ms)

X only admin able to set values in core contract (593ms)

X only admin able to add values to oracle (178ms)

X only admin able to set l2messaging address (63ms)

→ keysmanager testing

X only node operator can add validator (337ms)

X cannot add same validator again (84ms)

→ Issuer testing

X user should not stake less that 0 (161ms)

X user should be able to stake and get stkETH (101ms)

X user should be able to stakeWETHand get stkETH (1973ms)

X user should be able to get stkETHon optimism (5601ms)

X user should be able to get stkETH on optimism by staking WETH

(1999ms)

X user should be able to transfer stkETH onOptimism (2082ms)

76



X user should be able to get stkETHonArbitrum (5240ms)

X usershouldbeabletogetstkETHonArbitrumbystakingWETH(868ms)

X user should be able to transfer stkETH onArbitrum (2599ms)

X should not make deposit for validator when less than 32 eth in pool

(72ms)

X should onlymake deposit for validatorwhen key is activated (390ms)

→ Oracle Testing

X fetch beacon data

X push data for validator activation (277ms)

X Noexit validators and no slashing (405ms)

X should update c value onOptimismandArbitrum (3230ms)

X no slashing andwrong validator exiting (112ms)

X only slahing less than 1 eth accepted (92ms)

X delta balancemore thanminimumexit balance (159ms)

X exit validatorwith no slahing (338ms)

X slashing less than rewards (393ms)

X slashingmore than rewards (212ms)

28 passing

→ Fuzz Tests

X testFuzz_stake(uint96) (runs: 256, μ: 153567, : 153567)

77



X testFuzz_stakeOnArbitrum(uint96) (runs: 256, μ: 219633, : 219633)

X testFuzz_stakeOnOptimism(uint96) (runs: 256, μ: 654328, : 654328)

X testFuzz_transferToArbitrum(uint96) (runs: 256, μ: 696284, : 696284)

X testFuzz_transferToOptimism(uint96) (runs: 256, μ: 677649, : 677649)

5 passing

5.2 L2-contracts

→ Receive L1 Transaction

X contracts deploy successfully (143ms)

X only admin able to add minter,burner and l1Messgae addresses

(544ms)

X onlyminter able tomin (141ms)

X only l2message contract can change price per share (107ms)

X user stake to get stkEth (606ms)

→ Receive L1 Transaction

X transfer Eth tomainnet successfully using socket (1885ms)

Conclusion:

The project offers a testing mechanism to improve the correctness of smart contracts;

nonetheless, the number of tested scenarios are low; therefore, we advise on resolving

this issue by covering more scenarios to handle most of the edge cases, in order to

guarantee the integrity of the code and the functionality of the protocol.

78



6 Conclusion

In this audit, we examined the design and implementation of pStake Finance contract and

discoveredseveral issuesofvaryingseverity. Persistenceteamaddressed14 issuesraised

in the initial report and implemented the necessary fixes, while classifying the rest as a

riskwith low-probability of occurrence. Shellboxes’ auditors advised Persistence Team to

maintain a high level of vigilance and to keep those findings in mind in order to avoid any

future complications.

79



7 Scope Files

7.1 Audit

Files MD5Hash

L1-contracts/contracts/Core.sol 480942fe2f929c558ef4f42e6687f89b

L1-contracts/contracts/CoreRef.sol ca5d70f244774cd8173431a7398ecf7a

L1-contracts/contracts/IssuerUpgradable.sol 58f048e2bec0a1778887efa672253375

L1-contracts/contracts/KeysManager.sol 6f89a5be319402db1f50c9c1e90d8ec0

L1-contracts/contracts/Oracle.sol b0707b809d0790f1c331f3f41c532341

L1-contracts/contracts/Permissions.sol b625e559ec2e81856577dd5f18069ab5

L1-contracts/contracts/PriceOracle.sol a20cd44a8b1287fc3a1b82be6f67e285

L1-contracts/contracts/StakingPool.sol 2e6eb81c4814cf53df2b5a71fe3eb4ee

L1-contracts/contracts/TimeLockController.sol 035e8800904d1f7554276ef4ffddda39

L1-contracts/contracts/WithdrawalCredential.s

ol

8cd0002e96af2b70b828841ab27ff14f

L1-contracts/contracts/token/StkEth.sol a04a19e80f887f4cae0cc05b0e313d60

L1-contracts/contracts/messenger/ArbitrumM

essenger.sol

324b65b7ac4846bb65ea073a1315ac44

L1-contracts/contracts/messenger/L1Messeng

erBase.sol

2c14cb6ec58b2f05d5d35b5ee716906e

L1-contracts/contracts/messenger/OptimismM

essenger.sol

356c30f6bbb996412ac7873483079b9b

L1-contracts/contracts/library/BeaconData.sol 66539115a3844afc29324b8c9acf1ede

80



L2-contracts/contracts/Issuer.sol 7e50ff6318f1035d13820b3ed2a90736

L2-contracts/StkEth.sol 361ae6a1d670f5332f8d32842bb3fedd

L2-contracts/TimeLockController.sol 035e8800904d1f7554276ef4ffddda39

L2-contracts/optimism/L2MessageContractOpti

mism.sol

bf2211deb2cfee133854e90e9a4a7fc2

L2-contracts/arbitrum/L2MessageContractArbi

trum.sol

e51de3b85e54e15a20a4b72ae1d84dd3

7.2 Re-Audit

Files MD5Hash

L1-contracts/contracts/Core.sol 480942fe2f929c558ef4f42e6687f89b

L1-contracts/contracts/CoreRef.sol ca5d70f244774cd8173431a7398ecf7a

L1-contracts/contracts/IssuerUpgradable.sol 7094b28e372e01e4f4be515db61c1f0d

L1-contracts/contracts/KeysManager.sol 66d277a64dd13a52e4c5a5daba289b20

L1-contracts/contracts/Oracle.sol 9f442cb55de8c93d34acd48ce2787599

L1-contracts/contracts/Permissions.sol b625e559ec2e81856577dd5f18069ab5

L1-contracts/contracts/PriceOracle.sol a20cd44a8b1287fc3a1b82be6f67e285

L1-contracts/contracts/StakingPool.sol d6fe6b1dfcb673f5e06447fb257e7f85

L1-contracts/contracts/TimeLockController.sol 035e8800904d1f7554276ef4ffddda39

L1-contracts/contracts/WithdrawalCredential.s

ol

cf5e699b004979f53f45d1411eabf19d

L1-contracts/contracts/token/StkEth.sol a04a19e80f887f4cae0cc05b0e313d60

81



L1-contracts/contracts/messenger/ArbitrumM

essenger.sol

bb76b8aa4b87beadf2dd4f7cca29dd67

L1-contracts/contracts/messenger/L1Messeng

erBase.sol

2c14cb6ec58b2f05d5d35b5ee716906e

L1-contracts/contracts/messenger/OptimismM

essenger.sol

d4ea22d7c988335442abfe89f9a71e66

L1-contracts/contracts/library/BeaconData.sol 66539115a3844afc29324b8c9acf1ede

L2-contracts/contracts/Issuer.sol ad509754109dd238adab9c9ec89dc44d

L2-contracts/contracts/StkEth.sol 361ae6a1d670f5332f8d32842bb3fedd

L2-contracts/contracts/TimeLockController.sol 035e8800904d1f7554276ef4ffddda39

L2-contracts/contracts/optimism/L2MessageC

ontractOptimism.sol

bf2211deb2cfee133854e90e9a4a7fc2

L2-contracts/contracts/arbitrum/L2MessageCo

ntractArbitrum.sol

a805d73c20c711e18372f1b08c6d6406

82



8 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject thatengagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

83



For a Contract Audit, contact us at contact@shellboxes.com

84

mailto:contact@shellboxes.com

	Introduction
	About Persistence
	Approach & Methodology
	Risk Methodology


	Findings Overview
	Disclaimer
	Summary
	Key Findings

	Finding Details
	Multiple Candidate Votes Accepted for the Same Epoch
	Replay Attack on Accepted ConsensusData
	Exited Balance of Validators and Staker Rewards Permanently Locked in the WithdrawalCredential Contract
	Permanent Locking of Validator Rewards Due to Lack of depositedValidators Update
	L2 Funds Cannot Be Bridged to L1 Due to Flawed Slippage Calculation
	Stuck MEV Rewards in the WithdrawalCredential
	Desynchronization Risk Due to Epoch-Based Data Submission
	Premature Reward Allocation Due to Ignoring Queue Wait Time
	Loss of User-Supplied Fees when Interacting with Optimism Messenger
	Improper Handling of Exiting Validators Allowing Last-Time Reward Claims
	Desynchronization of pricePerShare Between L1 and L2
	Inequitable Reward Distribution for New Validators
	Incorrect Condition Prevents Governor from Updating Commission Fees
	First Staker can Grief Others using an Inflation Attack
	Innacurate rewardDebt Calculation for nodeOperators Modifying Validator Count
	Uninitialized socketRegistry Address Leading to Potential Loss of Funds
	Lack of Blacklist Mechanism for Malicious Node Operators
	Owner Can Set Critical Values to Zero
	Oracle Members Can Vote on Multiple ConsensusData Inputs
	Need for Whitelisting Trusted Relayers in MEV Boost
	Requirement for Node Operators to Set Fee Recipient to Protocol-Managed Address
	Missing Socket API Payload Check
	WITHDRAWAL_CREDENTIAL_BYTES32 Setter Desynchronizes Old Validators
	Governor Has Full Control Over Oracle Quorum
	Minimum Stake Amount Bypass
	Inability to Update stkETH Exchange Rate When All Rewards Are Slashed
	Uninitialized optimismReceiver and arbitrumReceiver Can Lead to DoS
	Hard-coded Slippage Causes DoS
	Block Number Difference Between Chains results in Desynchronized Events

	Best Practices
	Remove Unused variables
	Remove Redundant Initializations with Default Type Values
	Remove Tautological Statements
	Unchanged Variables Should Be Declared as Constants
	Correct Misleading Comments
	Optimize For Loop Counter Increment
	Remove Unused Modifier

	Tests
	L1-contracts
	L2-contracts

	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

